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We investigate the dynamic and static properties of a polymer melt near solid surfaces. The melt, composed of linear chains, is confined
between two solid walls with one of the walls being repulsive; whereas the opposite, attractive wall, is characterized by different degrees
of roughness, caused by an array of short perpendicular pillars with variable grafting density. We demonstrate the remarkable fact that the
conformations of chains in the melt at the interfaces are mostly unaffected by the strength of substrate/polymer attraction. Moreover, they
practically coincide with the conformations of a single end-grafted chain at the critical point of adsorption, in agreement with Silberberg’s
hypothesis. This agreement is corroborated by the analysis of the size distributions of trains, loops, and tails of melt chains at the walls that
are found to be perfectly described by analytical expressions pertaining to end-grafted single chains at critical adsorption. The adsorbed
amount at the attractive bottom surface is found to scale with macromolecule length as � ∝ √

N regardless of adsorption strength. We also
find that the pressure of the melt PN decreases as PN − P∞ ∝ N−1 (where P∞ is the extrapolated pressure for N → ∞) with growing length
N of the chains whereas the surface tension γ at both walls is found to decline as γN ∝ N−2/3. Eventually, a study of the polymer dynamics
at the rough interface reveals that surface roughness leads to dramatic drop of the coefficient for lateral diffusion whenever the separation
between obstacles (neighboring pillars) becomes less than ≈ 2Rg where Rg is the unperturbed radius of gyration of chains in the bulk.

Keywords: Polymer melt, Dynamics, Pressure, Surface tension

Introduction

The structural and dynamic properties of polymer melts near
solid substrates have been investigated for several decades (1).
They are not only interesting from a fundamental point of view
but also play a major role in various applications such as in lubri-
cants, surface coatings, and composite materials, where these
macromolecules can control the overall performance of the sys-
tem (1, 2). Both the structural and dynamic properties of the
macromolecules are modified by the presence of surfaces, in
comparison with those in the bulk. To discover the range of sur-
face effects on the melt and their origins, which are not well
understood, Molecular Dynamics (MD) simulation studies can
play a major role. For example, the effect of the strength of
substrate-polymers adsorption or, instead, the result from the
geometric constraints imposed by the confining wall is still a mat-
ter of repeated studies and debate (3). The presence of a wide
range of length and time scales involved in the problems is the
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Color versions of one or more of the figures in the article can be
found online at www.tandfonline.com/lsfm.

general reason they are not fully understood, which makes the
experimental data analysis difficult (4).

In this sense, the use of computer-aided modeling for the study
of confined polymer melts has proven to be rewarding. By means
of computer simulations, a number of physically relevant quanti-
ties that describe the relaxation and structure of the polymer melt
can be defined and also elucidated in detail. Two main approaches
can be recognized in this field of research. In the case of atomistic
simulations, the emphasis is mainly on the chemically realistic,
detailed description of the systems and their properties. In this
case some examples of recent works are the studies by Daoulas
et al. (5, 6) on films of polyethylene on graphite; Mansfield and
Theodorou (7–10) and Smith et al. (11) (atomistic surface/n-
alkane); Pandey and Doxastakis (12) (silica/polyethylene);
Yelash et al. (13) (graphite/polybutadiene); and Hentschke et al.
(14) (graphite/alkane). A lot of information regarding polymer
behavior at particular surfaces can be provided by means of
these methods, as long as the concentrations are not too high.
However, atomistic simulations are not feasible as a source of
reliable statistical data, for concentrations approaching the melt
conditions.

In order to be able to treat much larger systems with the proper
statistical averaging of the observables, and also study systems
for a longer period of time, one can alternatively use coarse-
grained models whereby some atomistic details are sacrificed.
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Most frequently, by means of Monte Carlo (MC) methods
(15–18) and MD (19–31) atomistic, as well as coarse-grained
studies’ are carried out. A rather efficient approach to analyze
the structural properties is based on Self-Consistent Field (SCF)
models at the level of mean-field approximation (32–34). Most of
these computer experiments have been focused on the structure
and relaxation dynamics of a polymer melt at solid (atomically
smooth or structureless) substrates. It has been demonstrated,
however, that a major influence may be due to differences in the
smoothness of the solid boundary, for example, on fundamental
aspects of the glass transition in polymer films [e.g., see (21–24,
35–39)]. A rather important aspect of this problem is the correla-
tion amang structural, dynamical, and mechanical properties of
polymer nanocomposites (40, 41).

In the present work, we consider the structure and dynamic
properties of a linear polymer melt at solid interfaces, and we
focus on several aspects that have’ thus far, determined mini-
mal or insufficient attention within the context of the properties
of the interfacial melt. Following Silberberg’s theoretical predic-
tions (42, 43) and Skvortsov and Gorbunov (44), we demonstrate
that in the confined melt, random walks with reflecting boundary
(according to the so called Silberberg’s hypothesis) can describe
the conformations of a chain, and irrespective of the particular
interaction between the solid substrate and the melt, these con-
formations are nearly identical to those of a single chain under
critical adsorption conditions (45). In the previous works on this
problem, where lattice models have been used (3, 17, 18) in con-
trast to continuum models, some typical properties of the melt
structure near a solid wall such as the well-known packing or
layering effect could not be reproduced. Therefore, the answer to
the question as to what extent the Silberberg’s hypothesis holds
within the framework of a more realistic (off-lattice) description
of the melt/substrate region has remained unclear. We exam-
ine the probability distributions of the trains, loops’ and tails of
polymers near the solid wall and find that they closely follow the
theoretically predicted results by Fleer and colleagues (32, 33)
and Hoeve et al. (46) for single polymer chains at the point of
critical adsorption on a flat solid wall.

Moreover, in the present study, which is the mini review of
our recent papers (27, 45), we examine carefully the behavior
of pressure, PN, exerted by the melt on the container surfaces,
in particular, the impact of polymer length N on pressure. Our
results show that PN (N) − P∞ diminishes as N −1 with grow-
ing chain length while the surface tension, γ N , which is derived
from the pressure anisotropy parallel and perpendicular to the
substrate, is found to change as N −2/3, in agreement with some
earlier experimental findings (see Pressure section). Eventually,
we consider the dynamics of polymer melt in the presence of both
smooth and rough surfaces. To study the impact of the different
levels of the roughness on the dynamics, we consider a system
where an array of vertical pillars with various grafting densities
are grafted by the solid wall.

The remainder of the paper is organized as follows: In The
Model section we introduce our coarse-grained model to study
the solid/melt system and also the parameters of the MD sim-
ulation. The Static Properties of the Polymer Melt section is
devoted to studies of statics properties of the chains in the
confined melt, such as monomer number density; bond lengths
and orientation; adsorbed amount; gyration radius, loops, trains,

and tails distributions; and pressure across the container. In this
section we present our test of Silberberg’s hypothesis. In the
Dynamics section, we show the results on the dynamics of the
polymer melt at the vicinity of the confining walls. Our Summary
is briefly described in the Conclusion section.

