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Land cover maps at different resolutions and mapping extents contribute to modeling and support decision
making processes. Because land cover affects and is affected by climate change, it is listed among the 13
terrestrial essential climate variables. This paper describes the generation of a land cover map for Latin America
and the Caribbean (LAC) for the year 2008. It was developed in the framework of the project Latin American
Network for Monitoring and Studying of Natural Resources (SERENA), which has been developed within the
GOFC-GOLD Latin American network of remote sensing and forest fires (RedLaTIF). The SERENA land cover
map for LAC integrates: 1) the local expertise of SERENA network members to generate the training and
validation data, 2) a methodology for land cover mapping based on decision trees using MODIS time series,
and 3) class membership estimates to account for pixel heterogeneity issues. The discrete SERENA land cover
product, derived from class memberships, yields an overall accuracy of 84% and includes an additional layer
representing the estimated per-pixel confidence. The study demonstrates in detail the use of class memberships
to better estimate the area of scarce classeswith a scattered spatial distribution. The land covermap is already avail-
able as a printedwallmap andwill be released in digital format in the near future. The SERENA land covermapwas
produced with a legend and classification strategy similar to that used by the North American Land Change Moni-
toring System (NALCMS) to generate a land covermap of the North American continent, thatwill allow to combine
both maps to generate consistent data across America facilitating continental monitoring and modeling.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

During the past decades Latin America and the Caribbean (LAC)
have undergone unprecedented land cover and land use changes.
Cropland expansion and forest conversion, accelerated by economic
globalization and climate change, are the dominant land-use trends

in the region (Grau & Aide, 2008). LAC have lost more forests since
1990 than any other major world region (FAO, 2005), and the rapid
conversion of forests to agriculture has been especially evident in
areas such as South America's Amazon region and the lowland forests
of Central America. Latin America is responsible for 4.3% of global
greenhouse gas emissions (Magrin et al., 2007), and of these, 48.3% re-
sult from deforestation and land use changes (UNEP, 2000). In this con-
text land use and land cover (LULC) maps are vital for monitoring,
understanding, and predicting the effects of complex human–nature
interactions. Information on LULC changes needs to be as accurate
and timely as possible if it is to be incorporated into management
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and policy decisions. To meet these requirements it is necessary to de-
velop cost-effective ways for automated processing of satellite images
and production of LULC maps with high temporal resolution (DeFries
& Belward, 2000; Skole et al., 1997).

Traditionally, data from medium to high spatial resolution sensors
(10–60 m), e.g. Landsat, Système Pour l'Observation de la Terre
(SPOT) and Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER), have been used for mapping LULC at local to re-
gional scales (Rogan & Chen, 2004). This level of spatial resolution is
generally adequate to detect fine-scale (circa 1:100,000) land use
patterns. However, potential data costs, the small image extent,
haze and cloudiness, and sporadic acquisitions can make data from
medium spatial resolution sensors impractical for macro-regional,
continental, and global mapping (Asner, 2001; Hansen et al., 2008).
Therefore, data with lower spatial resolution (250–1000 m) but
high temporal frequency of image acquisition are in many cases se-
lected as an alternative to medium resolution data for large-area
land cover mapping, because they are affordable, require less effort
for data manipulation and processing, and their near-to-daily cover-
age increases the probability of cloud-free composites (Arino et al.,
2008; Bartholomé & Belward, 2005; Friedl et al., 2002; Hansen et al.,
2002; Loveland et al., 2000). Also many classes can only be mapped
with high accuracy using time series that characterize vegetation
phenology rather than single-date spectral response (Coppin et al.,
2003; Friedl et al., 2002, 2010; Hansen et al., 2000).

Various global land cover maps have been produced from low
resolution satellites, e.g. 1.1 km Advanced Very High Resolution Radi-
ometer (AVHRR; IGBP DISCover, Loveland et al., 2000; UMD GLCC,
Hansen et al., 2000), 1 km SPOT-Vegetation (GLC2000, Bartholomé &
Belward, 2005), 500 m and 1000 m Moderate Resolution Imaging
Spectroradiometer (MODIS; MOD12Q1, Friedl et al., 2002; MCD12Q1,
Friedl et al., 2010), and 300 m Medium Resolution Imaging Spectrom-
eter (MERIS; Globcover, Bicheron et al., 2008). Specifically for the LAC
region, a vegetation map for South America (SA) for the year 2000
with twenty-two classes was developed using 1 km SPOT-Vegetation
as part of a project to map Global Land Cover for the year 2000 (GLC
2000, Eva et al., 2004), and more recently a land cover map of SA
with nine classes was derived from the 300 m MERIS for the years
2008 and 2010 (Hojas Gascon et al., 2012). A study by Clark et al.
(2012) mapped annual land-cover data with 8 classes from 2001 to
2010 using 250 m MODIS data, and tracks change patterns of three
generalized classes including woody, mix woody/plantation, and
agriculture/herbaceous vegetation by linear regression at themunic-
ipality level. However, a discrete land cover map of coarse spatial
resolution has several disadvantages (DeFries et al., 1995a, 1999;
Fernandes et al., 2004). Discrete classes cannot represent spatially
complex areas (Hansen et al., 2002), because spatial complexity in-
creases with spatial resolution (Moody &Woodcock, 1994). As a result,
homogeneous landscapes e.g. large stands of evergreen broadleaf
forest in the Amazon tend to be well classified, but accuracy is poor
for mixed pixels that represent small-patch landscapes and transitional
zones with various spectral and temporal signals of trees, shrubs, and
herbaceous vegetation (e.g. shrub-grass steppes in southern Patagonia;
Herold et al., 2008).

The Global Observation of Forest and Land Cover Dynamics
(GOFC-GOLD) program is a coordinated international effort, work-
ing to provide ongoing space-based and in situ observations of for-
ests and other vegetation cover for sustainable management of
terrestrial resources and to obtain an accurate and reliable quantita-
tive understanding of the terrestrial carbon budget (http://www.
fao.org/gtos/gofc-gold/overview.html). The creation of regional net-
works has been encouraged, which provide a mechanism for sharing
resources and expertise. Within this framework, the Latin American
Remote Sensing and Forest Fires Network (Red Latinoamericana de
Teledetección e Incendios Forestales — RedLaTIF) was created in
2002. This paper presents the production and analysis of a land cover

map for Latin America and the Caribbean for the year 2008 that was
part of the Latin American Network for Monitoring and Studying of
Natural Resources (Red Latinoamericana de Seguimiento y Estudio de los
Recursos Naturales — SERENA, web page http://www.proyectoserena.
com.ar/). The SERENA project, developed within the RedLaTIF network,
aims to monitor, study, and disseminate information associated with
biomass burning (wildfires) and changes in land use and cover for
LAC utilizing satellite data. The network brings together 18 institutions
from 10 countries with 53 researchers. The network envisages the de-
velopment of common methodologies for developing homogeneous
products that build upon and are validated with local data.

The SERENA land cover map for LAC incorporates: 1) the local
expertise of SERENA network members to generate training and vali-
dation data, 2) a land cover mapping approach based on decision
trees using MODIS time series, and 3) estimates of class memberships
to partly overcome pixel heterogeneity issues of coarse resolution
land cover maps. The suite of SERENA land cover products also includes
a discrete map with an additional layer that represents the estimated
confidence. The land cover map was recently finished and is available
as a wall map. The digital version will be released in the near future
and is hosted on the SERENAweb page. The SERENA land covermapwas
produced using a legend and classification strategy similar to the North
American Land Change Monitoring System (NALCMS) that generated a
land cover map for the North American continent (Colditz et al., 2012;
Latifovic et al., 2012). The similarity between both maps will facilitate
legend harmonization and map combination to form a consistent
land cover map from Ellesmere Island, Canada to Tierra del Fuego,
Argentina thatwill be of high value for monitoring andmodeling across
the American continent.

2. Methodology

The requirements of supervised image classification can be grouped
into four broad categories: legend definition, input data generation,
sample data preparation, and classifier development. Often post
processing steps are needed and accuracy assessment should be an
integral part of each mapping exercise. The optimal choice depends
on carefully considering the characteristics of each component with
respect to the others, the aim of the study and the characteristics and
diversity of the study area. The modules of each component are de-
scribed below and are shown in Fig. 1.

The general framework of the mapping approach to derive
class-membership estimates has been described in previous studies,
mainly by Colditz et al. (2011) for South Africa and Germany and by
Colditz et al. (2012) for Mexico within the NALCMS initiative. Other
studies for mapping land cover over broad regions focused on input
data transformations and sample data analysis (e.g. Conrad et al.,
2011; DeFries et al., 1998; Hansen et al., 2000). For accuracy assess-
ment we followed the guidelines of Strahler et al. (2006) for global
maps. Therefore this method description will be brief and focuses
on important modifications of established protocols. Due to data
processing reasons LAC were divided in two mapping frames, Central
America and the Caribbean (CAC) together and South America (SA),
that were combined at the Isthmus of Darien. CAC includes all coun-
tries fromMexico to Panama and islands in the Caribbean Sea. Gener-
ally map generation followed the same guidelines in both mapping
frames, and differences are outlined below.

2.1. Legend definition

A legend with three levels was defined based on the FAO/UNEP
Land Cover Classification System (LCCS) (Table 1). The SERENA land
cover legend is similar to the North American Land Change Monitor-
ing System (NALCMS; Latifovic et al., 2012), that should facilitate the
harmonization of both datasets to obtain a continental map. The
main difference is the separation of tropical from sub-tropical classes
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that were merged in NALCMS. Whereas only a small portion of
NALCMS (less than 5%) is located in the tropics and sub-tropics, the
study area of SERENA is mainly located in tropical and sub-tropical
areas that require separation.

