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Abstract. We study a model of traffic where drivers adopt different behavioral strategies. These can be
cooperative or defective according to a driver abiding or not by a traffic rule. Drivers can change their
strategy by imitating the majority, with a rule that depends on the strategies with which they have
interacted. These interactions occur at intersections, where vehicles pay a temporal cost according to their
strategy. We analyze the conditions under which different strategy compositions represent an advantage in
the system velocity. We found that the cooperators’ mean speed is higher than the defectors’ even when
the vehicle density is large. However, defectors can obtain benefits in their mean speed when they are a
minority in an essentially cooperative population. The presence of a core of educated drivers, who persist
firmly in a cooperative behavior, optimizes the speed in the system, especially for intermediate values of

vehicular density and higher temporal costs.

1 Introduction

Vehicular traffic dynamics has received considerable atten-
tion since, at least, the middle of the twentieth century.
In the decades that followed different points of view have
been used to tackle different features of the many prob-
lems associated with traffic. The interest of these hardly
needs justification: the many aspects of traffic have enor-
mous impact in our civilization, with applications in many
fields, ranging from engineering to the social sciences. The
volume of traffic flow has quickly overpassed the capacity
of the cities and highways, once and again, country after
country, making the understanding of its dynamic an im-
perative in many societies. The problems of infrastructure
and urban development able to accommodate an increas-
ing flow range reside at one end of the spectrum. At the
other end there are aspects of education, social planning
and law enforcement, aiming at helping the flow in the
best interest of the society. Many other ancillary prob-
lems lay in between: congestion, pollution management
(including noise and vibration), optimization of energetic
resources, economics, reduction of accidents and casual-
ties, parking, public transportation alternatives, remote
monitoring, robotization, etc.

The complex spectrum of mathematical traffic mod-
els is well documented in the reviews by Helbing [1] and
Chowdhury et al. [2]. The influential works of Lighthill
and Whitham [3], and then of Richards [4], are based on
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a macroscopic approach in which traffic is considered a
continuous medium-like a fluid-characterized by a spatial
density and a velocity field. On a different vein, “micro-
scopic” models that treat the motion of each vehicle sep-
arately have been developed as a parallel line of research.
Microscopic models emphasize the role played by the (non
linear) interactions between vehicles. The interest of physi-
cists in traffic problems received an enormous boost with
the work of Nagel and Schreckenberg [5]. There exist very
detailed microscopic models that serve the purpose of an-
alyzing mostly local situations. Such level of detail is still
prohibitive in the study of large scale features of traf-
fic flow. Nagel-Schreckenberg models and others, on the
other hand, exploit the more manageable representation
of traffic as cellular automata.

In this work, we present a bidimensional model of traf-
fic where drivers operate with different behavioral strate-
gies. In this framework we introduce a dynamic of imi-
tation based on the types of strategies faced by drivers
at each intersection of a city. Our aim is to get an insight
about how the interaction between drivers with distinctive
behaviors can influence a 2D [6] traffic flow. Specifically,
we study a system where part of the agents respects a
traffic rule, while others ignore it. It is a very common
situation in many countries with poor traffic education,
from which an imitation behavior, “do as the others do”,
usually emerges. In such a context, we explore the effect
that the introduction of a core of “well educated” drivers,
abiding by the law, affects the collective behavior and the
efficiency of the system in terms of, for example, speed.
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In the vast literature on traffic there are few studies
which use the tools of game theory. Yet, the behavior of
drivers can easily and adequately be treated as a strategy
in the game theoretical sense. The framework we follow in
the present work is reminiscent of other studies in the dy-
namics of pedestrians [7-9]. In particular, Baek et al. [10]
have analyzed a cellular automaton where agents move
along a passageway in both directions. When encounter-
ing other agents they take a step to the right with proba-
bility p and to the left with probability 1 — p. In this way,
they play a coordination game in which two strategies are
considered: traffic rule abiders and traffic rule ignorers.

Other game theoretical approaches have been applied
on networks of transportation approached from an eco-
nomic point of view [11,12]. Certainly, there are many in-
stances where the mathematics of cooperating and defect-
ing strategies, of imitation and education, can be applied
in traffic systems. The education of traffic rules is per-
haps the epitome where the need of reaching a consensus
of cooperation in the system produces a global benefit. A
similar problem in a more abstract setting has been stud-
ied in reference [13], and we aim to applying some of those
ideas here.