The Model

We use a coarse-grained bead-spring model of polymer chains
(47) to study the properties of a polymer melt near hard walls.
In this model, the bonded interaction between neighboring beads
of a polymer is a combination of a finitely extensible nonlinear
elastic (FENE) potential:

UFENE = −k0

2
R2

0 ln

[
1 −

(
r

R0

)2
]

, (1)

where the elastic constant is k0 = 30; and R0 = 1.5 is the maximal
extension of the bond between neighboring segments; and the
Weeks-Chandler-Anderson (WCA) potential:

UWCA(r) =
{

ULJ(r) − ULJ(rc), r ≤ rc,
0, r > rc,

(2)

where the radius of cut-off is rc = 21/6; and ULJ(r) is the
Lennard-Jones (LJ) potential:

ULJ(r) = 4ε

[(σ

r

)12 −
(σ

r

)6
]

, (3)

where ε is the potential well depth, σ is the size of each monomer,
and r is the distance between monomers. All quantities are
defined in the reduced units, whereby the length is expressed in
units of the LJ radius σ = 1, the mass of each monomer is set
to m = 1, and the energy unit is ε = 1kBT (kB is the Boltzmann
constant). The unit of temperature, T , is ε/kB, and the time is
measured in the units of σ

√
m/ε.

Truncated and shifted LJ potential, Eq. (3), with ε = 1 and the
cut-off radius of rc = 2.5, is used for all nonbonded monomer–
monomer interactions. The polymer melt is confined between
two surfaces that are flat and are modeled as two-dimensional
square arrays of beads with lattice constant of a = 1. We have
considered a polymer melt composed of monodisperse linear
chains.

In this study, three different system sizes named A, B, and
C were chosen. In system A the box dimensions are Lx = 64,
Ly = 32, and Lz = 40, which is used in the Monomer Density
Profiles section, the Radius of Gyration section, the Test of
Silberberg’s Hypothesis section, and the Pressure section. In sys-
tem B the simulation box has edges of Lx = Ly = 16, and Lz = 50,
used in the Effects of Surface Roughness on the Melt Mobility of
Monomers in the section. System C has rectangular container as a
simulation box with edge lengths Lx = 20, Ly = 20, and Lz = 60,
which is considerably larger than the thickness of the adsorbed
films. We use system C in the Properties of the Adsorbed Melt
section. In system A, the chain lengths are varied between 10 ≤
N ≤ 240, which spans from the disentangled to an entangled
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regime, whereas in systems B the length of the chains is only
10, and in system C we use chains with lengths N = 16, 24, 32,
48, and 80.

In systems A and B, the bottom surface is attractive and
its beads interact with the monomers via a full LJ potential,
shown in Eq. (3). The depth of the potential well is chosen
as εbot = 2.0 and a cut-off radius as rc,bot = 2.5. The interaction
between the beads of the top repulsive wall and the monomers is
WCA, with rc,top = 21/6as cut-off radius, and εtop = 1. In system
C, the interaction between bottom attractive surface with melt is
LJ potential with rc,bot = 2.5 and various values of potential well
depth of εw = 0.5, 1.0, 2.0, and 3.0 are used. It will be mentioned
whenever we use systems A, B, and C.

In order to examine effects of surface roughness, we have
studied surfaces with variable roughness, which is tuned by
changing the density of fixed vertical pillars that are arranged in
a regular squared array on the attractive surface (see Fig. 1). Each
pillar is made of 20 fixed beads with radius 1σ and the distance
between neighboring beads in each pillar is 0.5σ , making a pillar
height of 10. Pillar particles interact with the monomers through
a WCA potential in system of type A while they are attractive in
systems of type B.

In system A, the attractive and repulsive surfaces are placed at
z = 0 and z = 40, respectively, and the monomer density is taken
as 0.88. In contrast, in system B, the attractive and repulsive
surfaces are placed at z = 0 and z = 50, respectively; as a result,

a free surface of the melt that refers to a liquid-vacuum interface
is formed in the vicinity of the repulsive wall. In system C, the
solid attractive surface is located at z = 0 and in order to prevent
escaping of the chains from the simulation box in the z direction,
a soft wall is placed at the upper side of the cell.

We have summarized information regarding the different
types of systems in the Table 1.

To study systems A and B, the ESPResSo++ package was
used to perform the simulations (48), whereas system C was
simulated by the DL-POLY package (49). We integrated the
equations of motion by using the velocity-Verlet algorithm.
The time step was chosen as dt = 0.005, and using a Langevin
thermostat with a friction coefficient γ = 0.5, the temperature
was set to T = 1.

Static Properties of the Polymer Melt

This section is devoted to the static properties describing polymer
chain conformations, such as monomer number density (MND);
bond length, radius of gyration; and the distribution of building
units such as trains, loops, and tails in the vicinity of solid walls.
Also, the pressure exerted by the melt on the container walls and
the resulting surface tension are considered. As the system is
anisotropic in the z-direction, we studied the monomer number
density and the gyration radius layer-wise.

Fig. 1. Left panel: The schematic geometry of the system. The polymer melt is confined between a repulsive- (top), and an attractive wall
(bottom). When surface roughness is considered, repulsive pillars with lengths of 10σ are attached vertically to the attractive wall. A polymer
chain in the bulk (red) of the system and two chains (orange and green) near attractive wall are shown. The box size of the system is Lx = 64
(in the x direction), Ly = 32 (in y direction), and Lz = 40 (in z direction). For a better view we have cut the system and shown only part of
it. Middle panel: different interactions that act in the system. Right panel: Normalized WCA and LJ potentials, U(r)/ε, as a function of the
distance between two particles, r. Reproduced from Sarabadani, J., et al. (45). ©2014, AIP Publishing LLC. Reproduced by permission of
AIP Publishing LLC. Permission to reuse must be obtained from the rightsholder.

Table 1. Table of information for different systems A, B, and C.

System Lx × Ly × Lz N ρr

Does it have free
surface? Sections

A 64 × 32 × 40 10–240 0.0–0.125 No. Static properties
B 16 × 16 × 50 10 0.0–0.125 Yes. Dynamics
C 20 × 20 × 60 16–80 0.0 Yes. Static properties / Dynamics

First column: System type used in the simulations. Second column: Simulation box lengths in x (Lx), y (Ly), and z (Lz) directions, respectively.
Third column: Lengths of polymer chains that have been used in each system. Fourth column: Pillar density. Fifth column: Availability of free
surface. Sixth column: Indicates the sections where the particular systems is discussed.
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Fig. 2. The monomer number density profile, ρmon(z), as a function
of z, the distance from the bottom attractive surface, for different
chain lengths of N = 10, 20, and 240. A snapshot of the system
is presented in the left inset, where the layering effect can readily be
seen. The region of z > 37 close to the upper repulsive container sur-
face is magnified for better visibility. (Here, systems of type A have
been studied.) Reproduced from Sarabadani, J., et al. (45). ©2014,
AIP Publishing LLC. Reproduced by permission of AIP Publishing
LLC. Permission to reuse must be obtained from the rightsholder.

Monomer Density Profiles

First, we consider the monomer density profile, ρmon(z). Fig. 2
shows ρmon for three different systems composed of linear chains
with lengths of N = 10, 20, and 240. To determine monomer
number density, we divided each unit of length in the z direc-
tion into 100 slabs parallel to the container walls. As a rule, for
systems composed of chain lengths N < 240, we averaged over
2 × 103 different realizations, and only for the systems with chain
length of N = 240 the average was determined over 103 mea-
surements. Apparently, a strong layering effect near the bottom
attractive wall can be observed, whereas in the vicinity of the
top repulsive wall this effect is weak. Near the bottom attrac-
tive surface all three density profiles coincide because, due to
wall attraction, the melt monomers are rather densely packed
at the bottom wall. In contrast, the layering effect in the vicin-
ity of the top repulsive wall is only weakly pronounced. This
small layering effect can be explained by looking at the behav-
ior of the pressure as a function of chain length, which can be
found in the Test of Silberbery’s Hypothesis section (45). One
can demonstrate the deformation of the chains close to the walls
by analyzing the monomer distribution around the center of mass
of each polymer chain for systems C. This quantity (see Fig. 3)
is calculated across the melt and explains the mass rearrange-
ments that polymer chains suffer due to the presence of the
walls in more detail. The histograms reveal three main different
regions. Chains close to the bottom attractive wall are strongly
deformed and show a process of layering inside the polymer
chain itself. This influence of the wall is screened and diminishes
beyond a distance of approximately Rg, which is 4.9 for chain
length of N = 80. At the middle of the film, around z = 20.0,
the polymers display the expected, unperturbed Gaussian shape.
Finally, close to the free surface, that is, around z = 32.0, the
distribution of the density is getting slightly asymmetric with no
layering.