2.2. Preparation of input data

This study employed daily MODIS-Terra surface reflectance data
(MOD09GA of collection 5) for the year 2008, downloaded free-of-
charge from the NASA Earth Observing System Data Gateway. The
MOD09GA product is an estimate of the surface spectral reflectance
for seven bands at 500 m spatial resolution, as it would have been
measured at ground level if there were no atmospheric scattering
or absorption (Vermote et al., 2002). In total 20,069 images (47 tiles,
365 images of 2008 aswell as 31 images of December 2007 and January
2009 to improve temporal interpolation) were processed to generate
monthly composites for reflective bands (red: 620–670 nm, NIR:
841–876 nm, blue: 459–479 nm, green: 545–565 nm, SWIR1: 1230–
1250 nm, SWIR2: 1628–1652 nm, and SWIR3: 2105–2155 nm). Based
on the quality of the daily observations determined by the quality as-
sessment science data set (QA-SDS), only pixels that met settings of
Table 2 and with a view-zenith angle lower than 45° were kept for
further processing. To create monthly composites, for each pixel the
day corresponding to the NIR median value was selected for all bands.
In the case of no valid information for the entiremonth, gapswere filled
by linear temporal interpolation between other monthly composites.
Satellite data preparation is different to NALCMS (Latifovic et al.,
2012) with respect to 1) input data selection (MOD02 radiance versus
MOD09 surface reflectance), 2) a simpler filtering and compositing ap-
proach (compare to Luo et al., 2008), and 3) no downscaling to 250 m
(Trishchenko et al., 2006).

The Normalized Difference Vegetation Index (NDVI) was computed
for each month from the red and NIR band composites. Additional
ancillary information included elevation, slope, and aspect, derived
from 90 m SRTM data (USGS, 2004) and bioclimatic variables,
downloaded from WorldClim-Global Climate data (Hijmans et al.,
2005). WorldClim-Global Climate data were generated through in-
terpolation of average monthly climate data (1950–2000 period)
from weather stations on a 30 arc-second resolution grid. Specifically
bioclimatic variables include the annual mean temperature (Bio 1),
mean temperature diurnal range (Bio 2), temperature seasonality
(Bio 4), maximum temperature of warmest month (Bio 5), minimum
temperature of coldest month (Bio 6), temperature annual range
(Bio 7), annual precipitation (Bio 12), precipitation of wettest month
(Bio 13), precipitation of driest month (Bio 14), and precipitation sea-
sonality (Bio 15). The set of ancillary information used in SERENA was
the same for CAC and SA, which is different to NALCMS where each
country had distinct sets depending on their availability (Latifovic et
al., 2012). All satellite data and ancillary layers were referenced to the
Lambert Azimuthal Equal Area (LAEA) projection with center at 70°W
and 10°S and Sphere datum with a radius of 6370.997 km.

Temporal metrics, i.e. simple statistics calculated for defined
periods from the satellite time series, capture the seasonal spectral
differences among classes that are useful for class discrimination
(Clark et al., 2012; Conrad et al., 2011; DeFries et al., 1995b; Hansen
et al., 2000). The mean, standard deviation, minimum value, maximum
value, and range betweenmaximum andminimumwere computed for
each band and the NDVI over the full year, two six-month, three
four-month and four three-month periods. Multiple classification runs
employed different feature sets of input data that consisted of the
monthly composites of spectral bands, NDVI, and ancillary data
(96+13 variables) or temporal metrics and ancillary data (400+13).

Fig. 1. Process for image classification with classification components and modules.
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2.3. Preparation of sample data for training

A sample data base was built to train the land cover classification
algorithm. The methodological steps to obtain the sample data are
described below. It should be noted that an extensive sample data
base already existed for Mexico (Colditz et al., 2012). That dataset

together with additional samples for Central American countries
formed the sample set for the CAC map frame.

2.3.1. Reference data sources
National and regional land cover maps at the scale of 1:250,000,

mainly based on Landsat 5TM and 7ETM+imagery and aerial

Table 1
Legend of SERENA land cover. Class names in italic correspond to stable masks.

Code Level 1 Level 2 Level 3 Definition

1 Broadleaf
forest

Tropical broadleaf
forest

Tropical broadleaf
evergreen forest

Forests generally taller than 5 m and more than 20% of total vegetation cover. These forests have
greater than 75% of tree crown cover represented by evergreen species. This type occupiesmost of the
Amazonian basin and also exists at the coasts of Guyana and Colombia and along the Atlantic shores of
Central America.

2 Tropical broadleaf
deciduous forest

Forests generally taller than 5 m andmore than 20% of total vegetation cover. These forests have
greater than 75% of tree crown cover represented by deciduous species. This type occurs on the
western flank of Sierra Madre Occidental in Mexico and in isolated spots in Mato Grosso in Brazil.

3 Sub-tropical
broadleaf forest

Sub-tropical broadleaf
evergreen forest

Same as class 1, but it covers the so-called “ceja de selva” along the eastern flank of the Andes
fromVenezuela to Argentina and the plateaus in southern Brazil where it is called “mata atlantica”.

4 Sub-tropical broadleaf
deciduous forest

Same as class 2, but this type occursmostly in theChaco plains in Paraguay andnorthernArgentina.

5 Temperate broadleaf
forest

Temperate broadleaf
evergreen forest

Same as class 1 but with 3 m height. It covers the western flank of southern Andes in Chile and
some very isolated spots in the Andean range in Peru.

6 Temperate broadleaf
deciduous forest

Same as class 2 but with 3 m height. This type is sparsely present in Sierra Madre Occidental and
in the Andean piedmont in northern Argentina.

7 Needleleaf
forest

Sub-tropical
needleleaf forest

Sub-tropical
needleleaf
forest

Forests generally taller than 5 m andmore than 20% of total vegetation cover. The tree crown cover
contains at least 75% of needleleaf species. This type mainly occurs in highlands in Honduras and
northwestern Nicaragua.

8 Temperate needleleaf
forest

Temperate needleleaf
forest

Same as class 7 but with 3 m height.
Exists in the Sierra Madre Occidental in Mexico and in the drier sections of southern Andes in
Patagonia.

9 Mixed forest Mixed forest Mixed forest Forests generally taller than 3 m and more than 20% of total vegetation cover. Neither needleleaf
nor broadleaf tree species occupy more than 75% of total tree cover, but are co-dominant. This
type spreads over the Sierra Madre Occidental from the US border to Guatemala and Honduras.

10 Shrubland Tropical shrubland Tropical shrubland Areas dominated by woody perennial plants with persistent woody stems less than 5 m tall
and typically greater than 20% of total vegetation. This type is well represented by the “sertao”
in northeastern Brazil but is also present further inland as well as in the Piura region, the
Peru-Ecuador border on the Pacific.

11 Sub-tropical shrubland Sub-tropical
shrubland

Same as class 10 but this type occupies the northern Mexican plateau where is called “chaparral”
and plains in central Argentina where is known as “monte-espinal”.

12 Temperate shrubland Temperate shrubland Same as class 10 but with woody stems less than 3 m of height. This type spreads over the dry
plains of Pampa seca and patchily in the plateaus of Patagonia.

13 Grassland Tropical grassland Tropical grassland Areas dominated by graminoid or herbaceous vegetation generally accounting for greater than
80% of total vegetation cover. These areas are not subject to intensive management such as
tilling, but can be utilized for grazing. This type mainly appears in the Orinoco left basin in
central Venezuela, covering what locally is known as “llanos”.

14 Sub-tropical grassland Sub-tropical grassland Same as class 13, but this type exists in the hilly “cuchillas” in Uruguay and in Entre-Rios in
Argentina.

15 Grassland Temperate grassland Temperate grassland Same as class 14, but this type covers most of Patagonian plateaus and the Andean highlands
of the wet Puna in Peru and Bolivia and “la sierra” in Peru.

16 Water Water Water Areas of open water, generally with less than 25% cover of non-water cover types. This class
refers to areas that are consistently covered by water.

17 Urban area Urban area Urban area Areas that contain at least 30% or greater urban constructed materials for human activities
(cities, towns, transportation etc.).

18 Permanent ice
and snow

Permanent ice and
snow

Permanent ice and
snow

Areas characterized by a perennial cover of ice and/or snow, generally greater than 25% of total
cover. The two main icefields are located in the southern Patagonian Andes.

19 Barren land Barren land Barren land Areas characterized by bare rock, gravel, sand, silt, clay, or other earthen material, with little or no
“green” vegetation present regardless of its inherent ability to support life. Generally, vegetation
accounts for less than 10% of total cover. This type occurs in driest areas such in Atacama desert in
northern Chile, the coast of Peru, the Puna in the Andean altiplano in high ranges in western
Argentina and some areas in central Patagonia.

20 Cropland Cropland Cropland Areas dominated by intensively managed crops. These areas typically require human activities for
theirmaintenance. This includes areas used for the production of annual crops, such as corn, soybeans,
wheat, maize, vegetables, tobacco, cotton etc., and also perennial and annual grasses for grazing and
woody crops such as orchards, plantations, and vineyards. Crop vegetation accounts for greater than
20% of total vegetation. This class does not represent natural grasslands used for light to moderate
grazing. It spreads all over Cuba, most of Central America from the Mexican lowlands to Panama, in
upper Parana basin in Central Brazil and Pampa plains in central-eastern Argentina.

21 Wetland Wetland Wetland Areas dominated by perennial herbaceous and woody wetland vegetation which is influenced by
the water table at or near surface over extensive periods of time. This includes marshes, swamps,
bogs, mangroves etc. either coastal or inland where water is present for a substantial period
annually. The main examples are the upper Paraguay basin in Mato Grosso, locally called
“Pantanal”, and the Ibera region, in Corrientes in north-eastern Argentina.

22 Salt flat Salt flat Salt flat Flat-floored bottoms of interior desert basins which do not qualify as Wetland. Most of them
are in the dry Puna, Atacama desert and north-western Argentina.

