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h i g h l i g h t s

• PT -symmetric Hamiltonians exhibit real eigenvalues when PT symmetry is unbroken.
• We study PT -symmetric strings with complex density.
• They exhibit regions of unbroken PT symmetry.
• We calculate the critical parameters at the boundaries of those regions.
• There are exact real sum rules for some particular complex densities.
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a b s t r a c t

We study both analytically and numerically the spectrum of
inhomogeneous strings with PT -symmetric density. We discuss
an exactly solvable model of PT -symmetric string which is
isospectral to the uniform string; for more general strings, we
calculate exactly the sum rules Z(p) ≡


∞

n=1 1/E
p
n , with p =

1, 2, . . . and find explicit expressions which can be used to
obtain bounds on the lowest eigenvalue. A detailed numerical
calculation is carried out for two non-solvable models depending
on a parameter, obtaining precise estimates of the critical values
where pair of real eigenvalues become complex.

© 2014 Published by Elsevier Inc.

1. Introduction

In the last years there has been great interest in the mathematical properties of a class of non-
hermitian operators with PT symmetry (for a review see [1] and references therein). A good deal
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of this research is based on a wide variety of simple models. In particular it is of great interest to
determine the conditions of unbroken symmetry under which the eigenvalues are real. This unbroken
symmetry takes place for a range of values of a Hamiltonian parameter that in general increases with
the quantum number.

The purpose of this paper is the investigation of a new class of PT -symmetric models: inhomoge-
neous vibrating strings. In a series of papers Amore studied the spectral problems of inhomogeneous
strings and drums [2–7]. In this paper we enlarge the class of such problems to include vibrating
strings with complex densitiesΣ(x) that satisfyΣ(−x)∗ = Σ(x).

The paper is organized as follows: in Section 2 we introduce the problem, in Section 3 we discuss
PT symmetry, in Section 4 we discuss the application of the Rayleigh–Ritz method to the study of
PT symmetric strings, in Section 5 we introduce a family of PT symmetric strings, which includes a
string isospectral to the uniform string; in Sections 6 and 7wediscuss two examples ofPT symmetric
strings which display a mixed spectrum; finally in Section 8 we draw conclusions.

2. PT -symmetric strings

In this paper we consider the problem of an inhomogeneous vibrating string with densityΣ(x)

−
d2

dx2
ψn(x) = EnΣ(x)ψn(x), n = 1, 2, . . . (1)

and Dirichlet boundary conditions at the string endsψn(±1/2) = 0. This equation can be straightfor-
wardly converted into [2–7]

1
√
Σ(x)


−

d2

dx2


1

√
Σ(x)

φn(x) = Enφn(x), (2)

where φn(x) ≡
√
Σ(x)ψn(x). IfΣ(x) is a real positive function on |x| ≤ 1/2, it follows that the opera-

tor Ô =
1

√
Σ(x)


−

d2

dx2


1

√
Σ(x)

is hermitian. Another advantage of this form of the eigenvalue equation

is that the inverse operator Ô−1
=

√
Σ(x)


−

d2

dx2

−1 √
Σ(x) can be directly expressed in terms of the

Green functions of the homogeneous problem [6,7]. In what follows we assume thatΣ(x) is complex
and PT symmetric.

In particular it is straightforward to generalize the results of [6,7], where exact expressions for the
sum rules of inhomogeneous strings and drums have been derived, to the present case. For instance,
being En the eigenvalues of a PT symmetric string obeying Dirichlet boundary conditions at its ends,
we are interested in obtaining explicit expressions for the sum rules

ZDD(s) =

∞
n=1

E−s
n , s > 0 (3)

with s = 1, 2, . . .. Analogous expressions should also be considered for the case of different boundary
conditions, as done in [6].

The case corresponding to s = 1 can be directly obtained from equation (11) of Ref. [6] and reads1

ZDD(1) =


+1/2

−1/2


1
4

− x2


ℜΣ(x)dx. (4)

Therefore the spectral sum rule ZDD(1) only depends upon the real part of the density.