Fig. 3. Monomer distribution around the center of mass of the poly-
mer chains, which are shown at different positions z across the
film, as indicated. The adsorption strength of the attractive wall is
εw = 2.0 and the length of the polymer is N = 80. (Here, system of
type C has been studied.) Reproduced from De Virgiliis, et al. (27).
© Springer. Reproduced by permission of Springer. Permission to
reuse must be obtained from the rightsholder.
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Fig. 4. Profile of the monomer density, ρ(z), as function of the dis-
tance from the attractive wall z. Here, the chain size is N = 80 and
the adsorption strength is εw = 2.0. For better visibility, the monomer
number density of those monomers that belong to the adsorbed
chains only, ρads(z), is presented shaded in gray. Here, a typical layer-
ing effect for the first few layers parallel to the solid attractive surface
can obviously be seen. (Here, system of type C has been studied.)
Reproduced from De Virgiliis, et al. (27). © Springer. Reproduced
by permission of Springer. Permission to reuse must be obtained
from the rightsholder.

Properties of the Adsorbed Melt

In this subsection we focus on the properties of the adsorbed
chains. To this end, first we look at the monomer number density
profile once more. The overall variation of monomer density is
presented in Fig. 4 as a function of the distance from the attractive
wall, z, for a system of type C with chain length of N = 80 and
εw = 2. In this figure we differentiate between those monomers
that belong to the adsorbed polymers (gray-shaded area) and the
monomers belonging to chains with no contact with the wall.
A typical layering effect for the mass distribution due to the
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dispersive interactions is shown to decay beyond as approximate
distance of z = 5. Therefore, the interphase region in the vicinity
of the rigid attractive wall has a thickness of about 5 layers and
this value does not vary with changing strength of the surface-
chain attraction (see Figs. 2 and 4). One can use the first peak as
a position of the so called adsorption layer whose thickness is
about 0.9 of the diameter of a bead σ . In what follows, adsorbed
chains are those polymers that have at least one monomer belongs
to the first layer.

As the conformation of the chains in the vicinity of the
substrate can determine many properties of the solid-polymer
chain contacts, we focus on some features of the adsorbed layer.
An important quantity to explore is the total mass of adsorbed
chains, the so called adsorbed amount which is herein denoted
by �. The adsorbed amount is defined as the total mass of
those monomers that belong to the adsorbed polymer chains
per unit of the surface area, and is equal to the area of the
shaded region in Fig. 4. As mentioned earlier, an adsorbed
chain refers to a polymer that contains at least one monomer
in the region 0 < z < 1.4 which is labeled by (I) in Fig. 4.
The upper limit of this region, z = 1.4, is the position of the
first minimum in the monomer number density profile ρ(z) in
Fig. 4. In Fig. 5 the adsorbed amount, �, is plotted as func-
tion of εw, which is the strength of the the attractive potential,
for two different values of chain length N = 32 and 80. Before
the adsorbed amount reaches a plateau, it increases steadily with
growing strength of the attractive potential, εw. In the inset of
Fig. 5, the saturating value of the plateau is plotted as a func-
tion of the chain length N and shown to behave as �(N) ≈ N1/2,
which is fully in agreement with the theoretical prediction of
Scheutjens and Fleer (50), and also with the atomistic simulation
results of Daoulas et al. (5). For infinitely long single polymers,
adsorption occurs when εw exceeds a certain critical adsorption
value (51).

0.0 0.5 1.0
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ds

or
be
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nt

 (
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N = 32

N = 80
0
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2
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6

Γ(
N

)

0.5
1.0
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84

Fig. 5. The adsorbed amount �, which is defined as the total mass of
monomers that belong to adsorbed polymer chains per unit area, is
plotted as a function of the attractive potential strength, εw. The inset
shows a good agreement with the theoretical prediction �(N) ∝ N 1/2

(50), for various values of εw = 0.5, 1.0, and 2.0. (Here, systems of
type C have been studied.) Reproduced from De Virgiliis, et al. (27).
© Springer. Reproduced by permission of Springer. Permission to
reuse must be obtained from the rightsholder.
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Fig. 6. Density profiles of adsorbed chains versus distance from the
attractive substrate, z, for the case of weak adsorption strength of
εw = 0.5. The total number of adsorbed monomers, as highlighted by
the gray shaded area, can be subdivided into three different building
blocks of the chains: loops, tails, and trains. In the inset, the ratio
ρads(z)/ρ(z), which can be used as a criterion to define the interphase
region, is plotted as function of z. Analyzing the behavior of ρads

(z)/ρ(z), one can determine the dependence of the thickness of the
adsorbed layer, �z, on the chain length as �z ∝ N1/2. (Here, system
of type C has been studied.) Reproduced from De Virgiliis, et al.
(27). © Springer. Reproduced by permission of Springer. Permission
to reuse must be obtained from the rightsholder.

The polymers that contribute to � adopt different conforma-
tions that depend on the chain length and also on the surface-
monomer interaction. Based on the definition of the adsorbed
chains, one can distinguish between trains, which comprise suc-
cessive monomers in a polymer chain all of which belong to
the adsorbed layer, that is, are located within a distance closer
than z = 1.4 to the substrate; loops, which are defined by suc-
cessive monomers of a chain backbone that are themselves not
adsorbed and connect two successive trains; and tails, which are
the monomers of each end of the polymer that are located in the
region z > 1.4. It can be seen in Fig. 6, that at short distances from
the substrate, loops dominate over tails, whereas in the region
outside of the adsorbed layer, both conformations of loops and
tails are present. In contrast, within the adsorbed layer the trains
dominate over tails and loops. In the inset, the ratio ρads(z)/ρ(z),
which can be used as a criteria to define the interphase region, is
plotted as a function of z. Looking at the behavior of ρads(z)/ρ(z),
one can interpret the dependence of the thickness of the adsorbed
layer, �z, on the chain length as �z ∝ N1/2.

