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Abstract

In this work we study molecular dynamics simulations of symmetric nuclear and neutron star matter 
using a semi-classical nucleon interaction model. Our aim is to gain insight on the nature of the so-called 
“finite size effects”, unavoidable in this kind of simulations, and to understand what they actually affect. 
To do so, we explore different geometries for the periodic boundary conditions imposed on the simulation 
cell: cube, hexagonal prism and truncated octahedron. For nuclear matter simulations we show that, at 
sub-saturation densities and low temperatures, the solutions are non-homogeneous structures reminiscent 
of the “nuclear pasta” phases expected in neutron star matter simulations, but only one structure per cell 
and shaped by specific artificial aspects of the simulations—for the same physical conditions (i.e. number 
density and temperature) different cells yield different solutions. The particular shape of the solution at low 
enough temperature and a given density can be predicted analytically by surface minimization. We also 
show that even if this behavior is due to the imposition of periodic boundary conditions on finite systems, 
this does not mean that it vanishes for very large systems, and it is actually independent of the system size. 
We conclude that, for nuclear matter simulations, the cells’ size sets the only characteristic length scale for 
the inhomogeneities, and the geometry of the periodic cell determines the shape of those inhomogeneities.

To model neutron star matter we add a screened Coulomb interaction between protons, and perform 
simulations in the three cell geometries. Our simulations indeed produce the well known nuclear pasta, 
with (in most cases) several structures per cell. However, we find that for systems not too large results 
are affected by finite size in different ways depending on the geometry of the cell. In particular, at the 
same certain physical conditions and system size, the hexagonal prism yields a single structure per cell 
while the cubic and truncated octahedron show consistent results, with more than one structure per cell. For 
systems of the size studied in this work these effects are still noticeable, but we find evidence to support 
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that the dependence of the results on the cell geometry becomes smaller as the system size is increased. 
When the Coulomb interaction is present, the competition between opposing interactions of different range 
results in a proper, physically meaningful length scale that is independent of the system size and periodic 
cell of choice. Only under these conditions “finite size effects” will vanish for large enough systems (i.e. 
cells much larger than this characteristic length). Larger simulations are in order, but our computational 
capabilities forbid it for the time being.
© 2014 Elsevier B.V. All rights reserved.
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1. Introduction

In the inner crust of neutron stars, nucleons (protons and neutrons) exist at low temperatures 
and densities. They are also embedded in a (charge neutralizing) degenerate electron gas. Under 
those conditions, instead of forming the usual quasi-spherical nuclei found in Earth (“normal” 
nuclei), nucleons behave like a complex fluid called Neutron Star Matter (NSM). In NSM, nu-
cleons attract each other through the short-ranged nuclear interaction while protons, in addition, 
repel each other through the Coulomb interaction screened by the electron gas. Studies of low 
density NSM have found that the attractive-repulsive interplay of nuclear and Coulomb forces 
may drive nucleons to take non-uniform configurations which are collectively known as “nuclear 
pasta” [1].

1.1. Non-homogeneous phases of neutron star matter

In the context of nuclear systems, the existence of nuclear pasta was early proposed in a 
pioneering work by Ravenhall et al. [1]. There the authors argued that the interplay between 
surface and Coulomb self-energies, which at low densities produce the almost spherical normal 
nuclei, is modified when those nuclei form a dense lattice:

(...) ordinary nuclei are more or less spherical. While not disputing this fact, we observe that 
in the density range we have cited, where the fraction of space filled by dense matter, u, 
ranges from 0.1 to 1, the contribution to the Coulomb energy of the system coming from 
neighboring nuclei (the so-called Coulomb lattice energy) rivals in importance the nuclear 
Coulomb self-energy.

To analyze the effect of the long range Coulomb interaction at sub-saturation densities they 
used a static compressible liquid drop model in the Wigner–Seitz approximation. The Wigner–
Seitz approximation was devised to simplify calculations in a charge neutral lattice of arbitrary 
shape. It consists in replacing the charge neutral unit cell with another cell of a simple geometry, 
adequate for the chosen lattice dimensionality: a sphere in 3D, a cylinder in 2D or a slab in 1D. 
Lattice Coulomb energy is included implicitly by making the electrostatic potential vanish at the 
cell’s boundary.

The calculations from [1] were made at zero temperature with a proton fraction x = 0.3. 
Authors assumed nucleons to be arranged in dense matter regions at saturation density ρ0 but 
filling only a fraction of space. With this model they found that for a rather wide range of den-
sities, NSM arranged in these idealized lattice geometries is more stable than uniform matter or 
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normal nuclei. As described by the authors, these non uniform phases range in order of increasing 
density from spherical (3D) “nuclei”, cylindrical (2D) “nuclei”, passing through a slab-like “nu-
clei”, then to cylindrical “bubbles”, spherical “bubbles”, until finally at ρ ≈ 0.85ρ0 the system 
becomes uniform.

For each geometry the unit cell has a characteristic length rc which is the radius of the sphere 
for 3D and the cylinder in 2D. For the 1D lattice, it is the half width of the lattice parameter. 
Although the value of this parameter is not explicitly given, it is ∼10 fm—the width of the slabs 
that are the stable solution at volume fraction 0.5.

While groundbreaking, this work assumed possible shapes a priori. Moreover, the authors 
make no mention to a possible dependence of the results on the unit cell’s size rc. And since 
surface effects are supposed to be at the core of the whole phenomenon, such drawback might be 
critical.

