
Dynamical screening of van der Waals interaction between

graphene layers

Y.J. Dappe

Service de Physique de l’Etat Condensé,
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Abstract

The interaction between graphene layers is analyzed combining local orbital DFT and second

order perturbation theory. For this purpose we use the Linear Combination of Atomic Orbitals

-Orbital Occupancy (LCAO-OO) formalism, that allows us to separate the interaction energy as a

sum of a weak chemical interaction between graphene layers plus the van der Waals interaction [1].

In this work, the weak chemical interaction is calculated by means of corrected-LDA calculations

using an atomic-like sp3d5 basis set. The van der Waals interaction is calculated by means of

second order perturbation theory using an atom-atom interaction approximation and the atomic-

like orbital occupancies. We also analyze the effect of dynamical screening in the van der Waals

interaction using a simple model. We find that this dynamical screening reduces the van der Waals

energy between graphene layers by 22 meV/atom , which represents a 40% reduction in the van der

Waals interaction. Taking into account this dynamical screening, we obtain a graphene-graphene

interaction of 64 meV/atom, in good agreement with the experimental evidence.
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I. INTRODUCTION

Van der Waals (vdW) forces play an important role [2] in many physical, chemical or

biological systems, like protein folding, polymers, membranes [3], colloid chemistry, water

molecule dynamics [4, 5], carbon based technology [6–9], etc. However, an accurate calcula-

tion of those forces remains a great challenge due to its inherent non-local interaction and

also to the complexity of the systems where their effects are important.

It is well known that the local density approximation (LDA) and the generalized gradient

approximation (GGA) of density functional theory (DFT) completely miss to describe vdW

for long distances (no electron density overlap) and do not describe it properly for shorter

distances where the electron density overlap is important [6, 10, 11]. A fully first-principle

calculation incorporating vdW in DFT has been introduced by Langreth, Lundquist and

collaborators [12–15] who have developed new functionals, E[ρ(r))], that include properly

the vdW interaction. These functionals seem to be, however, expensive with respect to

computational time and resources. On the other hand, in a semiempirical approach a pair

wise atom-atom vdW term has been added to a DFT (LDA or GGA) calculation of the

whole system [16–20]. A third alternative consists on calculating each isolated subsystem

using DFT, and then adding their interaction energy using perturbation theory [1, 21–23].

This last approach is deeply related to a line of research based on quantum chemistry tech-

niques and the use of perturbation theory. In this case, the problem appears in the treatment

of the antisymmetry of the wavefunction of the total system. Several methods have been

developed to deal with this problem: the symmetrized perturbation theory [24, 25], and

the symmetry adapted perturbation theory (SAPT) [26]. Unfortunately, these quantum-

chemistry methods are very demanding in computational resources.

Finally, we can also mention a recent implementation in DFT of the RPA formalism for

graphene-graphene interaction, as a promising method eventhough limited as well regarding

computational resources [27].

In this paper we follow and extend the approach we presented in reference [1], combin-

ing local-orbital DFT with intermolecular perturbation theory to calculate the interaction

between graphene layers. In this approach we use a linear combination of atomic orbitals-

orbital occupancy (LCAO-OO) theoretical framework to establish the connection between

local orbital DFT and intermolecular perturbation theory in second quantization formalism.
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In the present work, we have extended this approach in several directions: (a) firstly, we have

used a more complete basis set, namely, a sp3d5 instead of the optimized sp3. (b) Second,

we have introduced a corrected-LDA method to analyze the interaction between graphene

layers, instead of the method based on the expansion of the interaction in the interlayer

orbital overlap. (c) Finally, we have improved our calculation of the vdW-interaction by

a more precise determination of the interaction term JvdW
i,j,α,β, without resorting to a dipole-

dipole approximation, which yields the (−C6/R
6)-behaviour for the vdW-potential between

two atoms.

The results obtained with these changes are, however, very similar to the ones presented in

[1], with an interaction energy per surface atom a little larger than the experimental evidence

[28] : 86 meV/atom in our calculations and around 60 meV/atom from experiments [28].

This overestimation of the interaction energy (and other similar results from independent

calculations [29, 30]) has prompted us to analyze the effect of introducing a kind of dynam-

ical screening in the van der Waals interaction. This point is discussed in the final section,

where we show that for the graphene-graphene interaction those dynamical screening effects

reduce the interaction energy by around 20 meV/atom, yielding an excellent agreement

between theory and experiments.