Distribution of Loops, Trains, and Tails

In this subsection we examine the distributions of tails, trains,
and loops of the adsorbed polymers in the melt as main build-
ing units of the polymer architecture close to the confining walls.
Based on the definition of the tails, loops, and trains in the
previous part, we analyzed the trajectories resulting from the sim-
ulation of the systems of type A. We compare our simulation
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Fig. 7. (a) Distribution of loops near the top repulsive wall (top panel), and close to the bottom attractive wall (bottom panel), as a function
of the length of the loop, s, for various values of polymer length, N = 80 (red squares), 120 (green diamonds), 160 (blue upward triangles),
and 240 (turquoise downward triangles). The function s−3/2 is denoted by the black dashed lines in both panels. (b) Normalized distribution
of tails close to the repulsive (top panel) and near the attractive (bottom panel) surfaces as function of the tail length, s, for the same polymer
length values as in (a). Here, the function s−0.5 is indicated by the black dashed lines in both panels. (c) Normalized distribution of trains
close to the repulsive (top panel) and near the attractive (bottom panel) surfaces as a function of the normalized length of trains, s/〈s〉, where
〈s〉 is the train length mean value, for the same values of chain length, N , as of (a) and (b). The insets present the trains distribution as
function of the train length, s, in normal coordinates. Black dashed lines denote exp(−s/〈s〉). (Here, systems of type A have been studied.)
Reproduced from Sarabadani, J., et al. (45). ©2014, AIP Publishing LLC. Reproduced by permission of AIP Publishing LLC. Permission
to reuse must be obtained from the rightsholder.

results also with theoretical predictions, since there are several
detailed predictions about the size distribution of tails, loops and
trains for a single polymer under conditions of critical adsorption
(32, 46, 52, 53).

In Fig. 7(a) the distributions of the loops close to the repul-
sive (top panel) and near the attractive (bottom panel) surfaces
are plotted as a function of the length of the loop, s, for various
values of the polymer length, N = 80, 120, 160, and 240. The
predicted power law function s−3/2 is denoted by the black dashed
lines. Apparently, apart from some deviations for the shortest
loops, s ≤ 4, and the poor statistics in the measurements of the
longest loops, one can observe a rather good agreement in the
intermediate region of s where the available statistics is reliable.
In Fig. 7(b), the normalized distribution of polymer tails near the
top repulsive (top panel) and the bottom attractive (bottom panel)
surfaces have been presented as function of the length of the tail,
s, for the same polymer lengths as in (a). Again one, can see that
the power law dependence s−0.5 perfectly describes the distribu-
tion of tails (which covers a broad range of tail sizes). In Fig. 7(c),
one can find some deviations (an initial power law relationship at
small values of s) from exp(–s/〈s〉) (where 〈s〉 is the mean value
of the length of trains) which is the theoretical prediction. The
absolute value of the negative slope of the exponential distribu-
tion function is also some what smaller than the inverse of the
mean value of s, that is, 1/〈s〉. We believe that this occurs because
of the uncertainty (arbitrariness) in the definition of the trains
itself, which makes the distinction between flat loops and short
trains a matter of convention in continuous models. As it can be
seen from the insets, on the average, one can find longer trains
close to the attractive surface in comparison with the repulsive
wall.

In summary, after analysis of the size distributions of all three
building units of polymer chains that are in contact with the solid
surfaces, one can suggest again that the conformations of the
adsorbed chains in a melt, irrespective of the wall-chain inter-
actions, are exactly the same as those of a single chain in a
dilute solution at the critical adsorption point (CAP). It should
be mentioned that these results support the similar findings on
the probability distributions of tails, loops, and trains, which were
recently derived on a lattice (3).

Radius of Gyration

Another basic quantity is the gyration radius, Rg, which is
defined as:

R2
g = 1

N

N∑
i=1

(
Ri − 
Rcm)2 (4)

where the radius-vector of the center of mass of each chain is

Rcm (54), and the end-to-end distance is Re. The latter is obtained
by considering only those chains that have their centers of mass
inside a slab in the middle of the system with a thickness equal
to the gyration radius.

The effect of confining surfaces on the chain conforma-
tions can be examined by studying the variation of the per-
pendicular, R2

g⊥ = 1
N

∑N
i=1 (zi − zcm)2 and the parallel, R2

g|| =
1

2N

∑N
i=1

[
(xi − xcm)2 + (yi − ycm)2

]
, components of R2

g. In Fig. 8
the scaling behavior of R2

g, R2
g⊥, and R2

g|| is shown for different
regions: the bulk, the first (z < Rg), and the last (Lz – z < Rg)
layers as function of the polymer length, N. The thickness of the

D
ow

nl
oa

de
d 

by
 [

ja
la

l s
ar

ab
ad

an
i]

 a
t 1

3:
31

 2
0 

N
ov

em
be

r 
20

14
 



S62 Sarabadani et al.

10 20 30 50 100

10

100

Rg2
||, first layer

Rg2
||, last layer

Rg2
||, bulk

Rg2
⊥, first layer

Rg2
⊥, last layer

Rg2
⊥, bulk

N

0.1

1R
g2

Rg2
first layer

Rg2
last layer

Rg2
bulk

~N

Fig. 8. R2
g for the first layer (filled red circles), for the last layer (open

blue circles), and for the bulk (open black circles); R2
g|| for the first

layer (filled red squares), for the last layer (open blue squares) and for
the bulk (open black diamonds); and R2

g⊥ for the first layer (filled red
triangles), for last layer (open blue triangles), and for the bulk (black
stars), plotted as a function of polymer length, N. The first layer is
located at the bottom attractive wall while the last layer is at the top
repulsive wall. The thickness of both of them is the same and equal
to the radius of gyration in the bulk of the system. (Here, systems
of type A have been studied.) Reproduced from Sarabadani, J., et
al. (45). ©2014, AIP Publishing LLC. Reproduced by permission of
AIP Publishing LLC. Permission to reuse must be obtained from the
rightsholder.

first and the last layers is equal to the bulk value of
√

〈R2
g〉 for

each N . Interestingly, the parallel and perpendicular components
of the radius of gyration in the first (solid red square and down-
ward triangles, respectively) and also in the last layers (open blue
square and downward triangles, respectively) vary in such a way
that the total gyration radii in these layers (solid red and open
blue circles, respectively) remain almost equal to that of the bulk
region of the system (open black circles) for each polymer length.
Therefore, the particular (attractive/repulsive) interactions of the
surface with the melt may make a minimal difference in the
conformational properties of the adjacent chains.

In Fig. 9(a) the squared parallel (circles) and perpendicular
(squares) components of the gyration radius are plotted as a func-
tion of the distance from attractive wall, z, for two values of the
adsorption strength, εw = 0.5 and 4.0. The top panel of Fig. 9(b)
shows the squared parallel component of the gyration radius as
function of the normalized distance to the attractive wall, z/Rg,
for three different values of the chain lengths N = 16, 32, and
80 at fixed value of the adsorption strength εw = 2.0. Similarly,
in the bottom panel the perpendicular component of the radius
of gyration is presented. In Fig. 9(a) and (b) we study systems
of type C. These results are fully in agreement with earlier stud-
ies of computer simulations (55, 56) as well as with theoretical
works (57, 58). Apparently, the polymer coil deformation van-
ishes at distances z ≥ Rg. Apparently, only a small increment in
the chain deformation is due to the increase in the adsorption
potential strength, εw.
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εw = 2.0N = 32

(a) (b)

Fig. 9. (a) Profiles of the squared parallel (circles) and perpendic-
ular (squares) components of the gyration radius as function of the
distance from the attractive wall for two values of the adsorption
strength, εw = 0.5 and 4.0. (b) Top panel: Squared parallel compo-
nent of the gyration radius as function of the normalized distance
to the attractive wall, z/Rg, for three different values of the chain
lengths N = 16, 32, and 80 at fixed value of the adsorption strength
εw = 2.0. Bottom panel: The same as the top panel but for the per-
pendicular component. Here, we study systems of type C in both
(a) and (b). Reproduced from De Virgiliis, et al. (27). © Springer.
Reproduced by permission of Springer. Permission to reuse must be
obtained from the rightsholder.