2 Model

With the purpose of obtaining an insight of the mecha-
nisms operating behind the emergent collective patterns,
we analyze a simple model that contains enough ingredi-
ents from the real systems. The model city is a square
with straight streets arranged in a regular lattice. For
the sake of simplicity in the description, imagine that the
streets run either in the North-South direction (the longi-
tudinal streets) or the East-West (the transversal streets).
All streets are one-way, single-lane roads. The direction of
traffic alternates in both sets of streets, as is usual in many
real world situations.

The vehicles are modelled as a cellular automaton. A
car can occupy the space between two intersections, and
advance one block at each time step of the automaton dy-
namics. Double occupancy of the blocks is not allowed:
the cars can advance only if the block ahead is empty.
Interaction of cars occur only at the intersections, in a
manner that will be described below. We keep a constant
number of vehicles by allowing those drivers that exit the
lattice from a border to reenter the system. To prevent ar-
tifacts that a periodic boundary condition would produce
in the rather small systems we use to mimic the streets of a
real world city, these cars are randomly returned to empty
slots at the border of any street, regardless the street from
which they came out.

The dynamics proceeds in discrete steps. At each step
all the intersections of the city are updated in a random
order. The effect of this is an asynchronous update of the
positions of the vehicles, which prevents some artifacts
that a sequential update produces, especially at high den-
sity. A simulation run consists of the repetition of this
update step nL? times (with usually n = 100), which pro-
vides a reasonable number of interactions between drivers.
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We observed that the flow reaches a stationary state after
a short transient, which allowed us to take measurements
and time averages during the course of the simulation. The
results shown below correspond, furthermore, to ensemble
averages of 100 such simulation runs.

There is only one traffic rule in the system: drivers
shall give way to vehicles approaching from the right at
intersections. This rule is widely used in countries with
right-hand traffic, and applied at all intersections where it
is not overridden by priority signs or traffic signals, neither
of which are present in our model. Drivers are either coop-
erators (who abide by the rule, and yield to drivers coming
from their right) or defectors (who ignore the rule).

When two vehicles approach an intersection at the
same time there is an interaction that determines the or-
der of crossing and the time involved. There may be four
different situations according to the drivers’ strategies, as
follows. (i) Both drivers are cooperators. One of them gives
way to the other, who has right of way according to pri-
ority of the right. (ii) The driver coming from the right
is a defector, and the other is a cooperator. This situa-
tion is analogous to (i), since the cooperator yields to the
defector, and the defector just ignores the rule. (iii) The
cooperator approaches from the right, and the other driver
is a defector. This is the reverse of (ii). The defector does
not yield, while the cooperator assumes his right to cross
and attempts to do it. In this case, we suppose that some
time is lost in the fake pass. (iv) Both drivers are defec-
tors. In this situation, we suppose a collision that entails a
longer loss of time than in case (iii). The time that a driver
needs to cross the intersection can be used as a measure
of the cost involved in the game situation, analogous to
the payoff of the usual formulation of formal games. The
loss of time that occurs in situations (iii) and (iv) can be
a substantial contribution to the cumulative cost, and can
be interpreted as pass fakes, fines or even crashes. The
crosses actually happen only if the slot just ahead of the
intersection is free. Figure 1 shows a cartoon summarizing
the description of the system.

The costs involved in rules (i) to (iv) are summarized
in the following table, that shows the time in units of sim-
ulation steps. A left (right) driver is a driver approaching
the intersection from the left (right) of the other driver. A
driver that yields loses a time step, incurring into a cost
of 2 for crossing. The parameters a and b characterize the
delay incurred into in case of more serious interactions.
Observe that, in the interaction (iii), we assume that both
drivers lose the same time, a. This is a simplification of a
situation that could be, of course, more complex in real
life. For example, the cooperator might stop completely,
the offending defector cross, and then the cooperator con-
tinue his way. This could be implemented in the present
formulation with an additional parameter ¢ > a for the
cooperator. A sensible choice, in the present cellular au-
tomaton formulation, would be ¢ = a + 1. The results
do not change significantly in such a case, reflecting a ro-
bustness of the model with respect to details that might
be difficult to quantify. On the other hand, one does not
sensibly expect that ¢ > a+ 1. Even if one would allow it,


http://www.epj.org

Eur. Phys. J. B (2013) 86: 153
|
|
‘ :