23 Sea water Sea water Sea water Zone seaward of the lowest tide limit.
24 No data No data No data Pixels with no satellite data.
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photographs between 1999 and 2006, served as reference data. Most
original maps were digitized by experienced local experts and did not
undergo formal accuracy assessment, but in the few cases 80 to 85%
overall accuracy was estimated. Specifically, national land cover classi-
fications of Perú (INRENA, 2000; 31 classes), Brazil (PROBIO, 2004;
between 28 and 81 classes depending on the region), Bolivia (Navarro
& Ferreira, 2007; 1903 classes), Central America (World Bank &
CCAD, 2000; 197 classes), México (INEGI, 2005; 175 classes), Colombia
(IDEAM et al., 2007; 26 classes), Chile (CONAMA, 2002; 127 classes),
and regional land cover classifications of Argentina (Ayesa et al., 2002;
Guerschman et al., 2003; CRPS INTA, 2004; SADS, 2005; between 5
and 62 classes depending on the region) were used. Regional experts,
all members of the SERENA network, translated the maps to the
SERENA legend. We merged all translated reference maps, reprojected
to the LAEA projection, and gridded to a cell size of 500 m matching
the MODIS data. The area covered by this reference map represented
78.8% of the total land to be classified. In the following reference data
were needed for three tasks: 1) to obtain training samples distant
from land cover boundaries, 2) as an a priori estimate of the expected
area of each class, and 3) for comparison to classmembership estimates.

2.3.2. Sample selection and class assignment
For SA and Central American countries a random sample strategy

was applied with samples at least 5000 m apart and initial class assign-
ment corresponding to the reference map. For Mexico such a sample
set already existed from the NALCMS mapping effort (Colditz et al.,
2012). Each sample was gridded to 500 m matching all other data

sources. Although recent studies for small regions and limited number
of classes also showed the potentials of using mixed pixels for classifier
training (Foody & Mathur, 2006; Hansen, 2012), most supervised clas-
sifications over large regions with many classes build upon homoge-
nous and high-quality training data (Colditz et al., 2012; Friedl et al.,
2010). Therefore, all samples that did not coincide with the reference
map within a 3×3 kernel (vicinity analysis) were excluded. This
approach ensures sampling away from land cover boundaries and in-
creases the likelihood of sampling in homogeneous areas. The required
number of at least 100 samples per class could not be extracted in SA
for both needleleaf forest classes and temperate broadleaf deciduous
forest; in their case heterogeneous samples were also used. On average,
this vicinity analysis for sample data reduced the total number of po-
tential samples by approximately 50%. At the same time this automated
selection procedure ensures that samples are well-distributed spatially
with an appropriate representation of multi-modal frequency distribu-
tions of spectrally and temporally diverse classes (Colditz et al., 2011).

For all samples outside Mexico, interpreters (all members of the
SERENA network) assigned the final class for classifier training. The
local expertise and the availability of high spatial resolution imagery
via Google Earth© and other locally available and temporally corre-
sponding higher spatial resolution image sources such Landsat 5TM
and 7ETM+, SPOT 5 HRG and the China–Brazil Earth Resources
Satellite program (CBERS) were extremely valuable at this step for
the correct interpretation of the sample set. It should be noted that
this last step in final class assignment makes the training set indepen-
dent from potential errors in the reference data which were only used
for initial class assignment. For Mexico the sample data are based on
actual field observations or were digitized from high spatial resolu-
tion images and Google Earth© (Colditz et al., 2012) and were not
revisited. Table 3 (columns for full set of training samples) shows
for each mapping frame (CAC and SA) the number of training samples
for every class.

2.3.3. Sub-sampling strategies
Differences in sample size among classes are a controversial issue

in supervised image classification. Some studies recommend equalized
sample sizes among all classes and others recommend larger sizes for
classes with larger area or wider spectral distribution in feature space
(Borak & Strahler, 1999; Colditz et al., 2011, 2012; Friedl et al., 2002;
Hansen et al., 2000). However, it remains unclear how the sample
sizes should be distributed among classes and what objective criteria

Table 3
Number of training samples for each land cover class in CAC and SA, generated by vicinity analysis (full set) and sub-sampling according to expected area.

Code Class Full set of training
samples

Sub-sampled set of training
samples

CAC SA CAC SA

1 Tropical broadleaf evergreen forest 2387 8626 875 2020
2 Tropical broadleaf deciduous forest 996 1055 392 200
3 Sub-tropical broadleaf evergreen forest NA 1094 NA 141
4 Sub-tropical broadleaf deciduous forest 367 650 78 42
5 Temperate broadleaf evergreen forest NA 470 NA 79
6 Temperate broadleaf deciduous forest 1091 85 272 85
7 Sub-tropical needleleaf forest 150 38 80 10
8 Temperate needleleaf forest 1269 21 221 7
9 Mixed forest 1408 NA 490 NA
10 Tropical shrubland 503 2232 485 610
11 Sub-tropical shrubland 2270 1430 2270 72
12 Temperate shrubland 1354 1249 220 318
13 Tropical grassland 365 530 155 464
14 Sub-tropical grassland 250 441 110 117
15 Temperate grassland 719 534 461 192
19 Barren land 432 1490 40 189
20 Cropland 30,513 2466 2498 468
21 Wetland 622 336 136 83
Total 44,696 22,746 8783 5097

Note: NA…not mapped in this mapping frame.

Table 2
Quality flags and settings for high data quality observations.

Quality flags Quality setting

Cloud state Clear
Cloud shadow No
Land/water mask Land
Aerosol quantity Climatology/low/average
Cirrus detected None
Internal cloud algorithm No cloud
Internal fire algorithm No fire
MOD35 snow/ice No
Pixel is adjacent to cloud No
BRDF correction performed No
Internal snow algorithm No
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can be used. For instance, Colditz et al. (2011) suggested relating the
sample size of each class to the expected area proportion obtained
from a reference map.

In this study the ratio between the samples for each class i and the
expected area proportion of that class was calculated (Eq. (1)).

ratioi ¼
samplesi
areai

: ð1Þ

The smallest ratio obtained with (Eq. (1)) will ensure sufficient
samples for each class. To obtain the number of samples proportional
to the expected area, the class with the smallest ratio is multiplied by
the area of each class (Eq. (2))

samples proportionalð Þi ¼ min ratioð Þ � areai: ð2Þ

Applying Eqs. (1) and (2), the total number of samples was reduced
to 5097 for SA and 8783 for CAC. Table 3 (column for sub-sampled set
of training samples) shows the number of samples proportional to the
expected area for each class.

For CAC there is an extreme bias of samples for cropland com-
pared to all other samples, and in Colditz et al. (2012) sub-sampling
by sample source was deemed useful to limit the cropland extent in
the final map. 28,276 cropland samples originate from two sources
(COLPOS, 2005; PROCEDE, 2006), focusing on very different regions
and types of cropland, and excluding the one or the other limited
the samples to 24,921 and 7829, respectively.

2.4. Classifier

The SERENA land cover product was produced using a supervised
ensemble classification algorithm. The base algorithm is a decision
tree (C5.0; Quinlan, 1993), invoked with 10-folded boosting to im-
prove the accuracy (Freund & Schapire, 1996; Friedl et al., 1999;
McIver & Friedl, 2001; Quinlan, 1996; Schapire et al., 1998). Boosting
iteratively improves the classifications by assigning weights to classes
incorrectly classified in the previous iteration. For the SA mapping
frame four runs with different input variables (time series and ancil-
lary data or metrics and ancillary data) and samples sets (vicinity
analysis or sub-sampled proportional to expected area, see Table 3)
were generated. For CAC eight runs with different feature sets
(same as for SA) and sample sets (vicinity analysis, sub-sampled pro-
portional to expected area, exclusion of cropland samples by sources
COLPOS or PROCEDE) were produced. For each run, i.e. a specific
feature-sample data combination, C5.0 decision trees with 10-folded
boosting were generated and applied to the feature set. Classically, the
class of the dominating number of samples is assigned to each leaf,
but most leaves are not pure, and in particular stopping and pruning
were applied to prevent overfitting. Therefore each leaf contains class
frequencies (Quinlan, 1996), which can be interpreted as proportional
class estimates (Colditz et al., 2012). In a first instance class frequencies
of each leaf were stored, and for all boosted trees the proportional
estimate of each class was calculated. The class membership estimates
for each pixel the proportion of every class. In a second step, member-
ship estimates of all runs (four for SA, eight for CAC) were averaged.
Finally, class memberships of all runs were transformed into a discrete
map by assigning the pixel to the class with the highest class member-
ship (majority rule). A confidence estimate by pixel for the discretemap
is provided, which is defined as the membership (proportion of class)
associated with the pixel's assigned majority class in the discrete map.

2.5. Masks generation and map finalization

Classes Water, Permanent ice and snow, Urban area, and Salt flat
were generated as masks and superimposed on to the final classifica-
tion. The water mask was obtained from the Global Raster Water

Mask (Carroll et al., 2009) that uses the SRTM Water Body Data
(SWBD) in combination with MODIS 250 m data. The permanent ice
and snow mask was derived from the Normalized Difference Snow
Index (NDSI) (Salomonson & Appel, 2006), which is defined as the dif-
ference of reflectance observed in a visible band (MODIS band 4) and
a short-wave infrared band (MODIS band 6) divided by the sum of
both bands. The urban area mask was derived from the Defense Mete-
orological Satellite Program–Operational Linescan System (DMSP-OLS)
Version 4 Nighttime Lights Time Series of 2008 with 30 arc sec
(approximately 1 km) of spatial resolution (NGDC, 2012). We applied
a threshold of >86%, which according to Small et al. (2005) is useful to
detect lighted built-up areas. Class Pan, Brackish/Saline Wetland was
extracted from the Global Lakes and Wetlands Database (GLWD-3,
Lehner & Döll, 2004) and labeled Salt flat in the SERENA map.

A minimum mapping unit (MMU) of 100 ha (four connected
500 m MODIS pixels using 8-neighbor rule, i.e. all surrounding cells)
was applied to the final discrete map to remove remaining noise
patterns. The MMU does not affect the spatial resolution (it remains
at 500 m) but defines a minimum area of the smallest patch to be
mapped.