Test of Silberberg’s Hypothesis

In this section we present our MD simulation data to test the the-
ory of Silberberg (42, 43), which explains the average contraction
of macromolecules in the vicinity of a solid-melt interface in
terms of a set of principles for “conformation transfer,” which
involves “segmental swapping” between unconstrained chains
with regard to the confining hard wall. The polymers are labeled
by their “starting monomer” (that polymer end which is closer
to the solid wall). Using Silberberg’s procedure of reflection
of configurations, one can reproduce the dominant features of
a melt at a solid wall interface, and the most striking one
is that the polymer chain conformations are, thereby, entirely
insensitive to the existing (attractive or repulsive) polymer- wall
interaction!

This intuitively unexpected theoretical prediction has not gen-
erated only minimal attention by researchers (3, 17). Bitsanis
and ten Brinke (17) mentioned that the chains can be modeled
as Gaussian coils, provided the “reflective” boundary condition,
introduced by Silberberg (42, 43), is applied to statistical, rather
than to the actual segments, although the statistical segment
inside the bulk may not be identical with those at the inter-
face. Therefore, in this subsection we tested the extent of the
presence of an interface (as, e.g., the observed layering effect
immediately at the container surfaces) can influence Silberberg’s
predictions.

To check the validity of Silberberg’s theory for the random
walk statistics close to a reflective boundary in reproducing
actual chain conformations at solid-melt interfaces, we present in
Fig. 10 simulation data for the “chain start” probability Pstart(z)
and compare them with the corresponding analytical result (42,
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Fig. 10. (a) Density profiles of chain “starts”, Pstart(z), i.e., the probability that an end of a chain is found at a particular distance z from the
wall, for chain size N = 20. Both a repulsive surface (red circles) and an attractive surface (blue triangles) are examined. A chain start is
defined as the chain end that is closer to the wall. The analytical prediction is indicated by the green line. (b) The same as (a), but for chain
length N = 120. (Here, systems of type A have been studied.) Reproduced from Sarabadani, J., et al. (45). ©2014, AIP Publishing LLC.
Reproduced by permission of AIP Publishing LLC. Permission to reuse must be obtained from the rightsholder.

43). A chain start is defined as the chain end closest to the sur-
face. Pstart(z) is the probability of finding a chain end monomer
at distance z from the surface, provided this monomer is a chain
start. As it can be seen, Pstart equals 1/2 in the bulk (i.e., each
chain end may be the closer one with 50% probability) and
approaches unity immediately at the surface where the chance
to find the second chain end at the same distance nearly vanishes.
The analytical relation for Pstart(z) is

Pstart(z) = 1 − 1

2
Erf

(
z√
2Rz

)
(5)

where Erf(z) is the error-function (42, 43).
It can be seen that the simulation data is confirmed reason-

ably well by the prediction in Eq. (5), for both surfaces apart
from some oscillations near the attractive wall, due to the layer-
ing effect. Note, that layering at the walls is due to the excluded
volume interactions between the monomers and reflects packing
effects of the monomers (which are themselves treated as soft
spheres within the MD simulation). Silberberg’s theory com-
pletely ignores the excluded-volume interactions and considers
the polymer chains in the melt as random walks, that is, as ideal
Gaussian chains, as the Flory exponent of a polymer chain in
a melt is ν = 1/2, as this is the case for ideal chains. Therefore,
our MD data reveal additional details that are beyond the scope of
Silberberg’s theory. On the other hand, apart from the oscillations
due to layering, the analytic expression, Eq. (5), agrees with our
data remarkably well. Indeed, in Fig. 10 one can see that, regard-
less of the length of the chain, and irrespective of whether the
solid wall repels or attracts the polymers, all data nearly collapse
on a single master curve.

Eventually, we investigate the profiles of the concentration
perpendicular to the surfaces for polymers whose starting ends
reside immediately or very near to one of the surfaces such that
these polymers may be considered as incidentally “grafted” to
the solid wall. For a grafted chain, an analytical solution (52)
for the overall distribution of polymer segments can be provided
by using a continuum model for a single end-attached polymer
under conditions of critical adsorption, φ0(z), as well as for the
distribution of polymer ends, φe(z):

φe(z) = 2√
πRg

exp
[
−z2/(4R2

g)
]

, (6a)

φ0(z) = 2√
πRg

{
exp

[
−z2/(4R2

g)
]

−
√

πz

2Rg
Erfc

(
z

2Rg

)}
(6b)

where Erfc(x) is the complementary error-function. At the critical
adsorption point (CAP), as is well known (3), the weak attraction,
which is exerted by a flat surface on a polymer, compensates the
entropy loss of the chain in the region near the surface, that is,
segment enrichment goes over to depletion in such a way that
the probability to find a polymer chain segment at some dis-
tance z from the surface does not depend on z. This effect holds
irrespective of the concentration of chain in the container (3)! It
can be argued that at the CAP the wall is, therefore, invisible for
the chain due to a mutual compensation of enthalpic gain (i.e.,
attraction to the wall by the surface potential) and entropic loss
owing to confinement.

From Figs. 11 and 12 one may readily verify that all the
polymers of the melt that incidentally happen to touch with an
end-monomer on either the repulsive or the attractive container
walls, show distributions of the end- and all-segment density
along z that are in good agreement with the analytical result,
Eq. (6), of a single polymer chain at criticality. Skvortsov et al.
(3), who applied the SCFT approach (i.e., worked within a Mean-
Field Approximation approach) to a polymer melt on a cubic
lattice, confirmed the same important conclusion that can be
interpreted from Figs. 11 and 12.

Indeed, at high concentration (in the melt) polymer confor-
mations in the vicinity of the constraining surfaces transform
into the same type of half-Gaussian conformations of a random
walk reflected by these surfaces, regardless of whether the melt
adheres or not to the surface plane (3, 42, 43). The novel fea-
ture, detected in our MD investigation, are the oscillations, due
to the layering effect near the surfaces, Figs. 11(a), and 12(a).
Of course, these oscillations are not taken into account by the
analytic theory (42, 43) and certainly cannot be reproduced by
lattice model simulations. From Figs. 11(a) and 12(a), one may
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Attractive wall

Fig. 11. Profiles of the density distribution of end-monomer φe(z) (symbols) versus distance from the solid attractive (a) and repulsive (b)
surfaces z in a melt with chain sizes of N = 80 and 240. Only those chains are selected and analyzed whose ends incidentally touch the
surfaces so that such chains may be considered as temporally “grafted.” Solid lines indicate the analytic result for ideal Gaussian chains,
Eq. (6a). (Here, systems of type A have been studied.)
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Fig. 12. Plot for the profiles of the monomer density, ρmon(z), (symbols) against the distance z from an attractive (a), and repulsive surfaces
(b), for chain lengths N = 80 and 240 in a melt. Lines indicate φ0(z), which is the analytic expression for a Gaussian chain, Eq. (6b). (Here,
systems of type A have been studied.)

easily discover that these oscillations occur only within the range
of z ≤ 5 and do not depend on the macromolecules length N .
Apart from these oscillations, however, one may argue that one
can describe the chain conformations in the melt as random walks
that are reflected at the solid surface.

Pressure

We studied the pressure profile across the slit as a function of
the z-coordinate for different values of the polymer length N.
The pressure tensor is written as a sum of the virial, PU, and
kinetic, PK parts (20). The statistically averaged values of all
off-diagonal elements of the pressure tensor equal zero, as the
system under consideration is in mechanical equilibrium state.
Moreover, due to the geometrical symmetry of the system, the
lateral components of the pressure tensor, that is Pxx and Pyy, are
equivalent to one another.

