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A Block Solver for the Exponentially Fitted IIPG-0
method
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Abstract

We consider an exponentially fitted discontinuous Galerkin method and propose
a robust block solver for the resulting linear systems.

1 Introduction

Let © C IR? be a convex polygon, f € L?(Q),g € H'/?(99) and let € > 0 be constant.
We consider the advection-diffusion problem

—div(eVu — fu) = f in Q, u=g¢g on 0L, (1.1)

where 8 € W1°() derives from a potential 3 = V1. In applications to semiconductor
devices, u represents the concentration of positive charges, 1 the electrostatic potential
and the electric field | V4| might be fairly large in some parts of €2, so that becomes
advection dominated. Its robust numerical approximation and the design of efficient
solvers, are still nowdays a challenge. Exponential fitting [2] and discontinuous Galerkin
(DG) are two different approaches that have proved their usefulness for the approximation
of (1.1). Both methodologies have been combined in [3] to develop a new family of
exponentially fitted DG methods (in primal and mixed formulation). In this note, we
consider a variant of these schemes, based on the use of the Incomplete Interior Penalty
[TPG-0 method and propose also an efficient block solver for the resulting linear systems.
By introducing the change of variable

p = ey (1.2)
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problem ([I.1)) can be rewritten as the following second order problem
— V- (kVp)=finQ, p=xond, (1.3)

where r = cec and x = e~g. An IIPG-0 approximation to combined with a
suitable local approximation to , gives rise to the EF-IIPG-0 scheme for . We
propose a block solver that uses ideas from [I] to reduce the cost to that of a Crouziex-
Raviart (CR) (exponentially fitted) discretization. By using Tarjan’s algorithm, the
associated matrix is further reduced to block lower triangular form, and a block Gauss-
Siedel algorithm results in an exact solver.

To give a neat presentation, we focus on the case § = Vi piecewise constant;
piecewise linear continuous, although we include some numerical results for a much more
general case (cf. Test 2). Due to space restrictions, we describe the method and the
solver and show some numerical results; further extensions of the method (allowing v to
be discontinuous) and the convergence analysis of the proposed solvers will be consider
somewhere else.

2 The Exponentially Fitted IIPG-0 method

Let 7j, be a shape-regular family of partitions of {2 into triangles 7" and let h = maxper;, hr
with hp denoting the diameter of T for each T' € T,. We assume 7, does not contain
hanging nodes. We denote by &£ and &7 the sets of all interior and boundary edges,
respectively, and we set &, = £ U EP.

Average and jump trace operators: Let 7" and T~ be two neighboring elements,
and n", n~ be their outward normal unit vectors, respectively (n* = np=+). Let ¢(* and
7% be the restriction of ¢ and T to T*. We set:

20 =(C"+¢), [KI=¢n"+(n” on E € &,
€0ty =("+77), [r]=7"n"4+7"-n" onFEc&,

and on e € &7 we set [(] = ¢(n and {7} = 7. We will also use the notation

Z/uwdm (u,w)e Z/uwds Vu,w,e VP9

TeTh e€ly,
where VP% is the discontinuous linear finite element space defined by:
={uel*Q) : u, € P(TVT €T},

P}(T') being the space of linear polynomials on 7. Similarly, P°(T") and PY(e) are the
spaces of constant polynomials on 7" and e, respectively. For each e € &, (resp. for each
T € Tn), let P2 : L?(e) — PY(e) (resp. PY : L*(T) — P°(T)) be the L*-orthogonal
projection defined by

1
Pg(u):zm/u, Yue L*(e), PAv): |T|/ Vve LA(T) .
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We denote by VET the classical Crouziex-Raviart (CR) space:
VER={ve L*(Q) : v, € PAYT)VT € Tp, and P2 [v] =0Ve € &}.

Note that v = 0 at the midpoint m,. of each e € 7. To represent the functions in V¢
we use the basis {p.1}reT, cce,, defined by

VT €T @er(r) €PH(T) eCIT @er(me)=0dce Ve €E,. (2.1)

In particular, any w € P'(T) can be written as w = Y__ oy w(me)@er.