Later on, to address this criticisms, Williams and Koonin improved the calculations [2] by 
allowing NSM to assume any arbitrary configuration within a cubic unit cell of side L (not to 
be mistaken with a Wigner–Seitz cell) under periodic boundary conditions (PBC). To allow for 
arbitrary configurations they divided the unit cell into a cubic lattice. The local number density of 
symmetric NSM at each site was relaxed to minimize an energy functional. The energy functional 
was divided explicitly and a priori in bulk, surface and Coulomb terms. For the proton–proton 
Coulomb interaction, the zero temperature Thomas–Fermi approximation was employed [3], 
under which the Coulomb potential is screened and takes the form:

VTF(r) = q2 e−r/λ

r

Since the Thomas–Fermi screening length is much larger than any other length scale involved, 
the authors argued that it is a good approximation to include electrons as a uniform background 
of negative charge, just to neutralize the system. The minimization of energy was carried out 
through a careful and complex procedure which involved variation of the local number density, 
the overall mean density and the unit cell’s size. Due to computational limitations, the largest 
cell size considered was of L = 32 fm and the lattice spacing fixed at 1 fm. Also, the authors 
state that the choice of a cubic cell was made solely for computational convenience but other 
geometries would be valid. They are aware that this poses a bias on the possible density con-
figurations they may obtain, but they also state that their calculations contemplate all possible 
density configurations which have periodic cubic symmetry.

With this model their results include, in addition to the original “pasta”, a new shape (dubbed 
“cross”) which they describe as a slab with regular holes. According to the authors, this new 
shape is an energy minimum only for a very small range of densities, and so shallow that it 
“would be washed out by finite temperature” (sic). Most interestingly, by increasing the mean 
density adiabatically this phase transforms into a regular slab, but in a larger cell. Although the 
authors do not mention it, this is explicit proof that, at least within this model, the shape that 
minimizes the energy depends on the arbitrary cell size. Furthermore, in order to find the true 
minimum energy configuration at a given density, several system sizes must be explored to avoid 
(or at least exhibit) finite size effects.

More recently, Monte Carlo and Molecular Dynamics simulations have become popular tools 
to study the behavior of NSM at sub-saturation densities [4–6,9,15,16]. These simulations usually 
consider (n, p, e) matter (neutrons, protons and electrons only) at a fixed number of particles, 
volume and temperature. Electrons, however, are never included explicitly in the simulations 
but are treated either as an ideal Fermi gas or a uniform background charge distribution for the 
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double purpose of achieving charge neutrality and screening the Coulomb interaction between 
protons.

The advantage of using a dynamical and, for want of a better word “microscopic” approach, 
is that nucleons are treated individually instead of dealing with local densities. And instead of ar-
tificially splitting the energy contributions a priori in bulk, surface and Coulomb terms, pairwise 
interaction potentials are used. The dynamics itself then arranges the nucleons in whatever shape 
is optimal for the model without any bias, except for the geometry and size of the simulation cell.

1.2. Other systems with non-uniform phases

Similar non-homogeneous structures are found in soft condensed matter [19] and are, actu-
ally, inherent to any system with competing interactions of different ranges (see [21,22] and 
references therein). Phenomenologically this usually manifests as a competition between bulk 
and surface (or interfacial) energies, which is settled by adopting a geometry such that its surface 
is minimal [23], subject to certain constraints.

The formation of nuclear pasta has also been described as a frustration of surface minimization 
produced by Coulomb interaction [21]. In any case, even partial or frustrated, surface minimiza-
tion seems to lie at the core of the nuclear pasta phenomenon.

In mathematics the problem of finding the minimal surface subject to certain boundary con-
ditions, is known as the “Plateau” problem [24]. A minimal surface can be defined as a surface 
with zero average curvature at every point. All the usual pasta, plus Williams and Koonin’s 
Crosses, CMD’s “jungle-gym” [9] (known as the plumber’s nightmare in polymer physics), as 
well as the Gyroid and Double Diamond structures proposed in [18] are solutions with cubic 
symmetry to this well studied problem [28]. For example, HF models for NSM [17,27] yield 
the so-called Schwarz’s P-Surface and D-Surface [28]. CMD’s jungle-gym also resembles the 
Schwarz’s P-Surface. Watanabe et al. report that with QMD they find several unspecified “triply 
periodic” structures [20].

As far as we know, every simulation of NSM was performed in cubic cells under PBC. And 
every pasta-like structure found in those simulations is actually a triply periodic minimal surface 
of cubic symmetry. As such, they may be constrained to some extent by the geometry and sym-
metries of the primitive cell, not only by its size. Most notably, whenever a model yields only 
one structure per cell [27]. In light of this, exploring cell geometries with different symmetries 
might be enlightening.

1.3. Simulations and finite size considerations

In particle-based simulations finite size is always a concern, but it is assumed that for large 
enough cells, the so-called “finite size effects” would become negligible. That, however, is not 
always true. At least not for every observable. In [10,12,13], for example, grand canonical Monte 
Carlo simulations are performed for a Lennard–Jones fluid at densities that correspond to phase 
coexistence in the (mean field) Van der Waals approximation. The liquid phase in these simu-
lations appears ordered in non-homogeneous structures eerily reminiscent to those observed in 
systems with competitive interactions, but arising exclusively from finite size effects related to 
Periodic Boundary Conditions (PBC) [11]. We shall refer to those structures as “pseudo-pasta” 
to distinguish them from “true” pasta, that which arises in systems with competing interactions.