The pressure tensor is written as P(z) = ezezPN(z) + (exex +
eyey) PT(z), where ex, ey, and ez are unit vectors in x, y, and
z directions, respectively. By means of Irving and Kirkwood’s
(IK) method, we computed both the normal, PN (z), and lat-
eral, PT (z), components of the pressure tensor layer-wise (59).
Using Irving and Kirkwood (59), we take only the contribu-
tion of pairwise forces between particles to the virial part into

account, provided the connecting line of the centers of mass of
these particles intersects the infinitesimal surface of d
A(z). The
tensor for the pressure, P, is itself defined as d 
F = −d
AP where
d 
F is an infinitesimal force. Using the IK method and the def-
inition for the virial contribution to pressure, that is, PU (60),
one can write the averaged value of the normal and tangential
components of the pressure tensor layerwise as:

PN = ρ(z)kBT − 1

2A

〈
Ntot∑

i=j=1

|zij|
rij

U ′(rij) �

(
z − zi

zij

)
�

(
zj − z

zij

)〉
,

(7a)

PT = ρ(z)kBT − 1

4A〈
Ntot∑

i=j=1

x2
ij + y2

ij

rij

U ′(rij)

|zij| �

(
z − zi

zij

)
�

(
zj − z

zij

)〉
,

(7b)

where A is the surface area of the system that is parallel to the x –
y plane; ρ(z) is the value of the number density of the monomers,
averaged over lateral coordinates x and y; and the summation runs
over all pairs of particles with Ntot being the the total number of
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monomers in the system. Note that Ntot includes the (static) par-
ticles comprising the walls of the slit too. Here, 〈•〉 denotes the
statistically averaged value of the quantity •. In Eq. (7a, b), rij is
the distance between the particle i and the particle j, with the defi-
nition of rij = ri–rj, rij = |rij|, and the three different components
of rij are xij, yij, and zij. The derivative –U’(rij) of the potential
U is the force between particles i and j, and the Heaviside step
function is denoted by �(x). In Eq. (7a, b), the first term is the
kinetic part of the pressure. To calculate the normal and tangen-
tial components of the pressure tensor, we combine Eq. (7a, b)
with the following identity:

|zij|�
(

z − zi

zij

)
�

(
zj − z

zij

)

= −zij[�(zi − z)�(z − zj) − �(zj − z)�(z − zi)].

(8)

In Fig. 13, the variation of the normal component of the pres-
sure tensor, PN − P∞, is plotted as a function of chain length for
several pillars grafting densities, ρr, N , where P∞ is the value
of PN extrapolated to the limit of N → ∞ for each value of the
grafting density of pillars, ρr.

As the Irving-Kirkwood method is valid only for systems
with lateral translational symmetry (59), the pressure is measured
across the whole systems when ρr = 0, whereas for systems with
ρr = 0, the pressure is calculated only for the region of z > 20.
As expected, the inset in Fig. 13, shows a systematic increase in
PN with the growing in the density of pillars, which is due to
the decrease in the total accessible volume in the container, cf.
Fig. 13(b).

Interestingly, irrespective of the grafting density of pillars, the
value of the difference PN − P∞ collapses onto a single master
curve, with the behavior of PN − P∞ ∝ 1/N . In systems with
pair interactions, the theoretical predictions confirm the afore-
mentioned result (61). Indeed, the kinetic contribution to the

normal pressure will remain when P∞ is subtracted from PN,
which is proportional to the number of objects (in our case
chains) in the system. A result of the decrease in the pressure
with growing polymer length is to create a weaker layering effect
near the top repulsive wall, which is presented in the right inset
in Fig. 2, as the monomers are less tightly packed.

Another important and interesting quantity, studied also in this
part, is the surface tension of the polymer melt at the top (repul-
sive) and the bottom (attractive) surfaces (for a system without
pillars). By integrating the asymmetry of the pressure tensor, PN

– PT, over z, the surface tension, can be obtained (20, 62, 63):

γbot =
∫ z=D1

z=0
[PN(z) − PT(z)]dz,

γtop =
∫ z=40

z=D2

[PN(z) − PT(z)] dz,

(9)

where D1 and D2 correspond to appropriate distances away from
the two surfaces where the tangential and the normal compo-
nents of the pressure tensor are statistically the same, that is.,
PN (z = Di) − PT(z = Di) = 0, and i = 1, 2. The surface tension
γ at both interfaces of the system is plotted in Fig. 14. One
can observe a power-law relationship, γ (N) − γ∞ ∝ N−n with
the exponent of n ≈ 0.66 ± 0.04 by subtracting the extrapolated
value of γ ∞ for infinitely long chains, that is, N → ∞, in agree-
ment with the predictions of the Cahn-Hilliard theory (64, 65)
and with the experimental measurements of linear perfluorinated
alkane melts (66–68).

Higher molecular weight of the polymers, a stronger depen-
dence, γ ∝ N−1, has also been observed in experiments (67).
However, these results have been challenged (68). The data for
our longest polymers, N = 240, are derived within considerable
error bars from our MD study; therefore, our result does not
constitute an unambiguous check of n in this respect. In fact,
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Fig. 13. (a) Inset shows PN as function of the polymer length, N , for smooth walls (no surface roughness), and also for various values of the
pillars density, ρr = 0 (black circle line), 0.015625 (red square line), 0.03125 (green diamond line), 0.0625 (blue upward triangles line), and
0.125 (violet downward triangles line). The main panel presents PN – P∞ as a function of the polymer length, N , with the same values for
the pillars density which are shown in the inset. (b) Here, the change in P∞ (filled black circles) as a function of pillars grafting density, ρr,
is shown. The red line is a fitting curve to the data points with an exponent of 1. (Here, systems of type A have been studied.) Reproduced
from Sarabadani, J., et al. (45). ©2014, AIP Publishing LLC. Reproduced by permission of AIP Publishing LLC. Permission to reuse must
be obtained from the rightsholder.
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Fig. 14. Plot of the surface tension of the melt at the top repulsive
surface, γ top, and at the bottom attractive surface, γ bot, as a function
of the polymer length, N. In both cases we have subtracted the value
γ ∞ extrapolated for N → ∞. In both cases, the measured exponent
n of γ − γ∞ ∝ N−n is in a good agreement with the experimentally
measured value of n = 2/3 (66–68). (Here, systems of type A have
been studied.) Reproduced from Sarabadani, J., et al. (45). ©2014,
AIP Publishing LLC. Reproduced by permission of AIP Publishing
LLC. Permission to reuse must be obtained from the rightsholder.

the experimentally observed variations of γ with the molecu-
lar weight can be reproduced by using the Cahn-Hilliard theory
(67), such that both the N −2/3 to N −1 dependence of γ

can be derived and must be due to a variation in the prop-
erties of the bulk such as compressibility and density with
changing N.

Dynamics

In this section we study the dynamics of melt at the flat and rough
attractive walls. To this end, in the following Dynamic Properties
Flat Wall Section, the influence of the flat attractive wall with dif-
ferent values of the attraction potential strength on the dynamics
of the melt will be considered; whereas, in the Effects of Surface
Roughness on the Mobility of Monomers in the Melt Section, the
effect of surface roughness was investigated.

