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ABSTRACT

Human umbilical cord perivascular cells (HUCPVCs) are a
readily available source of mesenchymal stromal cells
(MSCs) for cell therapy. We were interested in understand-
ing how differences from human bone marrow (BM)-
derived MSCs might yield insights into MSC biology. We
found that HUCPVCs exhibited increased telomerase activ-
ity and longer telomeres compared with BM-MSCs. We
also observed enhanced expression of the pluripotency fac-
tors OCT4, SOX2, and NANOG in HUCPVCs. The methyl-
ation of OCT4 and NANOG promoters was similar in both

cell types, indicating that differences in the expression of
pluripotency factors between the MSCs were not associated
with epigenetic changes. MSC methylation at these loci is
greater than reported for embryonic stem cells but less
than in dermal fibroblasts, suggesting that multipotentiality
of MSCs is epigenetically restricted. These results are con-
sistent with the notion that the MSC population (whether
BM- or HUCPV-derived) exhibits higher proliferative
capacity and contains more progenitor cells than do dermal
fibroblasts. STEmM CELLS 2013,31:215-220
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INTRODUCTION

Human umbilical cord perivascular cells (HUCPVCs), derived
from the region surrounding the blood vessels within the
human umbilical cord, are an attractive and readily available
alternative source of mesenchymal stromal cells (MSCs) for
cell therapy [1] and may overcome some of the limitations of
bone marrow (BM)-derived MSCs, such as a decline in func-
tion with donor age [2, 3]. Furthermore, HUCPVCs have a
higher clonogenic frequency than BM-MSCs and contain self-
renewing stem cells with multilineage differentiation potential
in vitro and in vivo [4]. The molecular characteristics of
HUCPVCs, however, have not been previously studied. We
hypothesized that the enhanced properties of HUCPVCs,
including higher stem cell frequency and greater multipo-
tency, compared with BM-MSCs, result from their neonatal
tissue origin.

There are three main transcription factors, OCT4, SOX2,
and NANOG, that govern embryonic stem cells’ (ESCs) self-
renewal and pluripotency [5]. These factors are also expressed
in BM-MSCs, suggesting a similar regulatory role although
their levels are significantly lower than in ESCs [6]. Whether
they mediate MSC multipotency, however, is still unknown.
In this study, we characterized different molecular aspects of
HUCPVCs compared to BM-MSCs including telomerase

activity, telomeres length, expression of pluripotency factors,
and OCT4 and NANOG promoter methylation patterns to
gain insights into MSC biology.

METHODS

Full methods and any associated references are available as Sup-
plementary Information in the online version of the paper.

MSC Culture, Proliferation Assay, and Osteogenic
Differentiation

Umbilical cords were donated by full-term caesarian patients, and
BM-MSCs were obtained from healthy young adult volunteers (in
their 20s and 30s) after written informed consent according to a
protocol approved by the UHN Research Ethics Board.
HUCPVCs and BM-MSCs were grown until passage 4. Popula-
tion doubling time was calculated from carboxyfluorescein diace-
tate succinimidyl ester proliferation assay time-series data. Osteo-
genic differentiation was determined by Alizarin Red S staining
and alkaline phosphatase activity assay.