For approximately 0.7% of the study area we had no cloud-free
observation during the entire period of 2008. Those areas are mainly
located at the windward side of the Andes cordilleras in tropical
regions of Colombia, Ecuador, and Peru as well as the Patagonian
portion of Chile. Still, we were able to classify these pixels quite well,
i.e. the class coincided with surrounding pixels with valid satellite
observations, despite only the ancillary data provided actual observa-
tions (all spectral data contained a fill value). An additional “No data”
mask will also be made available to the user community when the
digital data will be released.

2.6. Accuracy assessment and membership comparison protocol

The accuracy assessment of the final discrete land cover map was
accomplished with an independent set of validation sites. Protocols
for assessing the accuracy of discrete maps, computed from the confu-
sion matrix, e.g. user's, producer's, and overall accuracy, have been
well established and described in the literature (Congalton & Green,
2009; Foody, 2002; Strahler et al., 2006).

The first step in the generation of the validation sample set was
the determination of the sample size per class. In practice, the num-
ber of samples is limited by the operational constraints of a study
and often represents a compromise between the need to obtain a pre-
cise measurement and the requirement to remain efficient and able to
process all samples properly.

In this study the sample size was estimated with the multinomial
distribution function (Congalton & Green, 2009) resulting in a total of
at least 830 samples for CAC and 877 samples for SA (95% confidence,
precision of 5%, 16 classes and 39.08% area coverage of largest class in
CAC, 17 classes and 45.6% area coverage of largest class in SA). Based
on these theoretical estimates 50 sample pixels per class were random-
ly distributed based on the classified map to assess the accuracy of dis-
crete maps for CAC and SA separately. Fig. 2 shows the spatial
distribution of validation samples per class. For each sample a polygon
of the size of the corresponding 500 m MODIS pixel was generated.
Each sample was analyzed using fine spatial resolution data (30 m
Landsat 5TM and 7ETM+, 10 m SPOT 5 HRG, and 1–30 m Google
Earth) as close as possible to 2008, and SERENA network experts
assigned a primary label. In many cases the heterogeneity of the land-
scape complicates or impedes the assignation of only one reference
label, and in this case the analyst also assigned an alternative label
(Latifovic et al., 2012; Sarmento et al., 2009; Zhang & Foody, 1998;
Zhu et al., 2000). The error matrix with raw counts was transformed
to area-weighted estimates (Card, 1982) from which user's, producer's
and overall accuracy were calculated.
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For six sites the classification membership estimations were com-
pared to reference memberships. As a baseline, vector maps at the
scale of 1:250,000 were rasterized to 25 m cell size matching the
grid of the land cover data. Next, for each corresponding 500 m cell
the proportion of each class was calculated from the 25 m reference
data. This data set served for comparison with the memberships
obtained from the classification process. As a difference measure we
computed for each pixel the Root Mean Square Error (RMSE) where
R is the reference membership, C is the classification membership
and K is the number of classes.

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XK

l
::¼1

Ri−Cið Þ2

K

vuuuut
: ð3Þ

3. Results and analysis

3.1. Discrete land cover map analysis

The classification as a discrete map (majority rule of class mem-
berships, superimposed masks for classes Water, Urban area, Perma-
nent ice and snow, and Salt flats, and MMU of 100 ha) is depicted in
Fig. 3. The inset in Fig. 3 shows a close up of deforestation patterns
in the southern Brazilian Amazon region that is still visible at 500 m
spatial resolution. The site is within the arc of deforestation and
indicates the transformation of forest into cropland and rangeland
for cattle (Pacheco, 2012).

Fig. 3 presents next to the class names the area proportions in
Mio ha (million hectares) and percentage including classes that were
superimposed as masks. Dominating land cover classes in LAC are trop-
ical broadleaf evergreen forest (822.6 Mio ha, 40.1%) and cropland

Fig. 2. Spatial distribution of independent validation samples used for accuracy assessment.
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(362.6 Mio ha, 17.7%), followed by tropical and sub-tropical shrubland
(165.8 Mio ha, 8.1% and 111.9 Mio ha, 5.5%, respectively). Tropical
and temperate broadleaf deciduous forest, needleleaf forests, and wet-
land are the automatically mapped classes with the smallest represen-
tation in the map, occupying less than 1% of LAC. Classes Urban area,
Permanent snow and ice and Salt flat, that were superimposed as
stable masks, make up less than 0.8% of the total area. The confidence
map of the discrete land cover classification (Fig. 3) shows the
highest values for the Amazon region, in the coastal plain along the
Gulf of Mexico and in northwesternMexico. Intermediate confidence
values were found for the shrubland–grassland–cropland region of
eastern Brazil to Patagonia as well as the interior of Mexico and Central

America. Lowest confidences are located in the northern and central
Andes.

Table 4 (columns for discrete classes) shows the area and percent-
age of each automatically classified class for the full map and pixels
with at least 50% and 75% confidence. The area and percentage are
different from Fig. 3, because we only analyze the 18 classes that
were mapped by the classification process and without applying a
MMU. Fig. 4 depicts for each class the proportional decrease of area
with increasing classification confidence. The decrease is expressed in
percent with respect to the area of each class at confidence 0 (no confi-
dence threshold). The total area with map confidences equal or higher
than 50% and 75% is 79.8% and 51.0%, respectively, indicating that a

Fig. 3. Discrete map of Latin America and the Caribbean (LAC) andmap confidence. Note: Classes Water, Urban area, Permanent ice and snow, and Salt flat were superimposed using
masks. The area in Mio ha and % were calculated from the LAC map with a minimum mapping unit of 100 ha (4 connected MODIS pixels, 8-neighbor rule). The close-up depicts
a zone of forest to agriculture transformation in the arc of deforestation in the southern Amazon of Brazil (see red box). Blue boxes indicate the sites for membership analysis
(see Fig. 6). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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fifth part of the study area is not or only just dominated by the assigned
class (i.e., confidence b50%). Some classes show extreme cases of
decrease in area for higher confidences (see Fig. 4), including “Temper-
ate broadleaf deciduous forest” (96.4% for the 75% confidence), “Sub-
tropical needleleaf forest” (99.9%), and “Temperate grassland” (96.6%).
Most of these classes also have a very small total area (Table 4). This
suggests that classes with a small area proportion likely also have a
lower confidence and reflects the mixed pixel issue. On the other
hand, plots in Fig. 4 also show that classeswith amoderate area propor-
tion, e.g. barren and tropical grassland, have confidences above 75% for
more than 64.3% and 69.5% of their area, respectively, compared to class
cropland (three times larger area in the map) with only 39.8%.

3.2. Class membership map analysis

Class memberships of the classification for LAC are displayed in
Fig. 5. Areas where the membership is 0 are shown in white, and
memberships greater 0 to 100% are displayed in a color bar from
yellow to blue. These membership maps show spatially important

transitions among classes and zones of heterogeneous landscapes
where several land cover classes occur at the same place. These
patterns can hardly be identified with a discrete map and even the
confidence may only help to some extent. For instance, the member-
ships in Brazil indicate the transition from tropical broadleaf ever-
green forest to tropical broadleaf deciduous forest, that hardly appears
in the discrete map, and to tropical shrubland at the Atlantic coast. In
the same manner transitions are highlighted towards sub-tropical for-
est classes in southern Brazil that continue into sub-tropical shrubland
in Paraguay, northern Argentina, and Uruguay and eventually temper-
ate shrubland and grassland in Patagonia. Cropland intermingles in
many ways with all classes, shown by the widespread spatial distribu-
tion of moderate to high memberships, especially in sub-tropical and
temperate zones.

Fig. 6 depicts for six sites (for spatial location of sites see blue boxes
in Fig. 3) the RMSE between the reference and classification member-
ships. White areas indicate surfaces like cities or water where no analy-
sis was made. Summary statistics for each site are presented in Table 5.
Site Mexico, the region around Guadalajara, was thematically the most

Table 4
Area for each land cover class calculated from memberships and discrete map for entire map and pixels with at least 50% and 75% membership or confidence.

Code Class Memberships Discrete classes

Entire map 50% membership 75% membership Entire map 50% confidence 75% confidence

Mio ha % Mio ha % Mio ha % Mio ha % Mio ha % Mio ha %

1 Tr. broad. ever. f. 765.40 38.25 680.00 52.45 609.74 64.94 819.62 40.96 753.27 47.17 640.99 62.86
2 Tr. broad. decid. f. 60.39 3.02 7.04 0.54 4.24 0.45 14.97 0.75 9.45 0.59 4.95 0.49
3 Sub-tr. broad. ever. f. 63.48 3.17 28.72 2.22 15.95 1.70 59.02 2.95 39.78 2.49 19.20 1.88
4 Sub-tr. broad. decid. f. 44.60 2.23 20.76 1.60 6.89 0.73 43.93 2.20 30.64 1.92 8.56 0.84
5 Te. broad. ever. f. 19.40 0.97 12.60 0.97 6.67 0.71 24.32 1.22 17.41 1.09 8.11 0.80
6 Te broad. decid. f. 15.89 0.79 2.51 0.19 0.27 0.03 9.61 0.48 4.10 0.26 0.34 0.03
7 Sub-tr. needle. f. 4.69 0.23 0.13 0.01 0.00 0.00 0.71 0.04 0.22 0.01 0.00 0.00
8 Te. needle. f. 9.15 0.46 3.53 0.27 1.80 0.19 6.37 0.32 4.94 0.31 2.19 0.21
9 Mixed forest 15.95 0.80 8.26 0.64 2.80 0.30 18.13 0.91 12.19 0.76 3.40 0.33
10 Tr. shrubland 163.05 8.15 73.60 5.68 14.88 1.59 166.01 8.30 112.98 7.08 18.69 1.83
11 Sub-tr. shrubland 119.95 5.99 59.47 4.59 38.65 4.12 112.90 5.64 77.82 4.87 43.43 4.26
12 Te. shrubland 92.27 4.61 37.74 2.91 9.66 1.03 90.87 4.54 58.26 3.65 12.04 1.18
13 Tr. grassland 80.17 4.01 52.27 4.03 44.24 4.71 70.41 3.52 61.66 3.86 48.91 4.80
14 Sub-tr. grassland 46.19 2.31 9.30 0.72 2.83 0.30 31.75 1.59 14.17 0.89 3.50 0.34
15 Te. Grassland 69.42 3.47 20.12 1.55 1.92 0.20 68.09 3.40 33.82 2.12 2.34 0.23
19 Barren land 82.68 4.13 64.52 4.98 53.18 5.66 90.46 4.52 76.30 4.78 58.17 5.70
20 Cropland 316.60 15.82 211.50 16.31 123.66 13.17 360.42 18.01 284.08 17.79 143.28 14.05
21 Wetland 31.84 1.59 4.42 0.34 1.50 0.16 13.52 0.68 5.74 0.36 1.67 0.16
Total 2001.12 100 1296.49 100 938.90 100 2001.12 100 1596.85 100 1019.78 100

Note: tr…tropical, sub-tr…sub-tropical, te…temperate, needle…needleleaf, broad…broadleaf, ever…evergreen, decid…deciduous, f…..forest.