Dynamic Properties, Flat Walls

In this section, we present our findings on the dynamical prop-
erties of the melt at the interface. The dynamics of the system
becomes anisotropic due to the presence of the walls. Therefore,
one must distinguish between perpendicular and parallel direc-
tions. It is interesting to consider the effect of both free surface
and the solid-polymer interface on the polymer chain dynam-
ics (here, systems of type C are studied). According to previous
studies (21, 35) and, in order to formulate the impact of these
interfaces on the dynamics of the system, a z–dependent mean
square displacement (MSD) for monomers is defined as:

g‖
0(z, t) =

〈
1

nt

∑
i

t∏
t′=0

δ(z − zi(t
′))

∣∣∣r||
i (t) − r||

i (0)
∣∣∣2

〉
,

g⊥
0 (z, t) =

〈
1

nt

∑
i

t∏
t′=0

δ(z − zi(t
′))

∣∣r⊥
i (t) − r⊥

i (0)
∣∣2

〉 (10)

In the aforementioned definition only those monomers, nt, which
remain at all times t’ ≤ t within a given slab, are taken into
account. We assume that z is the location of the center of each
slab from the substrate.

To quantify to what extent the dynamics is influenced by the
surface, a relaxation time τ 0, can be defined by the condition:

g||
0 (z, t ≡ r||

0 ) = 1 (11)

Characteristic times τ
||
0 and τ⊥

0 for displacements parallel and
perpendicular to the substrate can be extracted by looking at
g||

0 (z, t ≡ r||
0 ) and g⊥

0 (z, t ≡ r⊥
0 ), respectively. In Fig. 15, these

quantities are plotted for two values of the adsorption poten-
tial strength εw = 0.5 and 2.0 and for chain length of N = 16.
Apparently, near the attractive wall, the behavior of the dynamics
is qualitatively different, depending on εw. Fig. 15(a) shows that
in the case of weak adsorption, the dynamics parallel to the wall
is getting faster when approaching the wall, which means that the
monomers almost slide at the wall. This effect is due to the fact
that the layering effect is less pronounced in this case. Similar
behavior is observed in other simulation studies [cf. Peter et al.
(21)]. In contrast, one can see in Fig. 15(b) that in the regime of
strong adsorption, when approaching the substrate, both charac-
teristic times, τ

||
0 and τ⊥

0 , rapidly grow. On the other hand, at the
free surface one can see that the dynamics is faster as compared
to the center of the melt, due to the local decrease in monomer
density. As a rule, τ⊥ > τ ||. Even in the center of the melt τ⊥
and τ || do not coincide, in agreement with earlier findings (35),

z

101

102

τ0
||

τ0
⊥

0 10 20 30 0 10 20 30
z

101

102

103 εw = 2.0εw = 0.5

(a) (b)

Fig. 15. Parallel and perpendicular relaxation times, τ
||
0 and τ⊥

0 ,
respectively, for a system composed of linear chains with length of
N = 16, for two values of the attraction potential strength εw = 0.5
(a), and εw = 2.0 (b). (Here, systems of type C have been studied.)
Reproduced from De Virgiliis, et al. (27). © Springer. Reproduced
by permission of Springer. Permission to reuse must be obtained
from the rightsholder.
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t
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100

101
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g 0
|| (

z,
t)

εw = 1.0

εw = 2.0

εw = 3.0

center
surface

N = 80

Fig. 16. Lateral mean square displacements (MSD), g||
0 (t), for all

monomers of polymers with chain length of N = 80 inside the
adsorption layer (0.0 < z < 1.4) as a function of the time t. A plateau
gradually develops with increasing εw as denoted in the legend.
In addition, the lateral MSD curves are plotted for the center of the
melt and also at the free surface, for comparison. (Here, systems of
type C have been studied.) Reproduced from De Virgiliis, et al. (27).
© Springer. Reproduced by permission of Springer. Permission to
reuse must be obtained from the rightsholder.

indicating that the influence of confining walls on the dynamic
properties extends much further than on the conformations of the
chains.

The influence of the adsorption strength εw of the walls on
the lateral MSD of those monomers located at the adsorbed layer
is considered in Fig. 16, where one can see that by increasing
the adsorption strength, a characteristic time interval with low
mobility appears. With growing εw, this interval broadens, indi-
cating that the chain segments predominantly dwell during this
time at their original positions. In contrast, when εw is decreased,
the dynamics become faster and for εw = 1.0 there is almost no
differences between interfacial and bulk-like dynamics.

Another way to quantify the structural relaxation across the
melt is to consider the incoherent dynamic structure factor:

Sq(z, t) =
〈

1

nt

∑
i

t∏
t′=0

δ(z − zi(t
′))e−i
q·

[
r||

i (t)−r||
i (0)

]〉
, (12)

which must also be treated layer-wise (69, 70). In Fig. 17(a)
we plotted this function and one can see that an increase in εw

leads to a glassy-like behavior (a typical plateau is developed).
One may, therefore, conclude that a process of vitrification of the
melt may be initiated by means of increased adhesion to the con-
fining walls whereby the glassy behavior will first apply to the
immediate adsorption layer at the attractive wall.

It is thus important to know how vividly an exchange of
monomers between the interface and the inner regions of the
melt takes place. To this end one may analyze the desorption
correlation function, recently introduced by Yelash et al. (13):

φ(t) = 〈s(t)s(0)〉 − 〈s〉2

1 − 〈s〉2
, (13)

where s(t) = 1, if at time t the monomer lies at the first adsorbed
layer and s(t) = 0 otherwise. From Fig.17(b) one may verify that
the increase of adhesion rapidly slows down this exchange as εw

is gradually increased.
Two characteristic times τ s and τφ can be extracted from Figs.

17(a) and (b), respectively. To this end, we employed a fit of the
data to a stretched exponential decay. In Fig. 18(a), τ s and τφ are
plotted against the adsorption strength εw. In Fig. 18(b), τ s and
τφ are plotted against 〈ρs〉, which is the average surface density
of monomers at the interface, obtained from the area under the
first peak in the monomer number density profile, ρ(z). It should
be noted that the relaxation in direction parallel to the substrate
determines S(q0,t), whereas function φ(t) that appears in Fig.
17(b) reflects mainly the monomer dynamics in the perpendicular
direction to the substrate.

Obviously, both characteristic times, τ s and τφ , increase
nearly exponentially over four orders of magnitude with
increasing the adhesion to the substrate εw, which is similar to

10–1 100 101 102 103 104 105

t

10–1 100 101 102 103 104 105

t

0

0.4

0.8

S
(q

,t)

εw = 1.0

εw = 2.0

εw = 3.0

center
surface

N = 80

(a)

0

0.2

0.4

0.6

0.8

1

φ(
t)

εw = 1.0

εw = 2.0

εw = 3.0

N = 80

(b)

Fig. 17. (a) Plot of the incoherent scattering function, S(q0,t), for the parallel displacements of monomers with respect to the wall in the
adsorption layer for polymers with chain length of N = 80, and for three different values of εw as indicated in the legend, as a function of
time t. The same quantity at the center of the bulk and at the free surface are also plotted for comparison. (b) The desorption correlation
function for monomers, φ(t), as a function of time t for various values of the adsorption potential strength εw = 1.0, 2.0, and 3.0. (Here,
systems of type C have been studied.)
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Fig. 18. (a) Plot of the relaxation times, τ s and τφ , for monomers at
the adsorbed layer, as obtained from S(q,t) (squares) and from φ(t)
(circles), respectively, against the adsorption potential strength εw.
(b) The same as (a) but here the data are plotted against 〈ρs〉, which
is the average surface density of monomers at the interface, obtained
from the area of the first peak in the monomer number density pro-
file, ρ(z). (Here, systems of type C have been studied.) Reproduced
from De Virgiliis, et al. (27). © Springer. Reproduced by permis-
sion of Springer. Permission to reuse must be obtained from the
rightsholder.

the increase of the viscosity upon vitrification. By growing sur-
face monomer density a similar trend is observed, cf. Fig. 18(b).
Such behavior is in good agreement with previous “free volume”
theories of the glass transition (71).