Quantitative Telomerase Repeat Amplification
Protocol Assay and Telomere Length Assay
Telomerase activity was assessed in cell extracts using a real-
time polymerase chain reaction (PCR) assay that measures the
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Figure 1. HUCPVCs exhibit a higher proliferation rate, telomerase activity, and longer telomeres compared with BM-MSCs. (A): Surface
marker expression levels in HUCPVCs and BM-MSCs analyzed by flow cytometry. Human MSCs highly express (>98%) the stromal determi-
nants CD44, CD49¢, CD73, CD90, and CD105 and are negative (<1%) for monocyte/macrophage (CD11b), endothelial (CD34), and hematopoi-
etic (CD45) markers. HUCPVCs exhibit a significantly higher expression of the pericyte marker CD146 compared with BM-MSCs. Data
represent mean = S.D. (n = 9). *, p < .0001 between groups derived from unpaired ¢ test. (B): In vitro proliferation assay using CFSE-labeled
HUCPVCs and BM-MSCs. The histograms of the CFSE intensity distribution were obtained by flow cytometry at different times (24—120 hours).
The decay of CFSE intensity is proportional to the cell proliferation rate. Figure representative of three independent experiments. (C): Quantita-
tive analysis of proliferation data. Cell population doubling time was calculated as 1/slope from a Log,(MFI) versus time plot of CEFSE time-
course data. The MFI for each time point was determined using a histogram analysis. Data represent mean = S.D. (n = 9). *, Slopes are statisti-
cally different with p < .0001 derived from ¢ test. (D): Analysis of telomerase activity using quantitative telomerase repeat amplification protocol
assay (Q-TRAP). Real-time polymerase chain reaction (PCR) products were run on a 10% nondenaturing PAGE to confirm the presence/absence
of telomerase products. Positive telomerase activity is evidenced as an incremental TRAP ladder of telomerase products. Serial dilutions (1:10)
of telomerase-positive HT1080 whole-cell lysates result in a decreased intensity of the TRAP ladder. A LB and a HI control were included to
confirm that the activity is due to the telomerase enzyme and not to nonspecific amplification. HUCPVCs and BM-MSCs are shown to be posi-
tive for telomerase activity. (E): Relative amounts of telomerase activity assayed by Q-TRAP. Results are expressed as percentage (*S.D.) rela-
tive to HT1080 activity (n = 9 per group). p values derived from unpaired ¢ test. (F): Telomere length measurement by real-time quantitative
PCR. Relative telomere length was determined using mean C, values to calculate the telomere/GAPDH gene ratio, and results are presented tak-
ing the telomere length of HT1080 as one (n = 9 per group). p values derived from unpaired ¢ test. Abbreviations: BM-MSCs, bone marrow-
derived mesenchymal stromal cells; CFSE, carboxyfluorescein diacetate succinimidyl ester; HUCPVCs, human umbilical cord perivascular cells;
HI, heat inactivated control; LB, lysis buffer; MW, molecular weight marker; MFI, mean fluorescence intensity.
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Figure 2. HUCPVCs show enhanced osteogenic differentiation potential compared with BM-MSCs. (A): Alizarin Red S staining was performed
20 days after osteogenic induction to exhibit calcium deposition in the extracellular matrix. Representative images of HUCPVCs and BM-MSCs (n
= 6 per group). Original magnification x200. (B): Calcium mineral content was quantified by dye extraction and spectrophotometry at 570 nm.
Data represent mean *= S.D. (n = 6). *, p < .0001 between groups derived from unpaired ¢ test. (C): The kinetics of ALP induction was assessed at
the time points of differentiation indicated. ALP activity was assayed with p-nitrophenyl phosphate as a substrate and normalized against total pro-
tein concentration. Data represent mean * S.D. (n = 5). *, p < .05 between groups derived from unpaired  test. Abbreviations: ALP, alkaline phos-
phatase; BM-MSCs, bone marrow-derived mesenchymal stromal cells; HUCPVCs, human umbilical cord perivascular cells.

ability of telomerase to extend an exogenous primer [7]. Relative
telomere length was measured from genomic DNA samples by a
real-time quantitative PCR method described by O’Callaghan
et al. [8].

Expression of Pluripotency Factors in MSCs

Quantitative reverse transcriptase PCR (RT-PCR) for OCTH4,
SOX2, and NANOG was performed as previously described [9],
and data were analyzed by the relative quantification (2724
method [10]. For flow cytometry analysis, cells were fixed, per-
meabilized, and stained using the following antibodies (Abcam,
Cambridge, U.K., http://www.abcam.com): rabbit anti-OCT4
(1:200), rabbit anti-SOX2 (1:200), and rabbit anti-NANOG
(1:100). Cytospin slides were also prepared from cultured
HUCPVCs and BM-MSCs, and cells were stained for OCT4
(1:300), SOX2 (1:300), and NANOG (1:100) using the primary
antibodies described above.