II. METHOD, BASIS SET AND SUM RULE

In this section, we present the general frame of our study, which lies on local-orbital

Density Functional Theory (DFT) and intermolecular perturbation theory. The DFT cal-

culations have been performed using the Fireball code which is a real-space local-orbital

Molecular Dynamics implementation of DFT [31]. The LDA exchange-correlation potential

is used for each system (graphene layer). We use a set of optimized numerical atomic orbitals

(NAOs) [32] to represent the valence electron meanwhile the core electrons are represented

by means of pseudopotentials [33].

For the C-atoms, we have considered, as mentioned above, a polarized sp3d5 basis, adding

an additional empty d-state to the sp3-basis used in ref [32]; the corresponding cut-off radii

are rs = rp = 4.5 a.u., and rd = 3.5 a.u. This allows us to introduce all the necessary tran-

sitions describing the Van der Waals interaction. This new orbital has also an important

effect on the weak chemical interaction, since it yields a slightly attractive contribution in
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agreement with other independent works [16, 17, 34], whereas for the simple basis set, the

weak chemical energy is totally repulsive as we have seen in previous works on graphitic

materials [1, 35, 36].

A. General frame : the LCAO-OO hamiltonian

The general frame of this work is the LCAO-OO method, which is a DFT formalism

based on the occupation numbers, whereas the standard Kohn-Sham formulation considers

the spatial electronic density ρ(~r) of the system. We start with the general Hamiltonian :

Ĥ =
∑

ν,σ

(ǫν + V ps
νν,σ)n̂ν,σ +

∑

µ 6=ν,σ

(tµν,σ + V ps
µν,σ)ĉ

†
µσ ĉνσ +

+
1

2

∑

νωσµλσ′

Oνµ
ωλĉ

†
νσ ĉ

†
µσ′ ĉλσ′ ĉωσ (1)

where the creation and annihilation operators ĉ+, ĉ, as well as the occupation number

operator n̂ = ĉ+ĉ are defined in a Löwdin orthonormal basis set {φµ}. This orthonormal

basis set is defined from an original basis set of optimized atomic-like orbitals {ψν} by the

so-called Löwdin orthogonalization procedure :

φµ =
∑

ν

(S−1/2)µνψν ; (2)

where Sµν =< ψµ | ψν > is the overlap matrix.

In Eq. (1) ǫν+V
ps
νν,σ and tµν,σ+V

ps
µν,σ define the one-electron terms (with the pseudopotential

(PS) contributions included), and

Oνµ
ωλ =

∫

φν(r̄)φω(r̄)
1

| r̄ − r̄′ |
φµ(r̄

′)φλ(r̄
′)dr̄dr̄′ = (νω|µλ) (3)

are the electron-electron terms. In the LCAO-OO formalism, Hamiltonian (1) is rewritten

as:

Ĥ = Ĥ0 + δĤ (4)

Ĥ0 =
∑

νσ

(ǫν + V ps
νν,σ)n̂νσ +

∑

ν 6=µ,σ

T̂νµ,σ ĉ
†
νσ ĉµσ +

∑

ν

Uνn̂ν↑n̂ν↓ +
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+
1

2

∑

ν,µ 6=ν,σ

[

Jνµn̂νσn̂µσ + (Jνµ − Jx
νµ)n̂νσn̂µσ

]

, (5)

T̂νµ,σ = [tνµ + V ps
νµ,σ +

∑

λ,σ′

hλ,νµn̂λσ′ −
∑

λ

hxλ,νµn̂λσ].

In Ĥ0 the many-body terms are written explicitly showing the contributions depending on

1, 2 and 3 different orbitals. In particular, Uν = (νν | νν), Jνµ = (νν | µµ), Jx
νµ = (νµ | νµ),

hλ,νµ = (λλ | νµ), hxλ,νµ = (λν | λµ), see Eq. (3). A deeper interpretation of the energy

associated with each term can be found in Refs. 37–39. The vdW interaction ĤvdW is

included in δĤ. Regarding our system of interest, the graphene-graphene interaction, Ĥ0

takes into account the covalent interaction inside each graphene plane, and the weak chemical

interaction between graphene layers.