Effects of Surface Roughness on the Mobility of Monomers in
the Melt

Finally, in this section, we consider the polymer dynamics near
the attractive rough solid surface. In order to study the influ-
ence of the different levels of the roughness on the dynamics
of the melt at interfaces, we investigate systems with different
pillar grafting densities as explained in the previous sections.
Herein, the interactions between monomers and pillar particles
are described by attractive LJ forces with a cut-off radius of
2.5 and a potential well depth of ε phil = 2 (as of the flat wall).
In this way the pillars cannot be distinguished energetically from
the attractive wall by the polymer melt, and thus it is only the
topological effect that affects the polymer dynamics.

In order to compare the dynamics of the system in the bulk
to that in the vicinity of the attractive surface, for various values
of pillars grafting density, ρr, we used type B systems where the
the top repulsive surface is located at a distance of z = 50 from
bottom attractive wall, to create a free surface of the melt under
that upper repulsive wall. Therefore, the polymer melt is always
at zero normal pressure for different values of ρr.

As we mentioned in the Dynamic Properties, Flat Wall
section, the polymer melt dynamics is thus anisotropic due to the
presence of two interfaces and must be analyzed layerwise. Thus,
in this section, we divide the system into layers (slabs) and con-
sider the mobility of the polymers in four qualitatively different
slabs. The slabs have thickness of 5σ except for the layer in the

bulk, which has the thickness of 10σ , and they are chosen parallel
to the walls.

To calculate the lateral MSD, we use g||
0 (z, t), which has been

defined in Eq. (10), whereby we have taken into account only
those nt monomers that remain in the first (0 < z < 5), second
(5 < z < 10), and third (10 < z < 15) layers, and also in the
bulk of the system at all times t’ ≤ t. Here, we assume that the
distance between the center of mass of each layer from the bottom
attractive wall is z.

In Figs. 19 wepresent the normalized diffusion coefficient of
the system, which is normalized by the values in the bulk, for the
dynamics parallel to the attractive rough wall. The dimensionless
quantity D||/D||bulk is considered as a function of the normalized

distance between nearest neighboring pillars, X/
√

〈R2
g〉, where√

〈R2
g〉 is the the mean value of the gyration radius in the bulk.

Evidently, the mobility of the monomers in the first layer near
the attractive wall is significantly reduced by approximately two
orders of magnitude. D||/D||bulk decreases dramatically when-

ever X/

√〈
R2

g

〉
≤ 2. Below this threshold, the diminishing dis-

tance between the neighboring pillars creates bottlenecks for the
polymer coils. As the polymer melt is composed of compara-
tively short polymers with no mutual entanglements, the strong
decrease in lateral diffusion coefficient suggests that the polymer

coils at X/

√〈
R2

g

〉
≤ 2 are trapped between neighboring pillars.

The latter form effective traps (cavities) such that escape from
the trap may occur only by means of other types of dynamics,
namely, by reptational motion. As the pillars in this case attract
the polymers as strongly as the solid wall, the traps are purely
entropic in nature and form a kind of static cavity in the melt that
captures those polymers that fit in size for a longer period of time.

2.0 3.0 4.0 5.0 6.0

X/√〈Rg
2〉

10–2

10–1

100

D
|| /

 D
|| 

bu
lk

first layer 

second layer

third layer

bulk

Δzlay = 5

N = 10

20< zbulk <30

Fig. 19. Normalized lateral diffusion coefficient of the system as
function of the distance X between neighboring pillars, normalized
by the average value of the gyration radius of a chain in the bulk

of the system,
√

〈R2
g〉. Here, data are shown from different regions

of the first, second and the third layer as well as from the bulk of
the system. Chain length is N = 10. (Here, systems of type B have
been studied.) Reproduced from Sarabadani, J., et al. (45). ©2014,
AIP Publishing LLC. Reproduced by permission of AIP Publishing
LLC. Permission to reuse must be obtained from the rightsholder.
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For the second layer (slab II) a similar observation was also
determined. One can see that the reduction in the lateral diffu-
sion coefficient is not so strongly pronounced as in slab I. In the
third layer, which corresponds to the slab immediately above the
pillars, lateral diffusion becomes almost the same as in the bulk
as the chains in this layer have only few segments that partially
reside in the lower slab and slow down diffusion.

Based on the aforementioned findings one may conclude,
therefore, that the roughness of the wall can dramatically slow
down the polymer dynamics whenever the polymer’s size in the
melt becomes comparable or smaller than the characteristic scale
of surface roughness.

Conclusion

The structural and dynamic properties of a polymer melt com-
prised of linear macromolecules in contact with solid walls have
been studied for polymer chains of different size N under the
influence of different degrees of adhesion and roughness by
means of MD simulations of a coarse-grained bead-spring model
of homopolymers. Thereby, a number of interesting observations
have been made from which several important conclusions can
be drawn.

• We have found that the adsorbed amount of monomers, �,
follows a simple relation �(N) ∼ N1/2 for various values of
the attractive wall potential, εw, which is in full agreement
with previous theoretical results (50). Moreover, we demon-
strated that on the average the length of loops and trains does
not depend significantly on εw whereas by increasing of εw

the number of loops and trains as a whole slightly decreases.
In addition, on the average the length of the tails grows linearly
with the polymer size, N , for a fixed value of the strength εw

which confirms the theoretical studies of Scheujtens and Fleer
(32).

• Quite interestingly, our considerations revealed that the con-
formational properties of the chains in a melt, which is in
contact with hard solid wall, resemble closely those of a single
polymer chain at a surface under critical adsorption condi-
tions, regardless of the particular interaction between hard wall
and chains, in agreement with the Silberberg’s hypothesis.
Minor deviations, observed immediately at the walls, are due
to surface layering effects, yet they do not distort the overall
picture of ideal chains under reflective boundary conditions.

• Our studies also showed that the pressure of the confined melt,
PN – P∞, decreases with increasing chain length N as 1/N ,
which we interpret as an effect of the chain-ends. By using the
anisotropy of the pressure tensor parallel and perpendicular to
the solid surfaces, one can obtain the surface tension of the
melt, which is here found to decay at solid substrates as γ N

– γ ∞ ∝ N−2/3, in good agreement with earlier experimental
observations.

• In order to test the dynamical behavior of the polymer melt
under confinement, we have also considered z-dependent mean
square displacements of monomers, Eq. (10), in both parallel
and perpendicular directions to the solid substrate. This inves-
tigations indicate that monomer mobility is influenced by the
particular type of interface (solid wall or free surface), whereby
surface adhesion induces typical glassy dynamics in the layer

adjacent to the attractive wall. Eventually, we determined that
the mobility of polymers near attractive rough surfaces dramat-
ically decreases when the typical scale of the surface roughness
becomes comparable to the mean coil size in the bulk of the
system. In this case, we refer the observed drop in polymer
mobility to the crossover from Rouse- to the much slower rep-
tation dynamics (54) that the polymers have to undergo in
order to escape from the entropic traps imposed by the wall
roughness.
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