Bisulfite Genomic Sequencing

Bisulfite genomic DNA sample treatment and processing were
performed simultaneously for both cell types to analyze the
OCT4 and NANOG promoters using previously designed primers
[9]. Bisulfite conversion efficiency of non-CpG cytosines was
higher than 95% for all individual clones for each sample.

Statistical Analysis

Continuous variables are expressed as mean = S.D. The unpaired
Student ¢ test was used to evaluate statistical significance between
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HUCPVCs and BM-MSCs. A probability value <.05 was consid-
ered statistically significant.

RESULTS AND DiISCUSSION

First, we determined the immunophenotypic characteristics
and proliferation potential of both MSC populations (Fig. 1A—
1C; Supporting Information Figs. S1, S2). The proliferation
rate of HUCPVCs was significantly higher than for BM-
MSCs (population doubling time: 23.6 vs. 44.4 hours, respec-
tively; p < .001). Of note, HUCPVCs contain higher levels of
CD146" cells compared with BM-MSCs. CD146 is an endo-
thelial and progenitor cell marker recently described as a
marker of pericytes, which identifies cell-renewing and multi-
potent clonogenic stromal progenitors [11]. Single cell-
derived clonal analysis also demonstrated that HUCPVCs are
capable of self-renewal and multilineage differentiation, two
essential properties of progenitor cells [4].

Growing evidence supports that telomerase activity may
affect processes linked to optimum stem-cell function, such as
cell replication and differentiation [12]. In fact, a minimum
expression of telomerase is required for MSC differentiation
into adipocytes and chondrocytes [13], while bone formation
is significantly enhanced in telomerase-overexpressing MSCs
[14]. Moreover, MSCs undergoing reprogramming showed
decreased telomerase activity, indicating cell maturation and
terminal differentiation [6]. Interestingly, we found that
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Figure 3. Expression of pluripotency factors in HUCPVCs and BM-MSCs. (A): Quantitative real-time polymerase chain reaction (PCR) assay
for expression of OCT4, SOX2, NANOG. Results were normalized against a set of reference genes and plotted relative to the expression level of
BM-MSCs (n = 9 per group). *, p < .0001 between groups derived from unpaired ¢ test. (B): Expression of embryonic markers (all green) in
HUCPVCs and BM-MSCs by immunocytochemistry. Cell nuclei were stained with 4’,6-diamidino-2-phenylindole (blue). Original magnification:
% 100. (C): Flow cytometry analysis of OCT4, SOX2, and NANOG expression in HUCPVCs and BM-MSCs. Solid gray histograms represent cells
stained with FITC-labeled antibodies; isotype-matched controls are overlaid in a dotted black line. Graphs are representative of three independent
experiments. (D): Percentage of positive cells for the expression of embryonic markers assayed by flow cytometry (n = 9 per group). *, p < .05 and
*, p < .001 between groups derived from unpaired ¢ test. (E): Average amount of pluripotency factors in each cell population represented by MFI (n
= 9 per group). *, p < .05 and *, p < .01 between groups derived from unpaired 7 test. Abbreviations: BM-MSCs, bone marrow-derived mesenchy-
mal stromal cells; HUCPVCs, human umbilical cord perivascular cells; FITC, fluorescein isothiocyanate; MFI, mean fluorescence intensity.

HUCPVCs exhibited 2.4-fold higher telomerase activity (Fig.
1D, 1E; Supporting Information Fig. S3) and significantly lon-
ger telomeres (2.2-fold difference) than BM-MSCs (Fig. 1F;
Supporting Information Fig. S4). Telomerase activity signifi-
cantly decreased (<1%) in both cell types after osteogenic
differentiation. It is known that telomerase expression is
insufficient to fully maintain telomeres in tissue stem cells, a
mechanism believed to be responsible for the decreased func-
tion of MSCs with age [15]. In this regard, HUCPVCs
showed a higher differentiation capacity toward the osteo-
genic lineage compared with BM-MSCs (Fig. 2). These data
are in agreement with previous studies demonstrating
enhanced trilineage differentiation capacity of HUCPVCs [4,
16]. Human MSCs derived from embryonic and fetal sources
have also exhibited the ability to enhance cardiomyogenesis
compared with their adult counterparts [17]. Moreover, sev-
eral reports have recently demonstrated the regenerative
potential of HUCPVCs in different animal models [18-20].
Taken together, these data support the use of HUCPVCs as a
more homogeneous source of stromal progenitors and poten-
tially more useful for cell replacement therapy, or more
likely, in better stimulating the endogenous recovery of
injured tissue. Although the immune privileged status of
MSCs enables their use in allogeneic cell therapies [21], BM-
MSCs are particularly useful for autologous transplantation as
HUCPVC banking has not been fully developed.