B. vdW formalism

We now present the general formalism developed here to determine the van der Waals

energy in the system. This interaction is originated through quantum dipole-dipole interac-

tions, due to charge fluctuations in the two subsystems. This energy is added perturbatively

to the system. In the LCAO-OO method the van der Waals interaction is included in δĤ :

δĤ =
1

2

∑

νωσµλσ′

Oνµ
ωλĉ

†
νσ ĉ

†
µσ′ ĉλσ′ ĉωσ (6)

where µ, ν, ω and λ refer to four different orbitals. This term is of course really difficult to

handle in a general way and includes, in particular, the van der Waals contribution, which

in our approach corresponds to the following term

ĤvdW =
∑

i,j,α,β,σ1,σ2

JvdW
i,j;α,β ĉ

+
i,σ ĉj,σ ĉ

+
α,σ′ ĉβ,σ′ (7)

with JvdW
i,j;α,β = (ij | αβ), see Eq. 3, where i,j-orbitals (i 6= j) belong to the first graphene-layer

and α, β (α 6= β) to the second graphene-layer. In our work we have used an atom-atom

approximation, keeping in Eq. (7) only the terms with i, j-orbitals in the same atom, and α, β

in the same atom of the other layer, and have neglected all the other interlayer interactions

from δĤ. Also orbitals {ψ} have been used for the calculation of JvdW
i,j;α,β, instead of orbitals
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{φ} for simplicity. Notice that this term gives a zero contribution at the first order for the

graphene-graphene interaction, since there are no permanent dipoles in graphene.

The van der Waals energy between the two subsystems is then calculated using second

order perturbation theory. The van der Waals energy is weak with respect to the covalent

energy, which justifies the use of this approximation. In that frame, we can now easily find

the following van der Waals interaction energy (see ref [1]) :

EvdW = 4
∑

i,j,α,β

(JvdW
i,j,α,β)

2

∫ ρi(ε1)ρj(ε2)ρα(ε3)ρβ(ε4)

(ε1 − ε2 + ε3 − ε4)
dε1dε2dε3dε4 (8)

where i 6= j on the same atom of the first layer, and α 6= β on the same atom of the second

layer. In Eq. (8), ρ(ε) represents the local density of states per spin on each orbital; besides,

the integrals in ε1, ε3 (ε2, ε4) run through the occupied (empty) states. This expression can

be further simplified to express the result in terms of the occupation numbers of each state

:

EvdW ∼ 4
∑

i,j,α,β

(JvdW
i,j,α,β)

2ni(1− nj)nα(1− nβ)

(ei − ej + eα − eβ)
(9)

In this expression, ni are the orbital occupation numbers (per spin)

ni =
∫

occupied
ρi(ε)dε (10)

and

ei =
∫

occupied
ερi(ε)dε

/

∫

occupied
ρi(ε)dε (11)

ej =
∫

empty
ερj(ε)dε

/

∫

empty
ρj(ε)dε (12)

are average occupied and empty levels.

In our calculations we find: ns = 0.40e, np = 0.45e and nd = 0.05e; whereas in the

sp3-basis set we had [1] :ns = 0.47e, np = 0.51e. Using these numbers as well as the mean

levels ei and ej , as calculated from the graphene DFT band structure (see figure 1 for our

calculated band structure, and figure 2 for the corresponding density of states decomposed

in s, p and d contributions ), we can evaluate the vdW-energy between the graphene layers.

Although in our calculations we are going to obtain JvdW
i,j;α,β using the full integrals given

in equation (3), it is worth mentioning that at long distances between the atoms, having the

orbitals (ij) and (αβ), JvdW
i,j;α,β can be approximated by:
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JvdW
i,j;α,β =

1

R3
(< i|x|j >< α|x′|β > + < i|y|j >< α|y′|β > −2 < i|z|j >< α|z′|β >) (13)

which depends on the different dipolar matrix elements in each atom (R is the distance

between the atoms assumed located along the z-axis). This equation shows the importance

that the chosen basis set has in the calculation of the vdW interaction. In particular, a sp3

minimal basis does not yield enough dipolar transitions to reproduce well that interaction

[1]. This is better characterized by considering the following sum rules:

〈s|z2|s〉 =
∑

i

〈s|z|i〉〈i|z|s〉 (14)