In [13], the authors show both analytically and numerically that at the liquid–vapor coexis-
tence region of a Lennard–Jones fluid, the liquid phase is shaped in a very distinct way for a 
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given density and temperature. They assume a cubic cell under PBC and show that if that cell is 
large enough, the shapes of these pseudo-pasta are limited to one spherical drop, one cylindrical 
rod, one slab, one cylindrical hole or one spherical hole in the simulation cell (in order of increas-
ing number density). Small transitional density regions exist due to interfacial effects related to 
the finite range of the interactions, but these effects become smaller as system size is increased 
and/or temperature is lowered. In the limit of infinitely large and/or cold systems (L → ∞) the 
transition densities can be calculated exclusively from surface minimization.

This behavior is observed for systems of various sizes and, based on scaling properties of the 
Landau free energy, it is shown that in the L → ∞ limit the size dependence of every intensive
quantity vanishes. This is so because their size dependence appears explicitly through surface to 
volume ratios which naturally (but slowly) become negligible as the size is increased. But most 
notably, it is also shown in the limit L → ∞ limit, the transition from uniform liquid to uniform 
vapor is made in discontinuous steps, passing through the same sequence of shapes expected 
in NSM (spherical bubble, cylindrical bubble, slab, rod and spherical droplet) but only one per 
simulation cell.

Unaware of most of these works, in [11] we found the same structures in simulations of both 
Lennard–Jones and symmetric NM for several semi-classical interaction models for the nuclear 
interaction. Our simulations were done at constant volume and almost zero temperature. We 
explained these pseudo-pasta structures as minimal surface configurations under cubic PBC, and 
shown them to be the most stable configuration independently of system size (consistently with 
the results from [13]). Thus, we concluded that these behavior is intrinsic to the finite size of 
simulations under PBC, and not due to the system being small, as is usually interpreted. This 
scenario is very often ignored but is inherent to simulations of any LJ-like system.

With this background, it is feasible that at least some of the pasta structures found in NSM 
simulations (with Coulomb interaction) might be biased by finite size. More so since only cubic 
PBC were ever used, and every pasta ever reported has cubic symmetry and periodicity. It is even 
possible that some may be entirely an artifact of the simulation itself, specially if the size of the 
simulation cell is small, or for models that produce only one structure per cell, such as [17].

And in any case, ignoring these effects may lead to wrong estimates of the true scale of the 
density fluctuations, which in the case of nuclear pasta is of paramount importance [6].

1.4. Aim and organization of this work

In this work we aim to show that in molecular dynamics simulations of symmetric nuclear 
matter, at sub-saturation densities and low temperatures, performed under periodic boundary 
conditions, the spatial configuration is determined exclusively by the enforced periodicity of the 
cell. Even though these are finite size effects, they do not vanish even in infinitely large systems, 
but instead become sharper. The same is true for any system of particles interacting through po-
tentials that are repulsive at very short ranges and attractive at short-ranges (Lennard–Jones-like 
systems, or LJ-like for short).

In Section 2 we argue that even though cubic PBC are the most usual choice for numerical 
simulations due to their simplicity and their low computational cost (see Section 3.1), they’re not 
by any measure the only option available. In particular, we explore cubic, hexagonal-prism and 
truncated octahedron cells.

In Section 2.2 we show that for large enough LJ-like systems, the most stable configuration is 
that which minimizes its area. We then analytically search for the minimum surface configuration 
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as a function of the volume fraction as in [11], but for the three cell geometries described in 
Section 2.

The predictions of Section 2.2 are shown to be consistent with molecular dynamics simula-
tions of symmetric NM within the framework of the semi-classical model CMD. The model is 
described in Section 3. Simulations were done at almost zero temperature, at three relevant densi-
ties, for two system sizes, and in the three different cell geometries. The results of the simulations 
themselves are presented and discussed in Section 4.

In addition, and since the motivation for this research is the simulation of NSM, we performed 
additional simulations with the same model nuclear interaction plus a screened Coulomb poten-
tial as a model for NSM. The same model was already used in [9]. Simulations with Coulomb 
interaction were done at the same temperature and densities, and under all three PBC geometries 
but for only one size. Results are presented and discussed in Section 5.

We close with some concluding remarks in Section 6.

2. Analytical results in different cell geometries

2.1. Cell geometries

Periodic boundary conditions can be imposed on any polyhedron that fills space by transla-
tions. In order to fulfill that requirement, each face must have another face parallel to it and in 
the exactly opposite side of the cell. This earns this polyhedra the denomination of parallelohe-
dra [43].

In this section we describe the three different unit cells we used in our simulations: cubic, 
hexagonal prism (HP) and the truncated octahedron (TO) or cubo-octahedron. To quantify the 
dimensions of each cell we use the distance between the specified pair of opposing faces Lx , 
where x is C for cubic cell, HP for hexagonal prism cell and TO for the truncated octahedron. 
As a measure of the ‘sphericity’ of each cell, we calculate the ratio between sx the circumsphere 
radius and the inscribed sphere radius, following [43].

2.1.1. Cube
It’s the most commonly used for its simplicity. The cubic cell and its images pack as a simple 

cubic lattice. It has side length Lc, 6 square faces of area L2
c and a volume of VC = L3

c . The 
total surface area of the cell is SC = 6L2

c and the surface to volume ratio for a unit volume cell is 
SC

VC
= 6. The ratio between circumsphere and inscribed sphere radii is sC = √

3 ≈ 1.73.