1 We decompose an arbitraryΣ(x) into even and odd parts,Σ(x) = (Σ(x)+Σ(−x))/2+ (Σ(x)−Σ(−x))/2 and then use
the PT -symmetry to establish that the even part ofΣ(x) is real, whereas the odd part is imaginary.
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3. PT symmetry

PT symmetry is related to the antiunitary operator P̂ T̂ , where P̂ and T̂ are the parity and inversion
operators, respectively [1]. In general an antiunitary operator Â satisfies [8]

Â (f + g) = Âf + Âg

Âcf = c∗Âf , (5)
for any pair of vectors f and g and an arbitrary complex number c , where the asterisk denotes complex
conjugation. In particular, Â = P̂ T̂ satisfies the additional condition Â2

= 1̂.
In order to discuss the PT symmetry of inhomogeneous strings we rewrite Eq. (1) as

L̂ψ = −


d2

dx2
+ EΣ(x)


ψ = 0. (6)

It is clear that

ÂL̂Â−1Âψ = −


d2

dx2
+ E∗Σ(x)


Âψ = 0, (7)

provided that Σ(−x)∗ = Σ(x) as already assumed above. We appreciate that the eigenvalues are
either real or pair of complex conjugate numbers. In the former case we have

L̂Âψ = 0. (8)
One-dimensional eigenvalue equations with Dirichlet boundary conditions ψ(±1/2) = 0 do not
exhibit degeneracy and (8) holds only if Âψ = λψ , from which it follows that Â2ψ = |λ|2ψ = ψ .
In particular, when λ = ±1 it follows from Âψ(x) = ψ(−x)∗ = ±ψ(x) that the real and imaginary
parts ofψ(x) have definite parity: ℜψ(−x) = ±ℜψ(−x),ℑψ(−x) = ∓ℑψ(−x). On the other hand,
when symmetry is broken the eigenfunctions for the pair of complex conjugate eigenvalues E and E∗

are ψ and Âψ , respectively.

4. Rayleigh–Ritz method

In order to solve Eq. (1) we expand the solution as

ψ(x) =

∞
m=1

cmum(x), (9)

where

um(x) =
√
2 sin [mπ(x + 1/2)] . (10)

Thus, the differential equation becomes the infinite matrix equation
LC = 0 (11)

where C is a column vector of the coefficients cn and L is a square matrix with elements

Lmn = n2π2δmn − EΣmn, Σmn =

 1/2

−1/2
um(x)Σ(x)un(x) dx. (12)

The eigenvalues En are given by the roots of
F = det L = 0. (13)

In practice we truncate the matrices at dimension N and calculate the roots of Eq. (13) for increasing
values of N till we get the desired accuracy.

In all the cases discussed in this paper we have F(E, α) = 0, where α is a parameter in the string
density. The critical values of α are given by dα/dE = 0 and we can obtain them from the set of
equations

{F(E, α) = 0, ∂F(E, α)/∂E = 0} . (14)
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This strategy proved suitable for the treatment of parameter-dependentPT -symmetric Hamiltonian
operators [9].

5. A class of solvable PT -symmetric strings

In the case of a stringwithDirichlet boundary conditions at±LAmore [4] showed that if the density
satisfies the differential equation

4Σ ′′(x)Σ(x)− 5Σ ′(x)2 − 16κΣ(x)3 = 0, (15)

where κ is an arbitrary constant, the solution is of the form

φn(x) =


2
σ(L)

Σ(x)1/4 sin
nπσ(x)
σ (L)

, (16)

and

σ(x) ≡

 x

−L


Σ(y)dy.

The general solution to Eq. (15) for L = 1/2 is

Σ(x) =
256c21

c21 (c2 + x)2 − 256κ
2 ,

where c1,2 are constants of integration. This solution contains the Borg string [10], an inhomogeneous
string isospectral to the homogeneous string, as a special case [2]:

c1 =
2 + α

8α
, c2 =

(1 + α)2

α4
,

where α > −1 is an arbitrary parameter. In this case the density is

Σ(x) =
16(α + 1)2

(2αx + α + 2)4
.

Remarkably, the spectrum of the Borg string is independent of α and coincides with the spectrum
of a homogeneous string (α = 0) of unit length:

En = n2π2.

The eigenfunctions are

φn(x) =
2
√
2
√
α + 1

2αx + α + 2
sin


π(α + 1)n(2x + 1)

2αx + α + 2


.

By means of a different choice of the constants of integration, for instance c1 = 1 and c2 = i, we
obtain a complex density

Σ (PT )(x) =
256

256κ − x2 − 2ix + 1
2 , (17)

that is invariant under the PT transformation.
In particular, the special case

Σ (PT )(x) =


α2

+ 64
2

16(αx + 4i)4
(18)

is the PT -symmetric analogous of the Borg string. Fig. 1 shows the first four eigenfunctions of the
PT -symmetric Borg string wth a = 1.
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Fig. 1. First four eigenfunctions of the PT -symmetric Borg string for α = 1. The dashed and dotted lines are the real and
imaginary parts respectively; the solid line is the modulus of the eigenfunction.