The Exponentially fitted ITPG-0 method We first consider the ITPG-0 approxima-
tion to the solution of (1.3): Find p € VPY such that A(p,w) = (f,w)y, forall w € VP
with

Alp,w) = (57Vp, Vu)g, — {57V} [wl)e, + (Se{l o]} PP([w]))e, - (2.2)

Here, S, is the penalty parameter and % € PY(T) the harmonic average approximation
to k = ee¥/¢ both defined by [3]:

1 €
Kip = = , S, = ach K4} (2.3)
TP pu(e?) T
Next, following [3] we introduce the local operator T : VPY — VP¢ that approximates
the change of variable (|1.2)):

Tw=Y (Tw)r=Y Y Pl wlim)per Ywe VP, (2.4)
TET TeT, eCOT
By setting p := Tu in (2.2)), we finally get the EF-ITPG-0 approximation to (|1.1)):
Find uy, € VP st B(up, w) := A(Tup, w) = (f,w)7, Yw € VP with

B(u, w) =(k3VTu, Vw)7, — ({£7VEu}, [w])e, + (S{[Tul}, P Lw])e, - (2.5)

It is important to emphasize that the use of harmonic average to approximate x = ee¥/*
as defined in together with the definition of the local approximation of the change
of variables prevents possible overflows in the computations when v is large and € is
small. (See [3] for further discussion). Also, these two ingredients are essential to ensure
that the resulting method has an automatic upwind mechanism built-in that allows for
an accurate approximation of the solution of in the advection dominated regime.
We will discuss this in more detail in Section [
Prior to close this section, we define for each e € £, and T € Tj,:

Yme 1= mein Y(T) Yo = mel%l Y(x); Y1 < Y. for e C OT .

In the advection dominated regime € < |5|h = |Vi|h

7/)'rn, m,e
Poe™ /) ~ e~ e PL (7€) ~ cem (2.6)
The first of the above scalings together with the definitions in (2.3)) implies
1 ¥m, (Y, Ty +¥m,Ty)
Ko~ —e o ) Se ;\erle e o1y NoTs . (2.7)
€ €



3 Algebraic System & Properties
Let A and B be the operators associated to the bilinear forms A(-,-) (2.2) and B(,-)
(2.5)), respectively. We denote by A and B their matrix representation in the basis

{@er}ret cce, [2.1). In this basis, the operator T defined in is represented as a
diagonal matrix, D, and B = AID. Thus, the approximation to and amounts
to solve the linear systems (of dimension 2n, — ny; with n. and n;, being the cardinality
of &, and &7, respectively):

Ap=F, and Du=p or Bu = F, (3.1)

where p, u, F' and F are the vector representations of p, u and the rhs of the approximate
problems. From the definition (2.4)) of T it is easy to deduce the scaling of the entries of

2ne—nyp

the diagonal matrix D = (d; ;)"

_ Ymee

D= (dm)?g;"b di; = Pgi(e’w/e) ~ee <, di; =0 i#7g.
We now revise a result from [I]:

Proposition 3.1 Let Z C VPC be the space defined by
Z={zeL*(Q) : 2z, € P(T)VT €T, and P{v} =0Vec&}.

Then, for any w € VPC there exists a unique w € VR and a unique w* € Z such that
w = w" +w* , that is: VP9 = VR @ Z. Moreover, A(w,w*) = 0 Vw™ € V& and
Yw? € Z.

Proposition provides a simple change of basis from {¢.7} to canonical basis in V¢
and Z that results in the following algebraic structure for (3.1)):

pz AZZ O ]BZZ 0
p= 7 A — : B = . (3.2)
pcr A'UZ A'U/U ]:BUZ BUU

Due to the assumed continuity of ¢, D is still diagonal in this basis. The algebraic
structure (3.2)) suggests the following exact solver:

Algorithm 3.2 Let uy be a given initial guess. For k > 0, and given uy = zp + vy, the
next iterate ugi1 = zxy1 + Vir1 4s defined via the two steps:

1. Solve B(uj_,,w®) = (f,w*)7, Vw*eZ.
2. Solve B(u,w) = (f,w)7, — Bluj,,w") YVw” e VE

Next, wet discuss how to solve efficiently each of the above steps:



Step 2: Solution in VE. In [I] it was shown that the block A" coincides with the
stiffness matrix of a CR discretization of (1.3), and so it is an s.p.d. matrix. However,
this is no longer true for B*” which is positive definite but non-symmetric.