2.1.2. Hexagonal prism
The HP cell has 6 rectangular faces and 2 hexagonal faces (see Fig. 1). It packs in a hexagonal 

honeycomb in the plane of the hexagonal faces, and stacks evenly along the direction normal to 
that plane. The HP has a discrete rotational symmetry of order 6 about the axis normal to the 
hexagonal faces. This symmetry may have an impact which is interesting to explore. We chose 
its dimensions so that the distance between opposing faces (LHP) is the same for each pair of 
parallel faces. With these proportions the prism has a height of LHP in the direction normal to 
the hexagonal faces. The hexagonal faces have area 

√
3

2 L2
HP each. The lateral rectangular faces 

are LHP high and 
√

3LHP (their surface area is, then 
√

3L2 ).
3 3 HP
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Fig. 1. Hexagonal prism.

Fig. 2. Truncated octahedron.

The total surface area of the HP is SHP = 3
√

3L2
HP and its volume VHP =

√
3

2 L3
HP. The surface 

to volume ratio of the HP cell for unit volume is then SHP
VHP

= 6
LHP

, which for unit volume is S1
HP ≈

5.72. The ratio between circumsphere and inscribed sphere radii for the HP is sHP =
√

7
3 ≈ 1.53.

2.1.3. Truncated octahedron
The TO is the Wigner–Seitz cell of the BCC Bravais lattice. As such, it packs as BCC and 

is inscribed in a cube of side LTO. Also by construction, it has exactly half the volume of this 

cube: VTO = L3
TO
2 . The TO has 8 hexagonal faces and 6 square faces (see Fig. 2). The distance 

between each pair of opposing square parallel faces is also LTO, while the distance between 

opposing hexagonal faces is 
√

3
2 LTO. The surface area of each hexagonal face is 

3
√

3L2
TO

16 and for 

each square face it’s 
L2

TO
8 . The TO cell’s total surface area is STO = 3(1+2

√
3)L2

TO
4 . Its surface to 

volume ratio is then STO
VTO

= 3(1+2
√

3 )

2
4
3

≈ 5.31.

With a value of sTO =
√

5
3 ≈ 1.29 the TO is the “most spherical” cell of the three.

To summarize, the cubic cell has the largest surface to volume ratio of the three cells, followed 
by the hexagonal prism and then the truncated octahedron. The cubic cell is also the farthest from 
spherical of the three. The HP, even if it is closer to spherical than the cube, is less isotropic than 
the other two. Among these three, the less biasing option seems to be the TO since it’s the most 
spherical, the most isotropic and has the lowest surface to volume ratio. The only advantage of 
the cubic cell seem to be its computational economy.

2.2. Surface area of usual shapes in other geometries

As we showed in [11], simulations of symmetric NM or LJ-like systems under PBC will 
produce non-homogeneous structures at ρ < ρ0 and low enough temperature. When using a 
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Table 1
Surface area for simple shapes under different PBC at volume fraction u and cell of length Lx . L1

x is the value of the 
parameter Lx for which a given cell has unit volume.

L1
x Sphere Cylinder Slab

Cube 1 (6
√

πu)
2
3 L2

C

√
4πuL2

C
2L2

C

HP ( 2
√

3
3 )

1
3 3(

√
πu)

2
3 L2

HP

√√
12πuL2

HP

√
3L2

HP

TO 2
1
3 (3

√
πu)

2
3 L2

TO

√√
3πuL2

TO

√
2L2

TO

cubic cell, shapes are limited to one sphere, one cylindrical rod, one slab or their complementary 
shapes (cylindrical hole, spherical hole). Except for small transition regions, these shapes exhaust 
the possible solutions. We also showed that, at a given volume fraction, and for sufficiently 
large simulations, the equilibrium configuration was that which had the least surface area among 
these five options. To compute the surface area for each shape we explicitly assumed they were 
inscribed in a cubic cell under PBC. Because of the PBC, cylinders and slabs formally extend to 
other cells, thus trading would-be surface for bulk.

In this section we extend those calculations, restricted to the same set of shapes, but now 
inscribed in each of the three periodic cells described in Section 2.

Jumping ahead, simulations show that rods and slabs favor certain orientations related to the 
particular symmetries of each cell. For example, rods or tubes pierce the cell orthogonally to 
some pair of opposing faces, avoiding edges. Moreover, rods (or tubes) at the studied densities 
are orthogonal to faces of the largest area possible (i.e. the hexagonal faces in both HP and TO, 
see Section 2). Conversely, slabs are parallel to them. In any case, there is no loss of generality in 
assuming this scenario. To compute the effective surface area of a rod, for example, we treat it as 
an open cylinder (without lids) of length L, the distance between faces, and set its radius based 
on the desired volume fraction. Our calculation has implicitly the additional constraint that the 
slab is thinner than the side length of the square faces in the TO. Incidentally, that limiting case 
occurs at volume fraction u = 1

2 , where the slab formally becomes a ‘slab-shaped hole’. This 
constraint is therefore not hampering.

Table 1 shows the analytic expressions for the surface area of the usual simple shapes (sphere, 
rod, slab) for a given volume fraction u and cell size L. The first column of Table 1 contains the 
values of L for a cell of unit volume of the corresponding geometry.

We remind the reader that the line of argument is that in absence of Coulomb interaction, the 
binding energy can be divided into a volume plus a surface (or interface) term:

E = aV V + aSS (1)

In the case of nuclear systems this is nothing more than a truncation of the semi-empirical 
mass formula. As in [11], we argue that at T = 0 the most stable structure is that which minimizes 
energy, and energy minimization at fixed number density is achieved by surface minimization.