0

9 >—>

Fig. 1. Sketch of a distribution of vehicles in a model city.
Cooperators and defectors are represented by white and grey
ovals, respectively. The arrows show the direction of motion of
the cars. Dashed arrows indicate drivers that give way to the
other; solid arrows correspond to drivers that cross (or try to
cross) the intersection. The four interactions shown (besides
the “free” drivers 9 and 10) correspond to the four types of
encounter of strategies that can occur at intersections.

a thorough reformulation of the rules would be necessary
to accommodate for the possibility of a vehicle standing
still even when the interacting one has followed his way. In
the present work we prefer to keep the model rules simple,
as formulated.

Right driver

Left driver

3 Results

Let us begin with the analysis of systems with quenched
strategies. Each driver receives, at the beginning, a strat-
egy that remains unchanged during the course of the sim-
ulation. Strategies are randomly drawn, uniformly with a
probability po for cooperation and its complement 1 — po
for defection. The density of cooperators is then pc, uni-
formly distributed in the city. The simulations runs we
show below consist of 100L? time steps, in a square city of
L?/2 intersections, and with a time step that updates, ran-
domly and asynchronously, as many intersections. After a
transient of L? time steps we measure the instantaneous
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Fig. 2. Mean velocity of the system, of cooperators and of de-
fectors ((v), (ve) and (vp), respectively) as a function of the
density of vehicles, §. We show two different cooperation sce-
narios, as indicated in the legend: 25% and 75% of cooperators
in the population. The costs involved in the interactions are
a =3, b =100. Data are averaged over 100 realizations.

average velocity in the system, defined as the ratio of mov-
ing vehicles to their total number, and compute the time
average of it, denoted (v) below. Average velocity of co-
operators and of defectors ({(v¢) and (vp)) are defined
similarly. Besides, we also measure the average velocity of
each vehicle as the ratio of the number of steps it makes
during the simulation, to the total duration. From this
ensemble we compute the distributions P(ve) and P(vp),
characterizing the movement of the two classes of drivers.

3.1 Density dependence

Figure 2 shows the average velocities as a function of
vehicle density § in a 20 x 20 square lattice. Two sets
of curves are shown, corresponding to different strategy
compositions of the system. The lowest three curves cor-
respond to a system with 25% cooperators. The upper
three, on the other hand, correspond to a very coopera-
tive system with 75% cooperators. These two situations
provide a good characterization of both cooperative and
non-cooperative ensembles.

As Figure 2 shows, the velocity decreases monotoni-
cally with vehicle density. This is so for the system av-
erage velocity (v) as well as for the cooperators and the
defectors. Observe, also, that the average velocity of co-
operators is greater than that of defectors at all densities.
This reflects the fact that cooperators are less prone to the
higher costs involved in the violation of the right hand rule
(b > a > 2). Moreover, observe also the effect of system
composition on the average velocity. When the system is
more cooperative, defectors also get a benefit. Indeed, the
velocity of defectors is greater in a system with 75% of co-
operators than that of cooperators in a system with 25%
of cooperators — at least for intermediate densities. We
will return to these matters later on.
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Fig. 3. Distribution of the velocity of cooperators (full curve)
and defectors (dotted curve) for densities 6 = 0.2 in the main
panel and § = 0.8 in the insert. The costs are a = 3, b = 100.
Data are averaged over 100 realizations.

We have also computed the distribution of time-
averaged individual velocities, and checked that the mean
values shown in Figure 2 are a good characterization of
them. Figure 3 shows a typical example. The distribu-
tions are bell shaped around their mean values, with nar-
row dispersion. Only when the mean values of cooperators
and defectors are very close (as it happens when the den-
sity is high) the distributions show some overlap as we see
in the insert of the Figure 3.