〈pz|z
2|pz〉 =

∑

i

〈pz|z|i〉〈i|z|pz〉 (15)

〈px|z
2|px〉 =

∑

i

〈px|z|i〉〈i|z|px〉 (16)

in our sp3d5 basis set, these sum rules are approximated by:

〈s|z2|s〉 ∼ 〈s|z|pz〉〈pz|z|s〉 (17)

〈pz|z
2|pz〉 ∼ 〈pz|z|s〉〈s|z|pz〉+ 〈pz|z|dz2〉〈dz2|z|pz〉 (18)

〈px|z
2|px〉 ∼ 〈px|z|dxz〉〈dxz|z|px〉 (19)

with 〈s|z2|s〉 = 0.268 Å2; < pz|z
2|pz >= 0.534 Å2; < px|z

2|px >= 0.178 Å2; < s|z|pz >=

0.481 Å; < pz|z|dz2 >= 0.456 Åand < px|z|dxz >= 0.395 Å. The good quality of our basis

set is shown by the fact that the previous approximated sum rules are satisfied with an

accuracy of ∼ 85%. A sp3 minimal basis set would yield a very poor approximation to the

sum rules for 〈pz|z
2|pz〉, 〈px|z

2|px〉, indicating the necessity of introducing some corrections

for calculating an appropriate vdW-interaction [1].

An important aspect to stress here is the 1/r6 behaviour of the van der Waals interaction

due to the dipolar approximation, even when considering d orbitals through the sum rules.

However, we will see in the four-center coulombic integrals approach that we develop in

this article, that we can recover higher multipolar contributions leading to 1/r8 and 1/r10

contributions in the van der Waals interaction.
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III. WEAK CHEMICAL INTERACTION AND VAN DER WAALS INTEGRALS

A. Weak chemical interaction

In the case of weakly interacting systems, the interaction energy is determined as a

balance between short and long range interactions, namely a ”chemical” interaction and the

pure van der Waals energy. The short-range interaction can be calculated in an approximate

way by means of a corrected LDA calculation, as follows : first, define the electron density

for each subsystem (here, the two planes of graphene); then, approximate the exchange-

correlation energy for the complete system as the sum of the exchange-correlation energies

for each subsystem taken each one independently, neglecting in this way the effect of the

overlapping densities in the exchange-correlation energy. In the following, we refer to the

short-range interaction energy calculated in this way as the weak chemical interaction (WCI)

[29]. This way of proceeding tries to avoid the double counting that would appear including

both, Exchange provided by a conventional LDA and the correlation energy associated with

the long range van der Waals potential discussed below: in particular, Lang [44] has clearly

shown how the LDA exchange-correlation hole for rare-gas atoms on metal surfaces mimics

partially the van der Waals polarization hole induced in the metal. We should also mention

that other authors [45] have analyzed how to avoid this double counting by means of an

approach similar to the one presented in this paper, using a short-range correlation energy.

In the present approach, the exchange-correlation energy can be formally rewritten as :

Exc(n1 + n2) = Exc(n1) + Exc(n2) (20)

n1 and n2 representing symbolically the electronic occupancies of the orbitals of each

subsystem. Using this approximation for the exchange-correlation energy, we proceed to

the standard diagonalization of the system. In figure 3 we compare the graphene-graphene

chemical interaction energy as obtained for the standard Fireball-LDA, the LCAO-S2 ap-

proach of reference [1] and the WCI. In particular, notice the important effect introduced by

the d-electrons that have increased that binding energy by around 30− 40 meV/atom; the

effect of our WCI approximation on the LDA calculation is not, however, that important.

Notice also the good agreement that our LDA-calculation shows with other independent

LDA-results ??.
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B. Coulombic integrals and van der Waals interaction

The calculation of JvdW
i,j;α,β has been performed by fitting the radial Fireball orbitals with

spherical Gaussians functions. The spherical Gaussians are written as a proper combination

of cartesian Gaussians; then, the analytical solutions of the electron repulsion integrals are

expressed in terms of Boys functions [46].