For a more accurate description, the parameters aV and aS from Eq. (1) should be functions 
of the temperature and density. Moreover, since the interaction potentials have finite range, the 
surface term should be labeled ‘interface’ term, and at finite temperatures the model should con-
template the presence of a vapor phase in coexistence (see [13]). For large enough systems these 
corrections fade, as they depend on the surface to volume ratio of the structures. Here we work 
at T = 0, assume saturation density throughout all the occupied volume and ignore interfacial 
effects. This, of course, is an over-simplified, minimal model. Yet, it captures the essential fea-
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Fig. 3. (Color online.) Least surface area among simple shapes under various PBC for unit volume. Panel (a) for the 
cubic cell, (b) for the HP cell and panel (c): for the TO cell. Downwards (from left to right) striped (red) areas indicate 
regions where spheres are the best solution, blank areas indicate regions where cylinders are, and finally, upward striped 
(blue) areas indicate regions where slabs are the best solution. Solid vertical black lines correspond to the densities used 
for simulations, assuming local density ρ0 = 0.16 fm (Figs. 4, 5 and 6).

tures needed to understand the underlying mechanism behind the formation of pseudo-pasta and 
the specific role PBC play.

Having discussed the hypotheses, limitations and scope of the model, we plot in Fig. 3 the 
least surface area (among those in Table 1) as a function of volume fraction u for the three cell 
geometries and unit volume cell (see caption for details).

The model yields curves symmetric with respect to u = 0.5. In actual simulations of a fixed 
number of particles, this symmetry is not to be expected for two reasons: on one hand, the ap-
proximations implied above are more accurate in the low volume fraction (larger cell) half; that 
is, for denser systems the surface to volume ratio is smaller and interfacial effects become more 
important. On the other hand, the finite range of the potentials comes into play again when a 
structure becomes thick enough to approach its own replicas in a neighboring cell. This amounts 
to a “lattice energy term” which may further lower the overall energy and prompt the transi-
tion between structures at lower values of u than the predicted with this model. The same issue 
is responsible for the extension of the stability region of pure phases in LJ systems described 
in [10].

The most evident feature of Fig. 3 is that the regions of stability of each shape are different 
for each cell geometry. Qualitatively, it’s reasonable that the TO should be able to lodge larger 
spheres or spherical holes than the others: Among the three cells, the TO has the largest distance 
between replicas. This is reflected in Fig. 3.

It’s important to stress that the only physical assumption we made was that only bulk and 
surface energy contributions are relevant and PBC are imposed. Whenever that is true, (most 
notably when only LJ-like potentials are involved) these results hold and are fully consistent 
with those in [13]. More importantly, this is independent of the size of the cell since the surface 
area of every shape scales with L2. One should be mindful about this fact when interpreting 
results from numerical simulations that rely on PBC.
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3. Molecular dynamics model

Next we use a classical molecular dynamics model, CMD [29], based on the work of V. Pand-
haripande [30]. It has been very fruitful in studies of heavy ion phenomena: neck fragmenta-
tion [31], phase transitions [32], critical phenomena in multifragmentation [33,34], the caloric 
curve [35,36], and isoscaling [37,38], all without any adjustable parameters. Recently we ex-
tended it to be used in the study of NSM [9]. We include here a brief synopsis but readers are 
directed to these references for further details on the model.

CMD treats nucleons as classical particles interacting through a two-body potential and solves 
the coupled equations of motion of the many-body system to obtain the trajectories of all parti-
cles. Since the (r, p) information is known for all particles at all times, it’s possible to know the 
structure of the nuclear medium from a particle-wise perspective.

CMD uses the phenomenological potentials developed by Pandharipande [30]:

Vnp(r) = Vr

[
exp(−μrr)/r − exp(−μrrc)/rc

]
− Va

[
exp(−μar)/r − exp(−μarc)/rc

]
Vnn(r) = V0

[
exp(−μ0r)/r − exp(−μ0rc)/rc

]
,

where Vnp , the potential between a neutron and a proton, is attractive at large distances and re-
pulsive at small ones. Vnn is the interaction between identical nucleons and it’s purely repulsive. 
Notice that no bound state of identical nucleons can exist, and the model produces nuclei con-
sistent with a liquid drop model with a symmetry term [38]. It has many common features with 
potentials used by other models [6].

The cutoff radius is rc = 5.4 fm after which the potentials are set to zero. Calculations we 
present in this work were made with the Medium parametrization of the Pandharipande po-
tentials. With this parametrization, symmetric infinite nuclear matter (NM) has an equilibrium 
density of ρ0 = 0.16 fm−3, a binding energy E(ρ0) = 16 MeV/nucleon and a compressibility of 
about 250 MeV [30].

As for the Coulomb interaction, we use a screened Coulomb potential of the form

V
(Scr)
C (r) = e2

r
exp(−r/λ)

The correct approximation requires the parameter λ to be the Thomas–Fermi screening length 
given by

λ =
[
h̄2(96π2〈ρ〉)−1/3

me2

]1/2

as given in [2], where m is the electron mass, and 〈ρ〉 is the mean density of the system. The size 
of the simulation cell should be significantly larger than λ. Since the fulfillment of this requisite 
leads to prohibitively large systems, it has become a standard to artificially set λ = 10 fm and 
use the first image convention to evaluate the forces [4,6]. However, as we discuss in [7], for this 
model of nuclear interaction a value of λ = 20 fm is needed to adequately produce the known 
pasta phenomenology.

The trajectories of individual nucleons are tracked using a Verlet algorithm, and to control the 
temperature of the system we use an Andersen thermostat [39]. To achieve almost zero tempera-
ture, we set the thermostat to successively lower temperatures by small steps, letting the system 
reach thermal equilibrium at every step until T = 0.1 MeV is reached. At that temperature, the 
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nucleons are almost frozen, but we further cool it to T = 0.001 MeV so that thermal fluctuations 
can be safely neglected.