3.2 Imitation dynamics

The results presented in the previous section provide a
first step in our analysis of the dynamics of cooperation
and defection in the simple traffic model. We will now
introduce the key ingredient of strategy imitation. Let us
suppose that there are two idiosyncrasies in the drivers.
Some of them adopt their driving strategy not because
of conviction or belief in the convenience of respecting
the traffic rule, but by imitation of other drivers. It is a
common habit in many societies with little enforcement
of the rules and a low level of education of them: “do as
the other do”. Besides these “imitators”, a core of drivers
may well be bona fide cooperators, representing a small
group of drivers that have been well educated in the traffic
rules, and are convinced of their application. These “core
cooperators” do not imitate the strategy of other drivers,
and always cooperate.

We implement this imitation dynamics in the following
way. Imitating drivers can change their strategies based on
the frequency of encounters with drivers that display one
or the other strategy. Since it is unreasonable that drivers
change strategy too often, the imitation takes place ev-
ery 7 simulation steps, based on the frequency of interac-
tions during the previous 7 steps. The fraction of encoun-
ters with either strategy define the individual probabilities
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of imitation:

~ Je
Fo = fe+ fp’ M)
PD =1 — Ppc, (2)

where fs is the number of interactions with strategy s
during the previous 7 steps. Observe that the left driver
participating in encounters of type (i) and (ii) — a cooper-
ator — cannot infer the strategy of the right driver. They
always give way, regardless of whether the right driver is
a cooperator or a defector. In these situations, the coop-
erator adds 0.5 both to fc as fp. In any other type of
encounter each driver is able to infer the strategy used by
the other driver, and will add 1 to f¢ or to fp as appropri-
ate. Based on the defined probabilities, drivers can change
their strategy by imitating the majority, if they play the
other strategy:

C — D with probability Pp, (3)
D — C with probability Pc. (4)

It is reasonable to assume that drivers in a small town
tend to interact with the same drivers over and over again,
while those in a big city do not. In this spirit we have
made 7 depend on the size of the city, as L? simulation
steps.

The numerical results show that the dynamics of imita-
tion establishes a balance between the number of coopera-
tors and defectors. Independently of the initial conditions,
the system reaches an equilibrium in the composition of
strategies. The average number of cooperators and defec-
tors at the end of the realizations, with the parameters
we used, are 56% and 44%, respectively. Moreover, these
same values of equilibrium are observed even in extreme
cases when a single cooperator or defector is introduced at
the beginning of the simulations in populations in which
all other drivers have the opposite strategy (besides fortu-
itous extinctions of one of the populations when it is very
small, due to stochastic fluctuations).

This approach to equilibrium can be understood in a
mean field approximation by analyzing a master equation
for the probability densities. Consider the following equa-
tion for the probability density of cooperators:

dpc
dt

where W (S|S’) is the transition probability for a driver
with strategy S’ to switch to S, and pc and pp =1 — pe
are the probability densities of cooperators and defectors,
respectively, at time t.

Given the lack of discrimination of cooperators driving
on the left at intersections, in a well mixed approximation
their probability to switch to defection is W (D|C) ~ 1/2.
On the other side, defectors build up a probability of
switching to cooperation based on their encounters with
cooperators, so we have W (C|D) = pc. With these, equa-
tion (5) becomes a logistic equation of the form:

= W(C|D)pp — W(D|C)pc, (5)

dpc

g = Pc/2=pc). (6)
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Fig. 4. Coefficient Av, measuring the increase of the system
velocity after the introduction of a core of cooperators, versus
the relative size of the core in the population. The curves show
the behavior for different values of the vehicle density J, as
shown in the legend. The initial fraction of cooperators in the
system is 25% in all cases. The cost parameters are a = 3,
b = 100. Data are averaged over 100 realizations.

The stable equilibrium solution of equation (6) is
pe = 1/2, close to the observed stationary value. Inciden-
taly, observe that a partial discrimination of the coopera-
tors, of a fraction € < 1 of the defectors in their encounters,
can be taken into account with a transition probability of
the form W (D|C) = epp + (1 — €)/2. It is easy to show
that the ensuing logistic equation also has pf. = 1/2 as
only attractor. The timescale of the evolution, however,
becomes dependent on € as 2(1 — €)™ L.

Besides the imitators, we set a fraction foo of drivers
to form a core of cooperators. They respect the traffic
rules strictly, and we intend to study their effect in the
dynamics. After the system has reached a stationary state
they are randomly chosen, set as cooperators, and will not
change their strategy for the remaining course of the run.
They represent a set of drivers who have been educated to
abide by the law, disregarding the behavior of the rest of
the system. We are interested in the reaction of the system
as a whole, as a result of the imitation of strategies, and
its dependence on the size of this core of cooperation.