In the pertubation treatment we use (JvdW
i,j;α,β)

2. In Fig. 4, 5 and 6 we have represented

the sum of (JvdW
i,j;α,β)

2 for the different sp − sp, sp − pd and pd − pd transitions between a

pair of C atoms; in these Figures we also show a fit of the long-range part of these sums

as a combination of 1/r6, 1/r8 and 1/r10 terms. While we have an important 1/r6 contri-

bution in all these integrals, in particular for the sp − sp transitions, corresponding to the

dipole-dipole interaction, we also observe contributions in 1/r8 and 1/r10 corresponding to

quadrupolar contributions. Thus, in the present calculations we have used the calculated

values of (JvdW
i,j;α,β)

2, improving on the long-range dipole-dipole approximation, equation 13,

used previously, yielding a better description of this interaction. Another important differ-

ence, is that in the sum rule calculation, contributions involving the d bands only appear

as transitions from occupied p to unoccupied d bands. Now, with this more complete basis

set, due to hybridization, we also recover transitions form occupied d bands to unoccupied

p bands, as it can be seen from the DOS of the graphene.

In figure 7 we show the total van der Waals interaction energy between the graphene layers,

and the different components sp− sp, sp− pd and pd− pd already presented in figures 4, 5

and 6.

C. Results : graphene-graphene interaction

The total interaction energy between graphene layers, calculated as the sum of the WCI

energy and the van der Waals potential, is shown in figure 8. These results are rather

similar to the ones presented in Ref. [1] : the interlayer equilibrium distance is 3.1 − 3.2Å

and the interlayer binding energy is 86 meV/atom (close to the value of 72 meV/atom given

in that reference) although the WCI-energy has increased, the vdW-energy has decreased

somewhat. This interlayer energy can be compared favourably with the 70 meV/atom of
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independent calculations [16, 17]. Experimentally, this energy seems to be 52 meV/atom

but, as commented by Hasegawa [16, 17], the value to compare with, due to thermal effects,

should be a little larger, around 60 meV/atom. So, we conclude that our calculations seem to

be rather satisfactory although probably a little too large. This fact and other independent

works [30] has prompted us to consider, in the next section, the effect associated with the

dynamical screening in the van der Waals interaction.

IV. DYNAMICAL EFFECTS IN THE VAN DER WAALS INTERACTION AND

CONCLUSIONS

We analyze how dynamical processes affect the vdW-interaction by means of the simple

model shown in figure 9 : here, atoms 1 and 2, represented each one by a two-level model,

are coupled by means of the J interaction (in our previous notation J=JvdW
i,j;α,β). The van der

Waals energy can be calculated as due to the interaction between the two bubbles of atoms

1 and 2, using the formalism of the causal Green-functions [47].

Bubble 1 contribution can be calculated as the following causal polarizability:

P c
1 (ω

′) =
∫ dω

2π
Gc(ω)Gc(ω − ω′) (21)

while for bubble 2:

P c
2 (ω

′) =
∫ dω

2π
Gc(ν)Gc(ν − ω′) (22)

TakingGc(ω) = 1/(ω−Ea−iη)+1/(ω−Eb+iη) andG
c(ν) = 1/(ν−E ′

a−iη)+1/(ν−E ′
b+iη)

we obtain the following polarizabilities:

P c
1 (ω

′) = i{1/(ω′ −∆E + iη)− 1/(ω′ +∆E − iη)} (23)

(∆E = Eb − Ea) and

P c
2 (ω

′) = i{1/(ω′ −∆E ′ + iη)− 1/(ω′ +∆E ′ − iη)} (24)
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(∆E ′ = E ′
b − E ′

a)

Then, the vdW-energy can be calculated up to second order in J, by the equation EvdW =

1/2J2
∫ dω′

2π
P c
1 (ω

′)P c
2 (ω

′), that yields :

EvdW = −J2/[∆E +∆E ′] (25)

as corresponds to the virtual excitations, ∆E and ∆E ′ of atoms 1 and 2.