3.1. Pairwise forces evaluation, cell linked lists and PBC

Before we move on to the results, we deem it worthwhile to discuss the implementation of 
PBC in MD simulations and the reason behind the almost universal choice of cubic cells.

The most computationally expensive part of an MD code is the evaluation of the pairwise 
forces acting on all the particles at every time step. The most straightforward and clumsy way to 
do that is to evaluate the distance rij between every pair of particles (i, j) and to compute the 
force when appropriate. This brute–force approach becomes very inefficient for large systems, as 
the time needed to evaluate the forces scales as N2. If the forces have a short cutoff radius, as is 
the case for our NM simulations, there are more clever and efficient ways to perform this evalua-
tion (see [14], for an overview). One of the simplest and most well-known algorithms to do so is 
the cell-linked lists algorithm. The time needed to evaluate the forces scales as O(N

3
2 ) with this 

algorithm, but it can only be applied to orthorhombic cells. In a nutshell, the algorithm consists 
in dividing the simulation cell in regular smaller cells (about the size of rc) and constructing lists 
of the particles in each sub-cell. By construction, particles may only interact with other particles 
which are in the same or in neighboring cells. The use of these lists dramatically reduces the 
amount of pairs that need to be evaluated if the simulation cell is much larger than the range 
of the interaction. And, if the effort of constructing the lists does not outweigh this reduction, 
the overall cost of force evaluation is lowered. In cubic cells this scheme is easily implemented, 
dividing the cell in smaller cubes, and is very efficient. However it cannot be used in the HP nor 
in the TO cells since no regular tessellation can be constructed on these geometries.

For our simulations in cubic cells we use cell-linked lists but simulations in the other ge-
ometries were only possible thanks to GPU computing. As discussed in [40], for short-ranged 
interactions, the brute–force algorithm executed massively in parallel on a GPU outperforms the 
cell-linked lists scheme executed on a single CPU. Our simulations on HP and TO cells were 
performed using the brute–force algorithm implemented in CUDA [41], the GPU computing 
platform by NVIDIA, on a GeForce GTX-560 TI GPU with 384 cores [42]. However impressive 
the performance of the GPU code, the whole cooling procedure for a single density in the TO 
cell, for example, takes about a week (wall-time) to complete for a system of A = 4096. In sim-
ulations with Coulomb interaction (Section 5) the scenario is much worse. Even screened, the 
Coulomb interaction has a much longer range than the nuclear. We chose the number of particles 
so that the simulation cell is just large enough to use the first image convention for proton–proton 
interactions. In this case the use of cell-linked lists for the Coulomb interaction does not reduce 
the run time.

Thus, it is not feasible for us to work with larger systems. On the other hand, we believe that 
all that is left to be learned from larger simulations is quantitative in nature, and beyond the scope 
of the present work.

4. Results of simulations without Coulomb interaction

In Section 2.2 we showed, by using simple geometric calculations, that for any system that has 
only bulk and surface contributions to energy under PBC, the particular geometry of the cell has 
a great impact on which shape has the least surface area. In those calculations we only considered 
the three traditional shapes: sphere, rod and slab. While those three shapes almost exhaust the 
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Fig. 4. (Color online.) Configurations at T = 0.001 MeV for A = 1728 (top row) and A = 4096 (bottom row) nucleons 
at density ρ = 0.05 fm−3 without Coulomb interaction. Panels (a) and (d) correspond to cubic cells, (b) and (e) to HP 
cells and panels (c) and (e) to TO cells.

possible results from simulations of large enough Lennard–Jones and NM systems [10,11,13]
in cubic cells, it’s not clear that these three shapes constitute a representative set of the possible 
results in other geometries, where different symmetries are imposed.

To test the results from the previous section, and perhaps extend set of possible shapes for 
PBC other than cubic, we performed molecular dynamics simulations using the three periodic 
cells described in Section 2. Since volume fraction is intimately related to number density (uρ0 =
N/V ), simulations were performed for three densities of interest. Furthermore, to explore how 
system size effects come into play in each geometry, simulations were made with both A = 1728
and A = 4096 particles.

In Fig. 4 we show configurations at almost T = 0 (see Section 3) for ρ = 0.05 fm−3 and both 
sizes. Simulations at this density yield a single slab for every cell.

Our model predicted slabs for the HP cell and rods for the other two (see Fig. 3). For the cubic 
cell this density is very close to the slab region. The interaction between replicas due to the finite 
range of the interaction potentials is clearly responsible for the discrepancy. The same is true for 
the TO, but it is not so clear. Lets clarify. At this density, the least surface area rod in the TO has 
diameter drod ≈ 0.48LTO and is lodged in a hexagonal face, which is w = 0.61LTO wide. For 
this density and N = 4096, the difference between the width of the hexagonal face and the rod’s 
diameter is w − drod ≈ 7 fm. That is the distance between replicas of the rod and is almost the 
cutoff radius of the potential rc = 5.4 fm, so the “true” transition density between rod and slab 
is closer to the one simulated in Fig. 4 than the one predicted by the model. At the simulated 
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Fig. 5. (Color online.) Configurations at T = 0.001 MeV for A = 1728 (top row) and A = 4096 (bottom row) nucleons 
at density ρ = 0.08 fm−3 without Coulomb interaction. Panels (a) and (d) correspond to cubic cells, (b) and (e) to HP 
cells and panels (c) and (e) to TO cells.

density, the rod should be the ground-state, but thermal fluctuations during the cooling procedure 
may systematically drive the system to the slab phase.