As a global measure of the influence of the core we
define a coefficient:

Ap="" vb, (7)
Up

where v, and v, are, respectively, the average system ve-
locities calculated before and after the establishment of
the core. Figure 4 shows the effect of the core size on Av
for different vehicle densities. It is clear that the existence
of the core of cooperators represents a benefit for the sys-
tem as a whole, in terms of the velocity of the traffic flow.
Moreover, the growth of Av is monotonous, without any
indication of a transition for some critical core size. This
behavior is very general, and we have checked it for a wide
range of model parameters.

Page 5 of 6
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Fig. 5. Coefficient Av as a function of vehicle density, for
different costs of the interaction between defectors. The other
parameters are a = 3 and fcc = 0.5. Error bars represent the
mean square deviation of the data in 100 realizations.

The meaning of this result may be important for the
design of education plans. It implies that not only it is nec-
essary to educate and convince as many drivers as possible
of the importance of the respect of the rules, but also that
the imitation of behavior does not produce a collective
critical turnover of a defective system.

Observe, also, that the actual value of the growth of
performance may be sometimes dubious, since the growth
of velocity can be marginal in some situations, particularly
for low and high densities of traffic. This is an indication
that other measures are necessary to achieve specific goals
of traffic fluidity, besides the education of a core of drivers.

As a final comment on Figure 4, observe that the in-
crease of the velocity is not monotonous in the density:
the greatest values of Av correspond to intermediate val-
ues of . To show this dependence we plot, in Figure 5,
Av as a function of § for a single value of the core size,
fcc = 0.5. The plot shows that the increase of the aver-
age velocities of the system are greater near and in excess
of 0.5 occupancy of the lattice. Moreover, greater penal-
ties on defector drivers entail a substantial improvement
of these average speeds in the system.

4 Conclusions

We studied a cellular automata model of vehicular traf-
fic based on game theory. Our simple model assumes that
only two behaviors are possible: drivers either respect or
ignore the rule that gives priority to the vehicle driving
on the right. The two classical strategies of two-strategies
formal games — cooperation and defection — are immedi-
ately associated with those. In our framework, pairs of
drivers can interact at crossings where each vehicle pay a
temporal cost according to its strategy.

We studied first the average velocity achieved in sys-
tems with different and fixed proportions of cooperators


http://www.epj.org

Page 6 of 6

and defectors. We found that the velocity decreases mono-
tonically with density, driving away the possibility of a
sharp transition at any traffic density. Even for high vehi-
cle densities, the average speed of cooperators is greater
than that of defectors, independently of what strategy is a
majority in the population. This seems to imply that coop-
erators always benefit when abiding by the law. However,
in a population essentially cooperative, defectors can ex-
ploit this situation for their own benefit, obtaining higher
speeds than those achieved when the population is essen-
tially defective.

Additionally, we introduced a dynamic of imitation.
Each driver — at a slower time scale than the update
of the state of the system — can change their strategy
with a probability calculated from their perception of the
strategy of those they meet at the crossroads. This im-
itation represents the attitude of drivers who have not
received a proper education in traffic rules; instead, they
try to adjust their behavior to that of the rest of the sys-
tem. We have explored the effect of establishing a core
of law-abiding drivers in this environment, in the form of
a sub-population of cooperators that do not change their
behavior during the dynamical evolution.

The existence of a core of cooperators represent a ben-
efit for the whole system, in the sense that higher speeds
are achieved. This benefit is gradual and continuous in its
dependence on the size of the core set. That is, the com-
bination of the core together with the emulation attitude
provided by the dynamic of imitation, does not produce
a critical turnover of a defecting system. This is a point
to take into consideration in the formulation of driver’s
education programs (even for drivers that already have a
permit or license) or road safety campaigns. Remarkably,
this benefit reaches a maximum at intermediate densities
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of traffic, and it is greater when the penalties impose
higher costs. The results are very general in the simple
model reported in the present work, which tries to cap-
ture a set of minimal important details of the actual sys-
tem. They will be further explored with the addition of
more complex rules and interactions in future investiga-
tions. Moreover, some of the dynamical features observed
in the model could be considered as suggestions for field
observations.
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