Fig. 4. Area of each land cover class in LAC as a function of the classification confidence. Note: The results are computed for 18 automatically classified land cover classes and area
was calculated from the discrete map. The decrease is expressed in percent with respect to the area of each class at confidence 0 (no confidence threshold).
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diverse site with 12 land cover classes, and topographically most com-
plex was site Bolivia at the front range of the Andes. Both sites show
the highest mean RMSE with values above 15%. The site in northern
Argentina was spatially complex with many small patches of different
land use. The site in Chile around the city of Concepción indicates that
the difference depends on the actual land cover class with higher dis-
agreements for agricultural and pasture land use of the Central Valley
and lower differences in the mountainous forests. Similar patterns
are shown for the site in Colombia (Northeast of Bogotá) with higher

differences in the Eastern Andean range. The lowest differences
(mean RMSE of 6.6%) were found for the site in Brazil, where lines of
higher differences indicate the deforestation patterns of the tropical
broadleaf forest. This analysis of case studies indicates that the classifi-
cationmembership estimates to a high degree the spatial heterogeneity
on the ground and can therefore be seen as ameasure to describemixed
pixels. As expected, the magnitude of the difference between classifica-
tion and reference memberships is a function of thematic and spatial
complexity of the landscape.

Fig. 5.Membership estimates for each land cover class in LAC. Note: The results show the 18 automatically classified land cover classes. Areas in white indicate membership value 0.
Transitions from colors yellow to blue showmembership values of greater than 0 to 100%. (For interpretation of the references to color in this figure legend, the reader is referred to
the web version of this article.)
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Based on the analysis above, it appears that membership is related
to the area of each pixel occupied by that cover type. Following this
logic, we assumed that for each land cover class the total area is
the sum of the membership values times the area of a pixel (Table 4,
columns for Memberships; Chen et al., 2010; Fisher, 2010; Fonte &
Lodwick, 2004; Leyk & Zimmermann, 2007; Woodcock & Gopal, 2000).
There are notable differences when comparing the estimated class area
derived from the discrete map and the membership approach (class
percentage times pixel area). For instance, tropical broadleaf evergreen
forest occupies an area of 819.62 Mio ha according to the discrete classi-
fication and only 765.40 Mio hawhen calculated from thememberships.
The reverse pattern is shown for temperate broadleaf deciduous forest
with 9.61 Mio ha in the discrete map and 15.89 Mio ha from the mem-
berships. In general, dominating classes such as tropical broadleaf ever-
green forest and cropland present smaller total areas when calculated
frommemberships. On the other hand,many scarce classes (e.g. temper-
ate broadleaf deciduous forest, both needleleaf forest classes, and wet-
land) show substantial increments, with class mixed forest as the only
notable exception. Considering only class memberships above 50% and
75%, respectively, areas of scarce classes decrease dramatically, which

subsequently results in a relative increase in area proportion of dominant
classes with relatively more pixels with higher memberships, in particu-
lar tropical broadleaf evergreen forest.

Fig. 7 presents the area as a function of class memberships, thus
the largest membership will have the smallest area and the smallest
membership the largest. This representation is similar to Fonte and
Lodwick (2004) and Leyk and Zimmermann (2007) and is also used
in Fisher (2010), but we show the graphs with reversed axes, because
the alpha cut (threshold level) is made at the memberships (x-axis,
independent variable) that yields area (y-axis, dependent variable).
The graphs are similar to Fig. 4 (area as a function of classification
confidence) only that a minimum membership is required, and the
decrease is expressed in percent with respect to the area of each
class at membership 0 (no membership threshold). The graphs
show that classes with high memberships such as tropical broadleaf
evergreen forest and barren have relatively small decreases in area
for higher alpha cuts. On the other extreme there are classes that
almost never have high memberships, e.g. sub-tropical needleleaf
forest and tropical broadleaf deciduous forest. In this respect the
widespread spatial distribution of small memberships for class tropi-
cal broadleaf evergreen forest (Fig. 5) does not substantially impact
the reduction in (membership) area in Fig. 7, because the high mem-
berships in the Amazon region make up the most of the area calcula-
tion. On the other hand, a similar widespread spatial distribution for
class tropical broadleaf deciduous forest results in an enormous re-
duction because even lower alpha cuts reduce a noticeable part of
the area thus the total area is substantially impacted by the vast
area with low memberships relative to few pixels with high member-
ship estimates. Also, the total area decreased more rapidly when
using the area of memberships (64.8% of the study area have a mem-
bership above 50%, Fig. 7) compared to confidences (79.8% of the area
with a confidence above 50%, Fig. 4).

Fig. 6. Root mean square error of each pixel between reference and classification membership estimates. Areas in white indicate pixels with no analysis. For site location see blue
boxes in Fig. 3.

Table 5
Statistics of the root mean square error between reference and classification member-
ship estimates for pixels within each test site. For site location see blue boxes in Fig. 3.

Minimum Maximum Mean Standard deviation

Mexico 0.32 29.70 15.04 7.38
Colombia 0.38 30.48 11.20 7.98
Brazil 0.21 30.51 6.61 7.75
Bolivia 0.61 29.99 15.73 5.26
Argentina 1.01 32.60 13.95 4.86
Chile 0.05 29.21 11.84 7.20
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3.3. Accuracy assessment results

The accuracy assessment of the final discrete land cover map was
accomplished with an independent set of validation sites. Table 6 re-
ports the area-weighted error matrix for the primary reference labels
and user's, producer's and overall accuracies for all automatically gen-
erated classes (classes that were not superimposed as masks in post
processing) of the discrete maps for CAC, SA, and LAC.

Accuracies for LAC were derived by combining the raw validation
sets of CAC and SA and calculating an area-weighted matrix for the
LACmapping frame. Accuracies from that error matrix for the primary
reference labels yield for LAC an overall accuracy (OA) of 84.2% and a
Kappa coefficient of 0.80. Broadleaf forest classes depict confusion
among each other, in particular between evergreen and deciduous
vegetation, and additional confusion with mixed forest, tropical
shrublands, and cropland. The confusion with cropland is augmented
by the high area proportion of that class, which increases weights of
its misclassified samples. This is particularly evident for sub-tropical
coniferous forest with a producer's accuracy of only 5% although
only three samples were misclassified as cropland. Shrublands and
grasslands show class-specific accuracies above 70%. Confusion is
mainly among each other with errors between shrubland-grassland
for the same climatic region (tropical, sub-tropical, or temperate)
and cropland. Due to the different spectral responses, barren was
mapped with accuracies above 84%. Cropland also shows reasonable
class-accuracies above 77%. Wetlands depict a low producer's accura-
cy of 24% due to some misclassifications with tropical broadleaf ever-
green forest in the Amazon.

The overall accuracies (Kappa coefficients) of the primary refer-
ence labels for the individual mapping frames of the SA and CAC are
81.4% (0.76) and 81.1 (0.77), respectively. In the confusion matrix
of SA many of the patterns described above were repeated, including
the confusion among tropical broadleaf forests and with tropical
shrubland and wetland, as well as the confusion of shrubland and
grassland classes within their climatic zone. Besides general patterns
described for LAC, in CAC there are notable confusions between trop-
ical and sub-tropical deciduous broadleaf forests and between tem-
perate deciduous broadleaf forest and mixed forest. Cropland shows
confusion with all higher biomass classes (tropical broadleaf forests,
subtropical needleleaf forests, and tropical and sub-tropical shrubland
and grassland). In case of ambiguity in reference label assignment the

alternative label was also considered for correctly classified samples.
In this case the overall accuracies increased to 85.1% (CAC), 91.8%
(SA), and 91.2% (LAC).

Fig. 8 illustrates the OA for the primary reference label as function
of map confidence for validation sites. For LAC, OA starts to increase
for map confidences higher than 15%. For a map confidence of at
least 50% the OA reaches 85.4% (81.9% of validation data) and for
the 75% confidence threshold 88.8% (39.5% of validation data). Similar
plots for the individual mapping frames of CAC and SA shows 81.4%
and 82.2% overall accuracy for 50% the confidence threshold and
86.5% and 83.5% for at least 75% confidence. The unsteady curve for
higher confidences is due to the smaller validation samples size, for
that a few incorrectly classified but high confidence samples have a
higher impact and cause variability of the OA.