B(u,w™) = (k5VZuT, Vo )y ¥V u” wT e VO,

In principle, the sparsity pattern of B" is that of a symmetric matrix. Using ([2.6) and
(2.3]), we find that the entries of the matrix scale as:

€i||€; _Wme—¥m1)
;| T’jlj‘” n, -n.d; ~e ‘ (3.3)

Neri=Ne—MNp o
B = (bgj“j)iﬁj b=k
Since 1) is assumed to be piecewise linear, for each T', it attains its minimum (and also
its maximum) at a vertex of 7', say ¢ and t,,. is attained at one of the vertex of the
edge e, say x.. In particular, this implies that

0 T, = Tg

wm,e - wm,T ~ Vw ’ (we - wO) = ﬁ : (.’Ee - .’Bo) =
’ﬁ’h Le 7é Zo

Hence, in the advection dominated case € < |3|h some of the entries in (3.3)) vanish (up
to machine precision) for e small; this is the automatic upwind mechanism intrinsic of
the method. As a consequence, the sparsity pattern of B’ is no longer symmetric and
this can be exploited to re-order the unknowns so that B*” can be reduced to block lower
triangular form.

Notice also that for 7, acute, the block A" being the stiffness matrix of the Crouziex-
Raviart approximation to , is an M-matrix. Hence, since the block B" is the product
of a positive diagonal matrix and A", it will also be an M-matrix if the triangulation is
acute (see [2]).

Step 1: Solution in the Z-space. In [I] it was shown that A** is a diagonal p.d.
matrix. This is also true for B** since it is the product of two diagonal matrices. The
continuity of ¢ implies

B(uw*,w®) = (S Z[w’ |, P ([w]))e, Vu',w*€Z. (3.4)
Using (2.6) and ({2.3) we observe that the entries of B** scale as:

a — — €
B** = (bij)ic,  biy = Se;leild;éi; ~ 5@',15 e~ Wme=¥mt ~Vm.1y)/

which are always positive, so in particular B** it is also an M-matrix.

4 Block Gauss-Siedel solver for V“-block

We now consider re-orderings of the unknowns (dofs), which reduce B"” to block lower
triangular form. For such reduction, we use the algorithm from [4] which roughly amounts
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to partitioning the set of dofs into non-overlapping blocks. In the strongly advection
dominated case the size of the resulting blocks is small and a block Gauss-Seidel method
is an efficient solver. Such techniques have been studied in [5] for conforming methods.
The idea is to consider the directed graph G = (V, E) associated with B’ € IR"*";
G has n,, vertices labeled V' = {1,...,n..} and its set of edges edges E has cardinality
equal to the number of nonzero entriesﬂ of B*. By definition, (i,j) € E iff b§] # 0.
Note that in the advection dominated case, due to the nonsymmetric pattern of B’
(caused by the built-in upwind mechanism), we may have (i,j) € E, while (j,7) ¢ E.
Then, the problem of reducing B"” to block lower triangular form of B"" is equivalent to
partitioning G as a union of strongly connected components. Such partitioning induces
non-overlapping partitioning of the set of dofs, V' = Uf\ﬁ’lwi. Fori=1,..., Ny, let m;
denote the cardinality of w;; let I; € IR""*™ be the matrix that is identity on dofs in w;
and zero otherwise; and BYY = I'B"I; is the block corresponding to the dofs in w;. The
block Gauss-Seidel algorithm reads: Let ug be given, and assume uj has been obtained.
Then uf | is computed via: For i =1,... N,

Uin, = Wik oy, + LB T (F =B u yyw,) - (4.1)
As we report in Section , in the advection dominated regime the action of (BY”)™! can

be computed exactly since the size of the blocks B}" is small.

5 Numerical Results

Test 1: 50 blocks 156 Dofs Test 2: 122 blocks 316 Dofs

_ L L L L L L I L L ) L L L L y L L L
-1 -08 -06  -04  -02 0 0.2 0.4 0.6 0.8 1 -1 -0.8 -06  -04  -02 0 0.2 0.4 0.6 0.8 1

(a) Test 1 with e =105 (b) Test 2 with e = 1077

Figure 5.1: Plot of the connected components (blocks) of B" created during Tarjan’s
algorithm.

We present a set of numerical experiments to assess the performance of the proposed
block solver. The tests refer to problem (1.3)) with e = 1072,107°,1077, and € is trian-
gulated with a family of unstructured triangulations 7. In the tables given below J =1

IEach dof corresponds to a vertex in the graph; each nonzero entry to an edge.



corresponds to the coarsest grid and each refined triangulation on level J, J = 2,3,4 is
obtained by subdividing each of the T" € T}, on level (J — 1) into four congruent triangles.
From the number of triangles ny the total number of dofs for the DG approximation is
3nr and n, — n, for the CR part of the solution.