Using Eq. (16) we obtain the eigenfunctions of the PT -symmetric Borg string as

φn(x) =


1

2σ(L)


α2 + 64
α2x2 + 16

4√

e−4i arg(αx+4i) sin
nπσ(x)
σ (L)

(19)

where

σ(x) = −


α2

+ 64
 √

e−4i arg(αx+4i)

4α(αx − 4i)
−
(α − 8i)e

1
2 i arg


(α+8i)2

(α−8i)2


2α

(20)

and n = 1, 2, . . ..
Direct substitution of Eq. (19) inside Eq. (2) shows that these are indeed the exact eigenfunctions

of a string with density given in Eq. (18). The eigenvalues are easily obtained

En =
1

φn(x)
Ôφn(x) = n2π2. (21)

Thus we see that this string has a real spectrum and that it is isospectral to a homogeneous string with
unit density; on the basis of this result we may conclude that one cannot ‘‘hear’’ the density of a PT -
symmetric string, if only Dirichlet boundary conditions are imposed, as for the case of a real string.

Having the exact eigenfunctions at our disposalwemay easily check that these are orthogonalwith
respect to the operation

+L

−L
φn(x)φm(x)dx = λ−1

n


+L

−L
φ⋆n(−x)φm(x)dx = δnm. (22)

Moreover

δ(x, y) ≡

∞
n=1

φn(x)φn(y) =

∞
n=1

φ⋆n(−x)φ⋆n(−y) (23)
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has the Dirac-delta like properties L

−L
δ(x, y)φm(x)dx = φm(y) (24) L

−L
δ(x, y)φ⋆m(−x)dx = φ⋆m(−y). (25)

In Fig. 2 we plot the approximation to δ(x, 0) obtained restricting the sum to the first 50 terms,
δ50(x, 0), for α = 1/10 and α = 1 (left and right plots respectively). Notice that for α = 0, δ(x, y)
reduces to the Dirac delta function and the imaginary part vanishes identically.

All the sum rules (3), s = 1, 2, . . . , 9 calculated analytically by means of the formulas given in Ref.
[6] agree with the straightforward sums coming from the spectrum En = n2π2.

This PT -symmetric model is another example like the Hamiltonian Ĥ = p̂2 + x̂2 + iαx̂ with real
spectrum En(α) = (2n + 1) + α2/4 for all real α. We can also add Ĥ = p̂2 + iαp̂ with the boundary
conditions ψ(±L/2) = 0 with spectrum En(α) = n2π2/L2 + α2/4.

6. First example

We consider a string with unit length (L = 1/2)with density

Σ(x) = 1 + iαx. (26)

Here we assume that α is a real arbitrary parameter. To begin with, note that if the parameter-
dependent string density Σ(α, x) satisfies Σ(−α,−x) = Σ(α, x) then the eigenvalues En(α) are
symmetric about α = 0: En(−α) = En(α). This is exactly the case of the PT -symmetric density (26).

In this case we use the exact formulas of Ref. [6] and obtain:

ZDD(1) =
1
6

(27)

ZDD(2) =
1
90

−
α2

5040
(28)

ZDD(3) =
1

945
−

α2

30240
(29)

ZDD(4) =
197α4

10897286400
−

17α2

3742200
+

1
9450

(30)

ZDD(5) =
17α4

3269185920
−

59α2

102162060
+

1
93555

(31)

ZDD(6) = −
2341α6

1364608498176000
+

16771α4

16672848192000
−

359α2

5108103000
+

691
638512875

(32)

ZDD(7) = −
15773α6

22808456326656000
+

46667α4

285105704083200
−

1237α2

148864716000
+

2
18243225

(33)

ZDD(8) =
8458133α8

51894121836144107520000
−

689371α6

3986227909984320000

+
736579α4

30490471131120000
−

68197α2

70871446327500
+

3617
325641566250

(34)

ZDD(9) =
111789019α8

1323300106821674741760000
−

114268283α6

3308250267054186854400

+
5281763α4

1577881881035460000
−

627073α2

5716963337085000
+

43867
38979295480125

. (35)
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Fig. 2. Approximate PT -delta function δ50(x, 0) for α = 1/10 (left plot) and α = 1 (right plot). The dashed and dotted lines
are the real and imaginary parts respectively; the solid line is the modulus.