4. Discussion

4.1. Comparison to other available products

The map presented in this paper reveals the status of land cover in
Latin America and the Caribbean for the year 2008. It provides detailed
information with 22 thematic classes that were mapped at 500 m
spatial resolution and took into account spectral, temporal, and ancil-
lary information. It therefore can be seen in a line with historic and
on-going global mapping projects such as GLC2000 and the South
America mapping region (Bartholomé & Belward, 2005; Eva et al.,
2004) with 22 classes based on 1 km SPOT VGT, the annual MODIS
land cover maps (MOD12, Friedl et al., 2010) with 17 classes (IGBP
legend) at 500 m, and Globcover of 2005/06 and 2009 (Bicheron et
al., 2008) with 22 classes based on 300 m MERIS data. Other recent
land cover studies at the extent of South America with 300 m MERIS
(9 classes; Hojas Gascon et al., 2012), Central America with 500 m
MODIS (9 classes; Giri & Jenkins, 2005), and Latin America and the
Caribbean with 250 m MODIS (8 classes; Clark et al., 2012) derived
maps at the same or finer spatial resolution but do not share the
same thematic detail. Besides the specific aims of these studies, a rea-
son for less classes may be also related to less spectral information by
only using the EVI (Enhanced Vegetation Index), red, near infrared,
and one short-wave infrared band of MOD13 data (Clark et al., 2012)
and the FAPAR (Fraction of Absorbed Photosynthetically Active Radia-
tion), and four spectral bands in the red, red edge and near infrared

Fig. 7. Area of each land cover class in LAC as a function of membership. Note: The results are computed for 18 automatically classified land cover classes and area was calculated
from memberships. The graphs are similar to Fig. 4 (area as a function of classification confidence) only that a minimum membership is required, and the decrease is expressed in
percent with respect to the area of each class at membership 0 (no membership threshold).
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(Hojas Gascon et al., 2012). Giri and Jenkins (2005) only used three
dates of images that may not be sufficient to capture the variety of phe-
nological patterns in this diverse region.

The use of ancillary information (elevation, precipitation, and
temperature) helped to improve the final results. Tests from the
NALCMS study over Mexico (Colditz et al., 2011) and also initial
tests for South America showed substantial improvements of the
accuracy in the range between 10 and 15%. This is different from

Clark et al. (2012) who explored elevation and slope auxiliary vari-
ables in classifications and found no improvement. We also found
that ancillary data result in locally more stable results and mapping
small areas, where no satellite data were available (remaining clouds
over entire compositing period), to be spatially consistent with the
surrounding area. We are aware of the potential risk that ancillary
data imply for change detection, because these variables are used by
the classifier but do not change over the years. We recommend a

Table 6
Area-proportional error matrices derived from the primary label for mapping frames Central America and the Caribbean (CAC, upper row), South America (SA, middle row), and
Latin America and the Caribbean (LAC, bottom row).

Mapped class
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 19 20 21 Users

1 Tr. broad. ever. f. 10.9 NA NA 100
37.4 0.9 NA 1.8 1.8 3.6 82.0
37.3 0.4 0.8 0.8 1.6 91.0

2 Tr. broad. decid. f. 3.3 NA 0.7 NA 0.1 0.2 0.2 74.0
0.0 0.1 NA 0.0 0.0 0.0 62.0
0.1 0.5 0.1 0.0 0.0 0.0 0.0 68.0

3 Sub-tr. broadl. ever. f. NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA
2.3 0.9 NA 0.1 0.1 68.0
2.0 0.8 0.1 0.1 68.0

4 Sub-tr. broad. decid. f. 0.0 NA 0.7 NA 0.0 0.0 0.0 0.0 90.0
0.1 2.2 NA 0.0 92.0

0.0 0.1 2.0 0.0 0.0 0.0 0.0 91.0
5 Te. broad. ever. f. NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

1.1 0.0 0.1 NA 0.2 0.0 80.0
1.0 0.0 0.0 0.1 0.0 80.0

6 Te. broad. decid.f. NA 0.2 NA 2.1 0.0 90.0
0.0 0.1 NA 0.0 0.0 54.0

0.0 0.1 0.3 0.0 0.0 0.0 72.0
7 Sub-tr. needle.f. NA NA 0.3 100

0.0 0.0 NA 0.0 0.0 50.0
0.0 0.0 0.0 0.0 87.9

8 Te. needle.f. NA NA 2.2 0.1 0.0 94.0
0.0 NA 0.0 0.0 52.0
0.2 0.0 0.1 0.0 73.0

9 Mixed f. NA 0.1 NA 1.2 0.5 4.5 0.1 0.1 0.1 66.0
NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

0.0 0.2 0.1 0.6 0.0 0.0 0.0 66.0
10 Tr. shrubland 0.3 NA NA 0.5 0.0 64.0

0.4 0.8 NA 7.7 0.2 0.2 0.2 82.0
1.6 0.3 6.1 0.2 0.1 0.1 73.0

11 Sub-tr. shrubland NA NA 21.3 0.5 0.9 94.0
0.1 NA 2.8 0.1 0.1 92.0
0.1 5.2 0.1 0.1 0.1 93.0

12 Te. shrubland NA 0.1 NA 0.2 0.3 2.0 80.0
0.2 NA 3.8 0.4 0.4 0.1 78.0

0.1 0.2 0.2 3.6 0.2 0.2 0.0 79.0
13 Tr. grassland NA NA 0.0 0.4 98.0

NA 0.7 2.9 0.1 0.2 0.1 72.0
0.3 0.0 3.0 0.0 0.1 0.0 85.0

14 Sub-tr. grassland NA NA 0.0 0.1 0.0 76.0
NA 0.3 1.4 0.1 80.0

0.2 1.2 0.0 0.1 78.0
15 Te. grassland NA 0.1 NA 0.3 0.2 0.1 3.2 82.0

0.1 NA 0.9 1.9 0.4 58.0
0.0 0.0 0.1 0.6 0.0 2.4 0.2 70.0

19 Barren land NA NA 0.6 0.0 98.0
NA 0.2 0.1 4.7 0.1 92.0

0.1 0.0 4.3 0.0 0.0 95.0
20 Cropland 2.3 0.8 NA NA 0.8 2.3 0.8 0.8 1.6 1.6 0.8 27.4 70.0

0.9 0.3 0.3 NA 0.3 0.3 0.3 12.4 84.0
0.5 0.2 0.5 0.2 0.2 0.2 0.5 0.2 0.2 0.5 0.2 0.4 0.2 0.2 13.9 77.0

21 Wetland 0.0 NA NA 0.1 0.0 0.0 0.1 0.0 1.5 84.0
0.0 NA 0.0 0.0 0.4 86.0

0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 85.0
Producers 80.4 80.8 NA 35.4 NA 48.7 10.2 80.4 85.0 35.3 88.9 84.4 20.4 19.1 78.7 37.3 99.8 97.8 81.1

98.9 5.9 68.3 63.1 73.4 31.4 100 3.1 NA 73.7 79.3 72.6 93.8 95.3 83.2 76.8 81.9 10.4 81.4
94.4 35.0 76.0 60.9 78.2 35.7 5.5 65.8 74.7 80.5 79.7 77.6 84.4 88.7 86.3 83.6 90.9 24.0 84.2

Note: Abbreviations: tr…tropical, sub-tr…sub-tropical, te…temperate, needle…needleleaf, broad…broadleaf, ever…evergreen, decid…deciduous, f…forest. Cells with no samples
have zero value. Cells with 0.0 in the matrix indicate a very small proportion. NA indicates classes that were not mapped in this mapping frame. The overall accuracies for CAC, SA,
and LAC are shown in bold in the lower right corner.
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careful evaluation if ancillary data help to improve the map in terms
of accuracy and spatial coherence and their potential negative im-
pacts on detecting change.

A difference to many other mapping projects (Bicheron et al.,
2008; Clark et al., 2012) is also that we did not use a regionalized
approach. Mapping zones are frequently used to maximize spectral
discrimination between areas with comparatively uniform ecological
characteristics. That helps the classifier to obtain better results for
that region and this, in turn, should result in a more accurate map
(Bauer et al., 1994; Homer et al., 1997, 2004; Lillesand, 1996; Reese
et al., 2002). Regionalization, however, may also complicate mapping,
because some classes may not be mapped in all regions (although
they exist) due to insufficient training data. Additional difficulties
arise in land-cover mismatch along the boundaries between mapping
zones, producing false edges in the final land cover map (Clark et al.,
2012; Colditz et al., 2012). Experiences from the NALCMS project for
mapping Mexico (Colditz et al., 2012), one of the ecologically most
diverse countries of the world, showed little improvement obtained
from regionalized classifications. In fact, mapping was more difficult
due to the issues described above, and initial tests for mapping CAC
resulted in similar problems. The decision to divide the study area
into two map frames (CAC and SA) was owed to practical reasons,
because the individual map frames are smaller, and thus more man-
ageable and faster to process. The workload was divided between
the available computing facilities in Mexico (National Commission
for the Knowledge and Use of Biodiversity, CONABIO) and Argentina
(National Institute of Agricultural Technology, INTA and the Patago-
nian National Research Center, CENPAT). In this manner the project
also took advantage of local expert knowledge in each sub-region
and limited traveling costs by still ensuring a consistent continental
product following common mapping guidelines. Merging the land
area was applied at the Isthmus of Darien along the border between
Panama and Colombia. In this shortest-possible transect the area is
mostly tropical evergreen broadleaf forest, which is easily mapped,
and the landscape has less class heterogeneity, resulting in no visible
false land cover boundaries.

It should be noted that class mixed forest was only mapped for
CAC and classes sub-tropical broadleaf evergreen forest and temper-
ate broadleaf evergreen forest only for SA. The restriction of these
classes to only a portion of the study area results from their too
small spatial extent to collect sample data with sufficient confidence.

Similar issues were noted in SA for class sub-tropical needleleaf
forest with 21 training samples (see Table 3) that resulted in only
425 ha and temperate needleleaf forest with 38 training samples and
48,925 ha. Albeit these classes are rather scarce in SA clearlymore train-
ing sites are needed to appropriately represent those classes in feature
space (Hansen et al., 2000). Other classes with little spatial extent
(urban area, permanent ice and snow, salt flats) were superimposed
with masks that were derived from other data sets. This is a common
approach for large-area mapping (Friedl et al., 2010) and limits confu-
sion with spectrally similar classes such as barren or sparse grassland.