In Fig. 5 we present results at ρ = 0.08 fm−3. At this density, each cell geometry yields a 
different result: Cylindrical holes for cubic, slabs for HP and spherical holes for TO. There is 
also no qualitative difference between the shapes found with different system sizes at a given cell 
geometry. Again, the discrepancy between simulation and model comes from the finite range of 
the potential, small size and probably hysteresis from the cooling procedure. It’s however inter-
esting to observe that these issue further enhance the geometry-dependence of the simulations’ 
results.

Lastly, Fig. 6 shows results at ρ = 0.10 fm−3. Again, size has no qualitative effect on the 
shape that is stable for each geometry but that shape is different in each cell. For cubic and TO 
the stable shape is a spherical hole and for the HP it’s a slab.

The results from this section clearly show that the particular (and a priori arbitrary) PBC 
conditions imposed on an MD simulation of cold nuclear matter (or any system whose energy is 
mostly a bulk plus a surface term) determines the resulting configurations.

The fact that inhomogeneous solutions exist in simulations with such simple interactions is 
usually ignored. These simulations yield systematically a single structure per cell, independently 
of its size and geometry. The length scale of the inhomogeneities is determined by the size of 
the cell. This means that, no matter how large, simulations of LJ-like systems in the coexistence 
region will never converge to the thermodynamic limit as predicted by mean field theories such 
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Fig. 6. (Color online.) Configurations at T = 0.001 MeV for A = 1728 (top row) and A = 4096 (bottom row) nucleons 
at density ρ = 0.10 fm−3 without Coulomb interaction. Panels (a) and (d) correspond to cubic cells, (b) and (e) to HP 
cells and panels (c) and (e) to TO cells.

as Van der Waals’. Also, since for very large systems every solution is determined exclusively by 
surface minimization under the particular PBC, they are solutions to the Plateau’s problem [24]. 
It then becomes obvious that complex non-homogeneous solutions (i.e. not spherical) must in-
herit a subset of the cell’s symmetries, not only its scale, and thus depend on its geometry.

If the system in addition has a competing interaction of a different range, its energy has addi-
tional, non negligible terms. Then, surface minimization is not the only mechanism operating to 
shape the solutions. This competition also give rise to a length scale proper to the interactions. 
This is why simulations of NSM, which include Coulomb interaction in addition to nuclear, are 
expected to present several structures per cell. Otherwise there is no guarantee that the solu-
tion would not be affected by the boundary conditions, and perhaps some structures implicitly 
suppressed (see [8,25] for example).

Finite size effects related to the size of the simulation cell are well known but, as far as we 
know, no one has explored the effects of the cell’s geometry and symmetries in the context of 
NSM simulations before.

5. Results of simulations with Coulomb interaction

In the previous section we analyzed the effect of cell geometry on the possible solutions of 
NM simulations at sub-saturation densities under PBC. The results from MD simulations were 
consistent with the simple geometric calculations of Section 2.2. Those calculations assumed 
that only bulk and surface terms were relevant and thus apply to LJ-like systems. In this section 
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Fig. 7. (Color online.) Configurations at T = 0.001 MeV for A = 4096 nucleons at density ρ = 0.05 fm3 with a screened 
Coulomb interaction in a cubic cell (panel (a)), HP cell (panel (b)) and TO cell (panel (c)).

Fig. 8. (Color online.) Configurations at T = 0.001 MeV for A = 4096 nucleons at density ρ = 0.08 fm3 with a screened 
Coulomb interaction. Panels (a) corresponds to a cubic cell, (b) to an HP cells and panel (c) to the TO cell.

perform similar simulations but including a form of Coulomb interaction in the spirit of the 
Debye approximation (see Section 3), as a model of NSM. As stated before, the screening length 
must be set to at least λ = 20 fm (a thorough analysis of this issue is presented in see [7]). 
Systems of A = 1728 particles are too small for this purpose for almost every density studied. 
And since working with larger systems in the non-cubic cells is beyond our current computational 
capabilities, we only studied systems of A = 4096 particles in the HP and TO cells. In cubic cells 
simulations were performed also for A = 9826 particles. For that size and the densities studied, 
every cell is large enough.

In Fig. 7 we show results for simulations at ρ = 0.05 fm3 and for the three cell geometries (see 
figure caption for details) with Coulomb interaction. It can be seen that “lasagna”-like structures 
are found for every cell. And as expected, more than one per cell.

However, the lasagna found in each cell geometry is different from that of other cells. For 
example, in the cubic and TO cells (Fig. 7(a) and (b)) there are lasagna of two and three particles 
wide, but in the HP every slab is three particles wide. Moreover, the distance between slabs is 
also different in each cell. Under this circumstances it would be unwise to try to extract infor-
mation about the length scale of density fluctuations without studying larger systems at the same 
conditions. These differences should become smaller the larger the simulation.

In Fig. 8 we show results for simulations at ρ = 0.08 fm3 for the three cell geometries (see 
figure caption for details). At this density, both cubic and TO cells consistently yield several 
cylindrical tubes per cell. In the HP cell, however, the solutions is still a single slab.
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Fig. 9. (Color online.) Configurations at T = 0.001 MeV for A = 4096 nucleons at density ρ = 0.10 fm3 with a screened 
Coulomb interaction. Panels (a) corresponds to a cubic cell, (b) to an HP cells and panel (c) to the TO cell.

At density ρ = 0.10 fm3 (shown in Fig. 9) again the cubic and TO cell yield the same solution 
(in this case several unconnected holes with no apparent order). But the HP cell still yields a 
single slab.