Fig. 3. Lowest eigenvalue as a function of α estimated using the sum rules up to order 9, and performing 3 repeated Shanks
transformations. The circles correspond to the numerical values obtained with collocation.

Wemay estimate the lowest eigenvalue of the string using the inequalities [11]

ZDD(s)−1/s
≤ E(DD)1 ≤

Z(s)
Z(s + 1)

. (36)

Since the ZDD(n) are polynomials in α, the occurrence of real roots signals that ZDD(s)−1/s can now
take complex values, and therefore that the spectrum cannot be completely real.

In Ref. [6] it has been proved that one can use the sequence of approximations to the lowest
eigenvalue E1 ≈ ZDD(n)−1/n, to obtain very accurate analytical approximations to E1: using the same
strategy we have performed four repeated Shanks transformations obtaining a precise analytical
formula. This formula exhibits a singularity at α⋆ ≈ 4.40272 that is quite close to the accurate
Rayleigh–Ritz result α1 = 4.397159356361900. Fig. 3 shows the estimate obtained with the Shanks
transformations and the actual value of α1 (vertical line). We have also calculated the eigenvalues of
the PT string by means of a collocation method developed some time ago [12].

At α = 0 the eigenvalues of this string are those of the homogeneous string. As |α| increases
pairs of eigenvalues start to approach each other and coalesce at a particular critical value, αn,
beyond which they become pairs of complex conjugate numbers. More precisely, pairs of eigenvalues
(E2n−1, E2n), n = 1, 2, . . ., coalesce at the critical point αn where E2n−1(αn) = E2n(αn) = en. It is most
interesting that in this case α1 > α2 > · · · so that for each value of αn+1 < α < αn there is a finite
number of real eigenvalues! This behaviour is completely different from the one that takes place in a
class of PT -symmetric Hamiltonian operators, where α1 < α2 < · · · [1].
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By means of the Rayleigh–Ritz method outlined in Section 4 we calculated several pairs of critical
parameters {en, αn} and carried out nonlinear regressions of the form

αn = b + c|en|−s. (37)

For this particular string we obtained

b = 3.4685067 ± 0.00090795610
c = 4.2281164 ± 0.027739157
s = 0.53669526 ± 0.0023416105, (38)

which suggests that there is an infinite number of real eigenvalues when 0 < α < b.

7. A PT -string with real negative eigenvalues

Another most interesting PT string is given by the density

Σ(x) = (1 + iαx)2, (39)

where α is a real parameter and |x| ≤ 1/2 as before.
Once again we use the exact formulas of Ref. [6] and obtain the first 7 sum rules:

ZDD(1) =
1
6

−
α2

120
(40)

ZDD(2) =
α4

50400
−
α2

630
+

1
90

(41)

ZDD(3) = −
29α6

432432000
+

α4

92400
−

α2

4200
+

1
945

(42)

ZDD(4) =
251α8

1029188160000
−

23α6

378378000
+

1499α4

567567000
−

α2

31185
+

1
9450

(43)

ZDD(5) = −
3221α10

3519823507200000
+

773α8

2514159648000
−

3313α6

154378224000

+
83α4

170270100
−

691α2

170270100
+

1
93555

(44)

ZDD(6) =
16965349α12

4862213796375936000000
−

759931α10

519467285937600000

+
1646627α8

11292767085600000
−

1204631α6

230988417660000
+

15047α4

192972780000

−
α2

2027025
+

691
638512875

(45)

ZDD(7) = −
5405503α14

402869143128291840000000
+

211469α12

31572816859584000000

−
460458127α10

520951478183136000000
+

3219703α8

71559268981200000
−

7523137α6

7259635983600000

+
565843α4

49497518070000
−

3617α2

62026965000
+

2
18243225

. (46)

The fact that ZDD(n) can take negative values signals that part of the spectrum must be complex.
A useful strategy to obtain approximate solutions to the string with density (39) is to apply the

Rayleigh–Ritz method as indicated in Section 4 or the collocation approach to the operator Ô. In Fig. 4
we show the numerical results for the real and imaginary parts of the first ten eigenvalues of the
string with density (39) for −10 ≤ α ≤ 10: these results are obtained using a collocation approach
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Fig. 4. Real and imaginary parts of the first ten eigenvalues of the string with density (39) for −10 ≤ α ≤ 10.