4.2. Discrete map and map confidence

At first sight the distribution of thematic classes shows the
expected spatial patterns with tropical forests in the Amazon, tropical
grasslands in the Orinoco basin north of the Amazon, and tropical
shrublands in the Brazilian Cerrado. At increasing latitudes, the pro-
portion of sub-tropical classes increases and finally temperate forests
appear in southern Chile and higher altitudes in northern Mexico as
well as temperate shrubland and grassland or mixture of both in Pat-
agonia. At the same time, the map shows the hypsometric gradient
(strongly correlated with rainfall gradients), at the wind-ward side
of the central Andes in Peru and Bolivia, for instance, or in the Sierra
Madre Oriental and Occidental in Mexico. Also, some specific land use
patterns become evident as the fish-bone pattern of deforestation
areas in Rondonia in western Brazil.

Despite good accuracies the area proportion and spatial distribu-
tion of two classes, cropland in CAC and barren in SA, need further
discussion. Cropland in CAC makes up 38% of the area and is the dom-
inating class in this map frame. Large portions of the Mexican Gulf
coast, the pacific and central parts of Central American countries as
well as the islands of Cuba and Hispaniola were mapped as cropland.
A regional map of Mesoamerica (Mexico to Panama, Giri & Jenkins,
2005) classified 21.8% of that area as cropland and in the NALCMS
map of Mexico (Colditz et al., 2012) 20.2% were mapped as cropland,
compared to 34.4% and 28.9% for the respective areas in this study.
One reason for an 8.7% higher estimate of cropland area for Mexico
is likely related to the increased spatial resolution (250 m in
NALCMS) that favors the classification of a diverse class with multiple
distributions in feature space which was well described with many
training data. Thus biased sampling was noted in many studies as a

Fig. 8. Overall accuracy as a function of the classification confidence for mapping frames CAC, SA, and LAC. Note: OA…Overall accuracy, Data…Available sample data, CAC…Central
America and the Caribbean, SA…South America, LAC…Latin America and the Caribbean.
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potential reason for overestimation of one class (Colditz et al., 2011,
2012; Hansen et al., 2000). For CAC, eight runs were combined of
which only two showed a balance between the number of samples
and the expected area. In particular these balanced runs also showed
a smaller area proportion of cropland with 30.2% for CAC. However,
the bias of samples among classes towards cropland is only one part
of the explanation. The other reason is the understanding of cropland
samples that originated from the NALCMS data base (the vast major-
ity of samples for CAC). Cropland comprises managed areas that need
human activities for maintenance including all forms of herbaceous
cover used for grazing, including perennial and annual grasses
(Table 1). In particular, the latter included rangelands into class crop-
land that in other maps is usually assigned to grassland and open
shrubland. In this respect, results approximately match for compari-
sons of this map to other maps for Central America that combine
cropland, grassland and partly also open shrubland. It is also interest-
ing to note specific spatial patterns, for instance, cropland and grass-
land of the Mesoamerica map (Giri & Jenkins, 2005) and cropland of
CAC widely coincide for Central America and MOD12 IGBP and
GLC2000 classify large parts of Cuba as cropland.

The other visible overestimation is class barren in South America,
namely in southern Peru, western Bolivia, northwestern Argentina,
and northern Chile. While barren was correctly classified in the coast-
al desert zones in southern Peru and the Atacama Desert of Chile and
is also correct for many other mountainous regions in the Andes,
the class extends far into the Altiplano of Bolivia and northwestern
Argentina. However, in these high-plateaus, vegetation above tree
line and below snow line (the highest in the world) is dominated
by very open and sparse grassland known as Puna vegetation. Even
though the northern part around Lake Titicaca in the Central Andean
Wet Puna (Olson et al., 2001) was correctly classified as temperate
grassland, regions further south, known as Central Andean Dry
Puna, High Monte, Southern Andean Steppe, and patches of the Cen-
tral Andean Puna (Olson et al., 2001) were classified as barren. The
reason for the confusion could be mainly attributed to the significant
soil background signal of open grasslands that even increases for me-
dium resolution data, because locally denser grassland patches are
often smaller than the spatial resolution of 500 m. It should be
noted that other global maps also classify the Puna region largely as
barren (GLC2000), or as a mixture between sparse vegetation and
barren (Globcover) and open shrublands and barren (MOD12 IGBP).

The discrete map reflects the class of the dominant membership
estimate; hence it is easily interpretable but cannot represent land
cover diversity as compared to memberships (see below). We present
evidence that classifier confidence indicates spatially the level of dom-
inance of the assigned class. If for one pixel all classes have nearly the
same membership a value of slightly above 5.5% (18 classes) could be
sufficient to assign a pixel to the dominant class (majority rule) that
thus will have a confidence of slightly above 5.5%. There are no pixels
with 100% confidence that indicates that the classifier never mapped
one pixel with pure leafs in all runs. The graphical display of area as
a function of confidence (Fig. 4) illustrates important patterns of area
decrease that begins for most classes for confidences between 15 and
25%. Classes with many high confidence pixels show concave curves
while classes with many low confidence pixels show convex curves.
There are also many classes that have a nearly linear inverse relation-
ship with constant decreases in proportional area between confidences
around 20% to close to 100%. The analysis also showed that scattered
classes and classes with small area proportions are generally less con-
fident and decrease faster in area for higher confidences.

4.3. Class memberships of Latin America and the Caribbean

Although the discrete map is the usually requested result by deci-
sion makers and planners at the federal level and by international or-
ganizations as well as other users in the modeling community, the

memberships, in fact, contain a lot more information but are also
more difficult to interpret. Still, it is advantageous to derive member-
ship estimates, also because it is rather simple to transform those to a
discrete map. In the simplest form (as implemented in this study) the
majority rule is used, assigning the class with the highest member-
ship, but also other class-specific or regionalized rules could be devel-
oped, e.g. multiplying the memberships with a-priori probabilities.
In this sense, membership estimates provide the most flexible way
to derive a discrete, and even a customized map.

We compared the memberships as a result of the classification
against estimates of the membership from fine spatial resolution
data. The difference between memberships of all classes had an aver-
age RMSE between 6 and 15% and depended mainly on the complex-
ity of the study site. Although this result is satisfying, the analysis
has to be interpreted carefully, because there are deficiencies in the
reference data. Our sources were digitized at a scale of 1:250,000
which limit the spatial detail in terms of minimum patch size and
accuracy of polygon boundaries. This limitation has a direct effect
on the rasterized 25 m spatial resolution data that cannot represent
the actual detail on the ground. This issue cannot be further quanti-
fied with our data but a qualitative discussion for transitional zones
has been presented by Colditz et al. (2011). Unfortunately we had
no other data sources available to compare classification member-
ships to more adequate reference data and suggest future studies
that should emphasize this scale-related issue. Membership map in-
terpretation can highlight spatial patterns that cannot be revealed
in a discrete map. Under particular circumstances the confidence
may be an indicator for transitional zones (Keil et al., 2010). Member-
ship maps do not only spatially depict transitional zones that are
often related to broad-scale ecotones, such as the transition from
forest to shrubland, but also indicate landscapes that are dominated
by several classes. They may also help to better characterize mixed
pixels in landscapes with patch sizes below the spatial resolution of
the imagery (Colditz et al., 2011, 2012). In this mapping area the Pata-
gonian steppe is an excellent example for a heterogeneous landscape
where temperate grassland and shrubland coexist (Jobbágy et al.,
1996). The discrete map shows a dominance of shrubland in the
northern part and grassland in the South. Membership maps of
both classes show the broad-scale co-existence of shrubs and grass
throughout the region and their respective areas of relative dominance,
reflecting the constraints imposed by geomorphological and edaphic
factors and their effects on water availability (Paruelo et al., 2004,
2007).

A small-patch landscape, where several patches may occur within
one pixel, is typical for agricultural frontiers. Cropland shows moder-
ate memberships and thus intermingles with many other classes in-
cluding the region of the arc of deforestation in southern Amazonia,
where small-scale farming, and more importantly clearing of forests
for pasture, have historically played the most significant role in the
clearing of Amazonian forest (Kirby et al., 2006). The patterns of
class dominance were not only reflected by membership but also
remained in the discrete map showing deforestation patterns in that
region. Other examples of representing mixed landscape by class
memberships with similar mapping approaches were presented in
Colditz et al. (2011), Colditz et al. (2012), and by vegetation continu-
ous fields globally (DeFries et al., 1999) or in many parts of the world
(e.g. Hansen et al., 2008).

The analysis could suggest that the total area-estimates from
memberships are more accurate than from the discrete map. We
cannot provide a quantitative proof because of missing reference data
for comparison, but in a qualitative sense reason is given, in particular
for scarce classes with generally low memberships that hardly ever
dominate a pixel. Similar patterns were found by others, e.g. Fisher
(2010) and Chen et al. (2010). For instance the rare class sub-tropical
needleleaf forest with only 0.71 Mio ha in the discrete map yields
4.69 Mio ha when computed from memberships. The gain in area
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when using memberships can be enormous such as for tropical broad-
leaf deciduous forest (300%), sub-tropical needleleaf forest (560%), and
wetland (135%). In fact, all classes with less than 150 Mio ha (except
for temperate broadleaf evergreen forest and mixed forest) showed
an increase in area from memberships. The reason is that with the
fuzzy to discrete class conversion the fractional detail is lost, and only
the class with the highest membership is considered (“the winner
takes it all”). This transformation affects to a higher degree classes
that mainly occur in co-existence with others and show little domi-
nance. The exception of temperate broadleaf evergreen forest is owed
to its local occurrence in southern Chile and highest elevations in the
tropical Andes, where it dominates over other classes which results
in many discrete pixels and few areas where it was overruled. Mixed
forest was only mapped in CAC and by its definition represents a
mixed class that occurs in co-existence with others and often barely
dominated the pixel.