Test 1. Boundary Layer: Q) = (—1,1)%, 8 = [1,1]%, ny = 112 for the coarsest mesh
and f is such that the exact solution is given by

14 6—2/6 - 2€(z—1)/5 14+ 6—2/6 _ 2e(y—1)/e
u(z,y) = (x - 1 —e 2/ ) (y + 1 —e 2/ ) '

Test 2. Rotating Flow: 2 = (—1,1)*(0,1), f = 0 and curlg # 0,

¢
2y(1 — z?) 1 +tanh (102 +1)) 2 <0, y=0,
8= g(z,y) =
—22(1 — y?) 0 elsewhere .

We stress that this test does not fit in the simple description given here, and special care
is required (see [3]). For the approximation, for each T € T, with barycenter (zr,yr),
we use the approximation S|y &~ Vi|r with ¢|r = 2yr(1 — 23)z — 227(1 — 2y7)y (and
so 1 discontinuous). The coarsest grid has ny = 224 triangles.

In Figure the plot of the connected components of the graph depicting the blocks
for B created during Tarjan’s algorithm, on the coarsest meshes is shown; for Test 1
with € = 1075 and for Test 2 with € = 107", In Tables|5.1] are given, the number of blocks
N, created during Tarjan’s algorithm. We also report in this table the size of the largest
block created (M, maximum size) and the average size of the blocks n,,. Observe that
in the advection dominated regime the largest block has a very small size compared to
the total size of the system. After Tarjan’s algorithm is used to re-order the matrix B"",
we use the block Gauss-Seidel algorithm (4.1)) where each small block is solved exactly.

Acknowledgments

This work started while the first two authors were visiting the IMATI-CNR, Pavia in
October 2010. Thanks go to the IMATTI for the hospitality and support. The first
author was partially supported by MEC grant MTM2008-03541, the second author was
supported by CONICET and the fourth author is supported in part by the National
Science Foundation nst-dms 0810982.

References

[1] Blanca Ayuso de Dios and Ludmil Zikatanov. Uniformly convergent iterative methods
for discontinuous Galerkin discretizations. J. Sci. Comput., 40(1-3):4-36, 2009.

[2] F.Brezzi, L. D. Marini, S. Micheletti, P. Pietra, R. Sacco, and S. Wang. Discretization
of semiconductor device problems. I. In Handbook of numerical analysis. Vol. XIII,
pages 317-441. North-Holland, Amsterdam, 2005.

7


http://arxiv.org/abs/nsf-dms/0810982

) 7 1 2 3 4 7 1 2 3 4
N, 44 150 484 1182 N, 31 1 1 1

1073 | M, 23 47 95 191 10-3 M, 211 1304 | 5296 21344
Naw 3.55 4.32 5.45 9.02 Naw 10.19 1304 | 5296 21344
N, 50 210 866 3474 N, 122 468 1822 7106

107° | M, 23 47 95 191 10—5 M, 4 4 7 37
Naw 3.12 3.08 3.05 3.07 Naw 2.59 2.78 2.91 3.00
N 50 210 866 3522 N, 122 468 1832 7247

1077 | M, 23 47 95 191 1077 | My 4 4 4 6
Naw 3.12 3.08 3.05 3.03 Naw 2.59 2.78 2.89 2.95

(a) Test 1 (b) Test 2

Table 5.1: Number of blocks (1V,) created during the Tarjan’s ordering algorithm, size of
largest block (M,) and average size of blocks (n4y).

[3] Ariel Lombardi and P. Pietra. Exponentially fitted discontinuous galerkin schemes
for singularly perturbed problems. Technical report, IMATI-CNR, Pavia, 2010. sub-

mitted.

[4] Robert Tarjan. Depth-first search and linear graph algorithms. SIAM J. Comput.,

1(2):146-160, 1972.

[5] Feng Wang and Jinchao Xu. A crosswind block iterative method for convection-
dominated problems. SIAM J. Sci. Comput., 21(2):620-645, 1999.




	1 Introduction
	2 The Exponentially Fitted IIPG-0 method
	3 Algebraic System & Properties 
	4 Block Gauss-Siedel solver for VCR-block
	5 Numerical Results