We introduce dynamical effects in this vdW-energy by means of the causal-response function,

ǫc(ω′), that screens the interaction J, between the two bubbles. Using that dielectric function,

the vdW-energy is given by:

EvdW = 1/2
∫ dω′

2π
P c
1 (ω

′)[J/ǫc(ω′)]P c
2 (ω

′)[J/ǫc(ω′)] (26)

For ǫc(ω′), we are going to assume that for the high frequencies of interest (the effect

of the low frequencies in this vdW-screening is negligible) the dielectric function can be

approximated by:

1/ǫc(ω′) = 1 + ωp[1/(ω − ωp + iη)− 1/(ω + ωp − iη)] (27)

where ωp is a kind of plasmon frequency for the medium under consideration (graphite

in our particular case). Then, equations 23, 24, 26 and 27 yield the following vdW-energy

(assuming for simplicity that ∆E = ∆E ′) :

EvdW = −J2/[∆E +∆E ′ + 2ωp] (28)

This is the crucial result of this section; this equation shows how the dynamical screening

of the bare vdW-interaction, reduces the vdW-energy by a factor (∆E+∆E ′)/(∆E+∆E ′+

2ωp) whose importance depends on the relative values of (∆E +∆E ′) and 2ωp).

For our present case, we consider the two graphene layers embedded in a graphite matrix

and consider the plasmon frequency associated with this material. Electron energy-loss

spectra from graphite [48] show two peaks at 7 and 27 eV; the 7 eV-peak is much smaller

than the other one, and we are going to use eqn (27) for graphite with ωp = 27 eV. For

the ∆E-energies we find three groups: the sp − sp, sp − pd and the pd − pd excitations

with values of around 25, 40 and 60 eVs, respectively. Introducing these values in equation

(28) leads to a vdW-potential reduction of about 40%. Then, for the graphene-graphene
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equilibrium distance we find a reduction of the van der Waals energy of 22 meV/atom.

With this value our graphene-graphene interaction energy is reduced to 64 meV/atom in

very good agreement with the experimental evidence.

In conclusion, we have presented a combination of DFT with intermolecular perturbation

theory, within the framework of the LCAO-OO approach, to analyze the graphene-graphene

interaction. Our analysis is an extension of a previous work [1, 35], improving the basis

set used in the calculation, the short-range chemical interaction between layers and the

calculation of the van der Waals forces. In these calculations we have obtained an interaction

energy between graphene layers of 86 meV/atom, slightly larger than the value afforded by

the experimental evidence, 60 meV/atom. Then, we have analyzed the effect of introducing

dynamical screening in the vdW-energy and have found that this dynamical effect reduces

the vdW-energy by 40%. We conclude that this dynamical screening is not negligible and

that it should be considered as an important effect to be introduced in many systems with

a high plasmon energy, as is the case of many metals.
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[15] S.D. Chakarova-Kack, E. Schröder, B.I. Lundqvist and D.C. Langreth, Phys. Rev. Lett. 96,

146107 (2006).

[16] M. Hasegawa and K. Nishidate, Phys. Rev. B 70, 205431 (2004).

[17] M. Hasegawa, K. Nishidate and H. Iyetomi, Phys. Rev. B 76, 115424 (2007).

[18] U. Zimmerli, M. Parrinello, and P. Koumoutsakos, J. Chem. Phys. 120, 2693-2699 (2004).

[19] S. Grimme, J. Comput. Chem. 25, 1463 (2004).

[20] A. Tkatchenko and M. Scheffler, Phys. Rev. Lett. 102, 073005 (2009).
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FIG. 1. Representation of the bandstructure of a graphene plane as calculated in our formalism.
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FIG. 2. Graphene Density of States (DOS) representing the major contributions of the s, p and d

bands.
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FIG. 3. Comparison of the chemical interaction between two graphene planes, obtained for the

WCI, the standard fireball-LDA (sp3d5) and the LCAO-S2 approach (sp3)[1].
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FIG. 4. Representation of the sum of all the (JvdW )2 for sp− sp transitions between two Carbon

atoms. The fit of the interaction shows a 1/r6 behaviour.
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FIG. 5. Representation of the sum of all the (JvdW )2 for sp− pd transitions between two Carbon

atoms. The fit of the interaction shows multipolar behaviours in 1/r8 and 1/r10 in addition to the

expected 1/r6 behaviour.
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FIG. 6. Representation of the sum of all the (JvdW )2 for pd− pd transitions between two Carbon

atoms. The fit of the interaction shows a multipolar behaviour of the interaction.
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FIG. 7. Representation of the different transitions, namely sp−sp, sp−pd and pd−pd, contributing

to the van der Waals energy between two graphene planes.
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FIG. 8. Cohesion energy of the two graphene planes as the sum of the weak chemical interaction

energy and the van der Waals energy.
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