Fig. 5. Real and imaginary parts of the first ten eigenvalues of the string with density (39) for −100 ≤ α ≤ 100.

with a grid with 2000 points [12]. Looking at the right plot we see that the eigenvalues are real when
−2 . α . 2. In Fig. 5 we show the same results for −100 ≤ α ≤ 100: in this case pairs of real
negative eigenvalues appear when α reaches the critical values. The first pair coalesce at ±α1, where
α1 = 21.90376732248.

It is interesting to focus on the second region, where the spectrum contains pairs of real negative
eigenvalues. In particular, we choose α = 30, where a single pair of such eigenvalues appears. In
Fig. 6 we plot the real and imaginary parts of the eigenfunctions of the first two modes, whose
energies are real and negative. In Fig. 7 we plot the real and imaginary parts of the eigenfunctions
of the third and fourth modes, which exhibit complex conjugate eigenvalues. These solutions are
numerical approximations to the eigenfunctions of Eq. (1). We may get an idea of the precision of
our collocation calculation from the results of Table 1, which compares the numerical sum rules
for this string at α = 30 with the exact ones shown above. It follows from those figures that
ψ1(−x)∗ = ψ1(x), ψ2(−x)∗ = −ψ2(x) and that ψ3(−x)∗ = ψ4(x) in complete agreement with
the discussion at the end of Section 3.

In this case the nonlinear fitting yields two sets of critical parameters

b = −0.77692697 ± 2.7920949 × 10−5

c = 13.397511 ± 0.29472502
s = 1.8798088 ± 0.0072380433, (47)

for en < 0 and

b = 2.0000002 ± 1.1418782 × 10−5

c = 0.70814609 ± 0.00032819029
s = 0.50227919 ± 0.00015369406 (48)
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Table 1
Comparison between the sum rules for the string (39) at α = 30 obtained using the numerical values obtainedwith collocation
on a grid with N = 2000 and the exact sum rules.

q Z (DD)num (q) Z (DD)exact (q)
Z (DD)num (q)/Z

(DD)
exact (q)− 1


1 −7.32958160 + 4.13 × 10−10 i −

22
3 0.00051

2 +14.65396825 − 2.58 × 10−9 i 4616
315 2.1 × 10−10

3 −40.33560515 + 1.24 × 10−8 i −
5450752
135135 4.74 × 10−10

4 +117.80838771 − 5.31 × 10−8 i 9472421696
80405325 7.34 × 10−10

5 −353.88875146 + 2.12 × 10−7 i −
973145269792
2749862115 1.01 × 10−10

6 +1082.41430676 − 8.11 × 10−7 i 5139579853771120064
4748255660523375 1.29 × 10−9

7 −3351.2084737 + 3.01 × 10−6 i −
2636911102632544448

786853795172445 1.56 × 10−9

Fig. 6. Real (solid) and imaginary (dashed) parts of the eigenfunctions of the first two modes of the string (39) for α = 30.

for en > 0. In the latter case we conjecture that the exact asymptotic relation may be

αn = 2 +
1

√
2en

. (49)

8. Conclusions

The purpose of this paper is to enlarge the class of PT -symmetric models with the addition
of parameter-dependent inhomogeneous strings with complex densities that satisfy Σ⋆(α,−x) =

Σ(α, x). We discussed an exactly solvable example with real spectrum for all values of α. This trivial
inhomogeneous string is isospectral with the homogeneous one (a PT -symmetric analogue of the
string found by Borg [10] some time ago).
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Fig. 7. Real (solid) and imaginary (dashed) parts of the eigenfunctions of the third and fourth modes of the string (39) for
α = 30.

We also discussed two nontrivial strings for which one can obtain exact sum rules thus extending
Amore’s result [6] to the PT -symmetric realm. The accurate calculation of the critical parameters
revealed that one of the strings exhibits real positive spectrum and the other one both positive and
negative eigenvalues. Obviously, such negative eigenvalues cannot take place when the operator Ô is
Hermitian.

Another interesting feature of the PT -symmetric strings is that the behaviour of the critical
parameters is different from that one observed inPT -symmetric Hamiltonians like Ĥ = p̂2+ x̂4+ iαx̂
or Ĥ = p̂2 + ix̂3 + iαx̂ (see [1] and references therein).
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