Plots of the decrease of fuzzy area as a function of membership
show three broad categories of curves. Concave curves are shown
for classes that have many pixels with high memberships. That may
be achieved by a large area of high confidence pixels and the wide-
spread existence of pixels with low memberships does not impact
the reduction, such as for tropical broadleaf deciduous forest, or a
class with local occurrence and clear dominance as shown for barren.
On the other hand there are convex curves for all classes with many
pixels of low membership (e.g. sub-tropical needleleaf forest, tropical
broadleaf deciduous forest, and wetland). As noted above these clas-
ses can likely only be properly accounted for in their spatial extent
and total area using class membership estimates. The third category
form classes with a more or less linear trend of decreasing area with
increasing membership (e.g. sub-tropical broadleaf evergreen forest,
mixed forest, tropical and temperate shrubland). The slope may
vary for different alpha cuts of the membership as shown for class
temperate needleleaf forest. An initially convex curve, showing that
many pixels of lowmemberships impact the area of this spatially lim-
ited class, turns into a concave curve for higher memberships, which
indicates the relative impact of the remaining pixels with high mem-
berships in the Sierra Madre Occidental. In this respect the plots of
membership against area illustrate graphically class-specific patterns
of potential existence in a discrete map. In general terms the patterns
of classes among the three groups also correspond to the plots of map
area as a function of confidence. The only notable exception is tropical
broadleaf deciduous forest with a convex curve for memberships but
a linear decrease in confidence, which indicates that if this class was
mapped in the discrete map then the dominance was substantial.

4.4. Classification accuracy

From the analysis of Table 6 it is clear that the main source of the
error in the map arises from confusion among ecologically similar
classes. For instance, a substantial part of wetlands was classified as
tropical broadleaf evergreen forest. Both classes occur in close vicinity
to each other, e.g. mangroves, riparian areas along tropical rivers and
deltas, and are therefore difficult to discriminate. Also interesting are
confusions between shrublands and grasslands within their respec-
tive climatic zone but with little confusion among the climatic re-
gions. That result is particularly notable, because it is commonly
expected that the climate gradient introduced at level 2 of the classi-
fication scheme causes confusion among related classes (Colditz et al.,
2012). Instead, confusion in this study was higher among ecological
gradients (shrubland versus grassland or tropical shrubland versus
tropical forests) than climate. In this respect (although not tested),
the ancillary data that describe climate gradients such as precipitation
and temperature and elevation helped to discern climatic regions. On
the other hand, subtle ecological differences for shrubland–grassland
transitions and for high biomass tropical forest versus shrubland were
predicted less accurately despite the use of spectral and temporal

features. These patterns demonstrate that classification errors are large-
ly concentrated among classes that encompass ecological and biophys-
ical gradients, and that are quite similar both functionally and in terms
of their spectral–temporal properties. They also suggest that, depending
on user needs, it may make sense to improve map quality by aggregat-
ing classes in the areaswith higher errors (e.g., classes temperate shrub-
land and temperate grassland in the Patagonian Steppe).

Another source of error of the classification map could be due to
the number of available samples used to train the classifier. For exam-
ple, classes sub-tropical needleleaf forest and for SA temperate
needleleaf forest show especially low accuracies and also present a
small and fragmented distributional pattern in the map that is related
to the few training samples as mentioned earlier.

On the other hand, classes such as tropical broadleaf evergreen
forest and tropical and sub-tropical shrublands that encompass
large areas were mapped with accuracies above 80%. It has been prov-
en that the spatial pattern of the landscape influences the occurrence
of land cover classes at varying resolution and also the area estimates
derived from coarse resolution maps (Mayaux & Lambin, 1995;
Moody & Woodcock, 1994; Woodcock & Strahler, 1987; Zhao et al.,
2009). In this study, the distribution in large homogeneous patches
of tropical broadleaf evergreen forest and tropical and sub-tropical
shrublands improved the chances of pixels of being classified success-
fully. In addition, tropical broadleaf evergreen forest, that dominates
the Amazonia region, has a distinct reflectance signal, wide-spread
pattern with relatively steady ground features, and low seasonality.
These characteristics discern this class from others in satellite images
and facilitate its characterization in image classification. In a similar
way, a highly different spectral signal helped to classify barren with
high classification accuracies. The spectral signal of this land cover
type is very different from vegetated surfaces and can be particularly
well mapped for a large homogeneous area such as the Atacama
Desert.

Ambiguity in reference labeling was accounted for by allowing
for an alternative assignment. This is a common procedure, suggested
in various modifications also by Sarmento et al. (2009), Zhang and
Foody (1998), and Zhu et al. (2000) and used in a similar form
also to validate the continental NALCMS map (Latifovic et al., 2012).
We found our approach to be effective, because the polygon that
delineates the pixel could easily be superimposed over several high
resolution data sources, and at the same time indicated the area
that the analyst had to assess. In this sense assessment was carried
out at the same approximate scale (1:2500) for all sites, and hetero-
geneity was easy to interpret as it did not require confidence or
other measures that are subjective to the analyst. The overall accura-
cies increased moderately by 4.0% for CAC, 10.4% for SA, and 7%
for LAC.

As thematic detail and spatial resolution affect the land cover
heterogeneity it also defines the maximum achievable classification
accuracy (Latifovic & Olthof, 2004). Only 8.1% of the reference samples
required an alternative call, which implies significant ambiguity in
assignment and therefore is an indicator of the mixed pixel issue.
This sample-based estimate would set a theoretically achievable over-
all accuracy to 91.9% that is 7.7% higher than the estimated overall
accuracy.

5. Conclusions

This paper described the production process of a land cover map
for Latin America and the Caribbean for the year 2008 and discussed
in detail the results. It was an international effort in the framework
of the “Latin American Network for Monitoring and Studying of
Natural Resources” (SERENA) that is part of the regional RedLaTIF
network, integrated in the global GOFC-GOLD initiative. This map
with 22 classes represents an alternative land cover map to several
available products with more general or different legends (Bicheron
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et al., 2008; Clark et al., 2012; Eva et al., 2004; Hojas Gascon et al.,
2012).

The SERENA land cover for LAC has the following characteristics:

i. Use the local expertise of SERENA network members. The involve-
ment of local experts to generate training and validation data not
only ensured local relevance of the map and helped to produce the
high degree of confidence of the final product, but it also leads to
greater acceptance of the map by local communities and provides
important elements of capacity building. However, it was also a con-
siderable effort and required time and monetary resources to coor-
dinate a larger group and to find consensus among the researchers
from different fields such as engineering, geography, and biology.

ii. Apply a methodology for land cover mapping based on decision
trees using MODIS time series data. Although the resolution is
coarse, MODIS data have the advantage of high temporal resolution,
and the surface reflectance product employed in this study also
provides the necessary spectral information for detailed thematic
land cover mapping. This allowed us to calculate predictor variables
that describe vegetation phenology and spectral differences among
classes. Indeed the decision tree classifier was successful in discrim-
inating LULC classes using this spectral-temporal variable set, with-
out the operator having to select optimal predictor variables or
classifier parameters. The decision tree algorithm is non-parametric
and can handle classes with multi-modal frequency distributions
which is particularly important when mapping at broad scales, be-
cause class variance increases across environmental and anthropo-
genic gradients (Clark et al., 2012).

iii. Produce class membership estimations of land cover classes and a
discrete map with an additional layer estimating the per-pixel
confidence. Highly mixed landscapes are difficult to classify with
coarse spatial resolution data, but fractional class estimates partly
overcome these difficulties. It has been shown that membership
estimations represent the mixed pixel issue. The comparison to ref-
erence data suggests that the difference is a function of thematic
and spatial complexity. Particularly, class membership estimates
are deemed useful for mapping small and scattered classes in their
spatial extent and may improve the estimate of their total area. Al-
thoughmembership estimates would bemost appropriate to repre-
sent the intrinsic class heterogeneity of the Earth surface, which
even increases for coarse resolution data, the user community usu-
ally requests a discrete map for analysis, modeling, and decision
making. In this conversion a part of the information is lost. That
affects small and scattered classes in heterogeneous areas more
than dominant classes in homogeneous regions. The discrete map
of this study will be provided to the user community for free-of-
charge and is accompanied by a confidence layer that indicates the
potential use of the pixel assignment to the interested user. The dis-
crete map was assessed with satisfying results using common accu-
racy measures.

SERENA land cover products for LAC have high scientific relevance
and will have several applications. Available land cover information
on a broad scale is critical for understanding land surface processes
which can be related to economic, social, and environmental aspects
for sustainability. Several international organizations including IGBP
and FAO are particularly interested in products and methodologies
to automatically classify land cover and to estimate land cover change
using remote sensing data. Indeed, the implementation of carbon ac-
counting schemes, currently arduously discussed and in several Latin
American countries on-going (e.g. Panama, Paraguay and Bolivia
UN-REDD programs, REDD-PAC in Brazil), will require land cover in-
formation. In this context, this new land cover map of Latin America
and the Caribbean, developed in the framework of the SERENA pro-
ject, is a contribution to these goals but will surely need refinements
to achieve the requested detail in spatial and thematic terms as well

as the necessary accuracy. In addition, it needs to be shown that the
map, and in particular the class membership estimates, are useful to
detect change and degradation.

The methodology employed in this paper to derive training data
and to generate land cover products on the continental scale could be
applied to any other year of the MODIS dataset (2000–2012). Compar-
ing results from different years would allow checking, 1) the response
of vegetation to interannual climate variability in areas where higher
sensitivity of vegetation could be expected, e.g. semi-arid regions, and
2) the robustness of the procedure in generating similar results for
areas in which no changes in land cover are expected, e.g. core forest
areas. The role of classification confidence and membership esti-
mates for these tasks remains to be shown at the continental scale
(for country-specific analysis see Colditz et al., 2011) but may have
the potential to indicate areas of change.
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