We next asked whether the enhanced proliferative and
multipotent properties of HUCPVCs were related to increased
expression of pluripotency factors. We found that OCT4 was
upregulated in HUCPVCs compared with BM-MSCs, how-
ever, there was no difference in SOX2 and NANOG gene
expression (Fig. 3A). Protein expression was significantly
higher in HUCPVCs (Fig. 3B, 3C) not only with respect to
the frequency of positive cells (Fig. 3D) but also in relative
protein content per cell (Fig. 3E) as assessed by flow cytome-
try. It is known that post-translational modifications can also
regulate OCT4 levels, hence pluripotency [22]. Moreover,
OCT4 knockdown in human BM-MSCs also decreases SOX2
and NANOG, affecting genes associated with differentiation
and stem cell maintenance [6]. These data suggest that pluri-
potency factors may mediate greater clonogenicity and multi-
potent potential of HUCPVCs compared with BM-MSCs.
Current evidence suggests that DNA methylation is the major
epigenetic mechanism regulating the expression of stemness
genes [9, 23]. While we found reduced NANOG promoter
methylation in HUCPVCs versus BM-MSCs (16% vs. 27%, p
= .026), both cells types showed comparable methylation of
the OCT4 promoter (51% vs. 48%, p = .590). These results
indicate that differences in expression of pluripotency factors
between the MSCs were not associated with important epige-
netic changes (Fig. 4). Similarly, a recent report found that
DNA methylation profiles of lineage-specification genes are

Stem CrLLS



Yannarelli, Pacienza, Cuniberti et al.

O Unmethylated
@ Methylated
& Unknown
OCT4
TSS
I—D

HUCPVCs

()
Hoe

CHn

.~
gt €59 4 42
90 & . 000
oo o e

R << a5 G <3
00 = o0
oo ' < ‘o0

219

TSS

% Me

51%

48%

N

Figure 4. Differences in the expression of pluripotency factors between HUCPVCs and BM-MSCs are not associated with changes in OCT4
and NANOG promoter methylation. Bisulfite sequencing analysis of the OCT4 (regions 4 and 9) and NANOG (regions 1 and 2) promoters in
HUCPVCs and BM-MSCs. Open and closed circles indicate unmethylated and methylated CpGs. The values above each column indicate the
CpG position relative to the TSS, and a box at the bottom represents the average methylation. The overall percentage of methylation for each
promoter is noted to the right of each panel. Abbreviations: BM-MSCs, bone marrow-derived mesenchymal stromal cells; HUCPVCs, human um-

bilical cord perivascular cells; TSS, transcriptional start site.

not influenced by the origin of MSCs but differ from those of
hematopoietic progenitor cells versus ESCs [24]. It is well-
known that human ESCs are predominantly demethylated on
OCT4 and NANOG promoters (5%), while fibroblasts show
prominent methylation at these loci (~80%) [9]. It is note-
worthy that the degree of methylation at these loci in MSCs
is greater than for ESCs but less than for fibroblasts, inferring
that the multipotentiality of MSCs as a group may be epige-
netically restricted. This mechanism may explain the lower
differentiation capacity, and possibly, the very low-risk of tu-
mor formation (if any) of MSCs compared with ESCs.

CONCLUSION

In conclusion, we showed that HUCPVCs present higher lev-
els of CD146" stromal progenitors and exhibit enhanced
expression of telomerase and pluripotency factors compared

www.StemCells.com

with BM-MSCs. Our results also suggest that the methylation
of OCT4 and NANOG promoters is a potentially important
mechanism in restricting the differentiation capacity of MSCs
compared with ESCs.
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