It seems that in an HP cell of these proportions, for this system size and at relatively high 
densities, the mechanism responsible for the formation of non-homogeneous structures with-
out Coulomb interaction (surface minimization exploiting the artificial PBC) is still present. It’s 
present and is strong enough to overwhelm the disrupting effect of Coulomb interaction, which 
is enough to produce several structures in cells of the same volume but of different geometry. 
In other words, surface minimization is not frustrated enough in the HP cell. Thus we find that 
not only the size, but the geometry and symmetries of the cell may affect in unexpected ways the 
solutions of simulations, even in systems with competing interactions.

We emphasize the fact that finite size effects of PBC manifest in different ways for different 
cells. Then, having more than one structure per cell is not necessarily enough to guarantee that 
finite size effects can be ignored. Specially when attempting to extract quantitative information 
on the scale of density fluctuations from the simulations. However, at lower densities (larger cells) 
the HP and the TO give approximately the same result as the cubic cell. This means that these 
effects indeed become smaller the larger the system. As suggested in [25,26], asking for several 
periods per cell is safer than asking for more than one structure. In any case, these results suggest 
that for nuclear pasta simulations of this sizes, the actual length scale of density inhomogeneities 
is set as much by the interaction model as by the size and shape of the simulation cell.

For systems of A = 9826 particles in cubic cells, the results are almost the same as for A =
4096 particles. In particular, for ρ = 0.05 fm3, the slabs now have a uniform width of three 
particles (Fig. 10).

We must stress that for larger systems, differences between results in different cells should 
become smaller, but some may still remain. In the light of our findings without Coulomb inter-
action, it’s likely that the transition densities between different types of pasta may be still depend 
on the particular cell used for the simulation for larger systems.

6. Concluding remarks

In this work we show that simulations of symmetric NM using a semi-classical model produce 
non-homogeneous solutions, reminiscent of the “nuclear pasta” expected in NSM, but without 
a Coulomb interaction. The solutions are shaped as a spherical drop, a cylinder, a slab or their 
complements (cylindrical or spherical bubble) depending on the number density, but only one per 



322 P.A. Giménez Molinelli, C.O. Dorso / Nuclear Physics A 933 (2015) 306–324
Fig. 10. (Color online.) Configurations at T = 0.001 MeV for A = 9826 nucleons with a screened Coulomb interaction at 
several densities in cubic cells. Panels (a) corresponds ρ = 0.05 fm3, (b) to ρ = 0.08 fm3 and panel (c) to ρ = 0.10 fm3.

simulation cell. By considering only surface and bulk contributions to energy, we show that these 
non-homogeneous solutions are minimal surface configurations under PBC and, as such, are arti-
ficial. We explicitly prove this fact by showing that different primitive cell’s geometries produce 
different solutions at the same physical conditions (i.e. density and temperature). The same is 
true for any system of particles interacting through Lennard–Jones-like potentials (i.e., short-
ranged, attractive and with a hard core). We work at T = 0, but results from [13] suggest that at 
sufficiently low but finite temperatures (namely, sub-critical), this results should approximately 
describe the behavior of the liquid phase in coexistence.

More importantly, we show that even if this behavior is indeed a finite size effect, it is inde-
pendent of the actual size of the system (if large enough) and it does not vanish for infinitely 
large systems.

The core mechanism behind these behavior is that at sub-saturation densities and low enough 
temperatures, particles tend to coalesce into a single, large, droplet. But as the droplet grows 
and approaches the size of the cell, it begins to interact with its own replicas in neighboring 
cells through the artificial PBC. Then, the PBC allows the system to lower its energy by trading 
would-be surface for bulk, forming what we call pseudo-pasta. The system minimizes its energy 
by adopting a minimal surface configuration, but the configuration that minimizes the surface at 
a given volume fraction depends on the cell’s geometry and has therefore little physical meaning.

In other words, for LJ-like systems at low temperatures, not only the length scale but also 
the symmetries of the solution, are set exclusively by the simulation cell. Inhomogeneities are 
artificial.

On the other hand, if a screened Coulomb interaction is added, a new, physically meaningful 
length scale appears. This length scale is related to the maximum size an isolated droplet may 
have before the disruptive effect of the repulsive interaction breaks it down into smaller droplets. 
The same is true for any system of particles with competing interactions of different ranges. 
However, even in this case the artificial PBC imposed can bias or constraint the length scale of the 
inhomogeneities, or even impose symmetries, if the system is not large enough. Our simulations 
show that this is the case for systems not too large, but often trusted in the context of NSM 
simulations. For some physical conditions the result depend on the cell used. In particular, for 
ρ = 0.08 fm−3, the cubic and TO cells produce several cylindrical tunnels, yet for the same 
physical conditions, the HP cell yields a single slab. For ρ = 0.05 fm−3 (larger cell) the results 
from every cell are approximately the same. This supports the claim that for larger systems the 
results would indeed become independent of the simulation cell, as should be expected if data 
extracted from simulations is to be any good.
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In NSM simulations, it is acknowledged that a simulation or model that yields a single struc-
ture per cell suffers from unspecified finite size effects. The fact that for the same system size 
the HP yields a single structure while the cubic and TO produce several, shows that producing 
multiple structures per cell is, by no means, enough evidence that the solution is free of such 
effects. Instead, several periods of the non-homogeneous phase should be aimed for.

In general, systems with competing interactions of different ranges have a proper characteris-
tic length scale. The artificial effects discussed in this work will become negligible if the system 
is large enough, as compared to that scale set by the interactions. Only in this case the inhomo-
geneities observed will be due to only the interaction potentials and the physical conditions and 
any kind of finite size effect will be truly negligible.
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