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Abstract Itis commonplace to have multiple behaviour models thatidles the same system but have been pro-
duced by different stakeholders or synthesized from difiesources. Although in practice such models frequently
exhibit inconsistencies, there is a lack of tool supportiwalyzing them. There are two key difficulties in explaining
why two behavioural models are inconsistent: (1) explamatoften require branching structures rather than linear
traces, or scenarios; and (2) there can be multiple soufdasansistency and many different ways of explaining
each one. In this paper, we present an approach that supppitsation of inconsistencies between Modal Transi-
tion Systems, an extension to Labelled Transition Syst&desshow how to produce sound graphical explanations
for inconsistencies, how to compactly represent all pdssizplanations in a composition of the models being

compared, and how modelers can use this composition to exible explanations encoded therein.

Keywords: Labelled Transition Systems, inconsistencytifieation and resolutiory-calculus, distinguishing

property, graphical feedback.

1 Introduction

Modelling system behaviour is a common task in requirememgsneering and software systems design. Modeling
and analyzing behaviour models helps gain confidence inrtHenstanding of the requirements of the system-to-be
and the adequacy of the design with respect to these regeirtsm

It is commonplace to have multiple behavioural models desg the very same system, but produced by dif-
ferent stakeholders, hence providing different views [I9KJon the system’s behavior. Analysis of the similarities

and differences of these views supports behaviour modebedéion: confidence is gained on behaviours that are
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common to the multiple views; comprehensiveness is fueithby merging behaviours known to some stakeholders

but not to others; common understanding is augmented byzngland possibly resolving inconsistencies.

Comparison and composition of behaviour models has beealestextensively. Various notions of equiva-
lence [Hoa85, Mil80] provide a framework for comparisontthbstracts away syntactic differences in behaviour
descriptions. Refinement notions such as those based otationMil99] support checking whether one model
has been further elaborated than another. Also, merge [aliddvs combining two partial yet mutually consistent

descriptions into a comprehensive description that is agafent of the models being merged.

Although, notions of equivalence, refinement and (intedeipconsistency are crucial for behaviour model
elaboration, and tools that support behaviour modelling. ((DFCU08, CPS93, CCGR99, PB00, Hol97]) little sup-
port is provided by existing approaches and tools to undedsivhy two models are mutually inconsistent and hence

cannot be merged, or why one model is not a refinement of anothe

For instance, model-checkers [DFCU08,CCGR99,Hol97] aable of performing a variety of automated
analyses on behaviour models such as property, refinentgritaéence and consistency checking. Such analyses
typically either yield a positive result (the property helih the model, one model is a refinement of another,
a model is equivalent to or consistent with another) or gtevieedback in the form of a trace representing a
counter-example. While this is an effective feedback fadleck-freedom and reachability properties, the causes
for non-equivalence, non-refinement or inconsistency mels®ural models, especially non-deterministic ones, are
defined in terms of simulation relations which are not eagigyalized. Such explanations can be given in terms of

branching structures [CLJV02], which are hard to underktan

Our aim is to automatically provide graphical feedback exphg causes for non-equivalence, non-refinement
or inconsistency. Recognizing that there may be many diffeexplanations for these negative results, we also aim

to provide support for the user to select among alternatipéa@ations, choosing the one to explore in more detail.

This paper is set in the context of partial behaviour modsgecifically, in that of Modal Transition Systems
(MTSs). Partial behaviour models support operationaldgtions of system behaviour which distinguish between
three types of behaviourequired proscribedand unknown This distinction extends the expressiveness of tradi-
tional behaviour modelling techniques such as Labelleddit@n Systems (LTSs) [Kel76] and StateCha®is nd
allows describing, in the same operational model, both @eugnd a lower bound to the intended system behaviour.
The lower bound represents the behaviour that the systerhprmdde, typically identified through scenario and
use-case based description techniques. The upper bourgeaps the behaviour the system may provide without
violating known properties and requirements [UBCO09].

The semantics of a partial behaviour model can be thoughs @f set of traditional behaviour models. For
instance, MTS semantics can be given in terms of sets of Lh&sprovide all of the behaviour required by the

MTS, do not provide any of the behaviour proscribed by the Mai® make arbitrary decisions on the MTS's
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unknown behaviour. In other words, the semantics is the SET8s that are between the upper and the lower

bounds on system behaviour described by an MTS.

Intuitively, as more information becomes available, unknar unclassified behaviour gets changed into ei-
ther required or proscribed behaviour. The notion of refieenbetween MTSs captures this intuition formally and
provides an elegant way of describing the process of bebhawmdel elaboration as one in which behaviour in-
formation is acquired and introduced into the behaviour ehdacrementally, gradually refining an MTS until it

characterizes a single LTS.

MTSs naturally support conjunction of partial knowledgesgétem behaviour through the notionrafnimal
common refinemeftUCO04]: an MTS which composes the information of two mutyabnsistenpartial models
can be constructed throughaergeoperation that attempts to build “the least refined” commefinement of the
models being composed. However, if the MTSs to be merged ateatty inconsistent (there are no LTSs which
preserve the required and the proscribed behaviour of batd}l it is important for modelers to understand sources

of such inconsistencies and eventually to fix them.

In this paper, we present an approach that provides feedbgtkining why two MTSs with identical alphabets
are mutually inconsistent. Treoundnessf the feedback is based on computing a propositional medallculus
formula which captures a property that distinguishes betvtbe two MTSs: it evaluates to true in one and to false
in the other. We then use proofs of why this property holdsria model or fails in the other to provide graphical
feedback as branching structures overlayed on top of tigghatimodels. Recognizing that multiple explanations for
inconsistency can be given, we propose an extension to MT&hwan encodall such distinguishing properties,

allowing the user to guide the generation of inconsistereglback. We call this extensipseudo-merge

While our results are presented in the general setting dfgbdoehaviour modeling, they can be applied to
explore inconsistencies in traditional modelling forreals such as LTSs. Specifically, given that bisimulation of
LTSs is a special case of refinement of MTSs, the approachearsdd to describe causes of non-equivalence of

two LTS models.

The rest of this paper is organized as follows: We give an @@motivating our work in Section 2. In Sec-
tion 3, we provide background on LTSs, MTSs, and the mergega®oin general. In Section 4, we describe how to
graphically give the feedback to the user to facilitate coghpnsion of a human modeller. In Section 5, we show
how to produce a pseudo-merge of mutually inconsistent MArg8kuse it to compute feedback on the cause of
inconsistency in the form of propositionatcalculus formulas. In Section 6, we present a method fouter to
guide the generation of this feedback. We discuss caseestidSection 7. We conclude the paper with a survey of

related work (Section 8) as well as conclusions and futun&\{®ection 9).
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2 Motivation

To motivate our work, we discuss feedback that can be prouilexplain the differences between two behavioural
models that describe the process for passing laws in adigtithssembly. In this section, we omit formalizing the
various aspects of our work in order to provide a short andtiaé account of our approach. We do include forward
references to where formal definitions of the concepts maeed in this section are introduced.

Consider state-machine modefsand 5 in Figure 1(a)-(b) (for the purpose of this section, igndre t?”
symbols that appear on some labels). They describe a primcessch, starting from the initial staté or 0/, texts
are produced and, after some debate, either rejected optadcasaws or acts The decision of whether a text
should pass as an act or a law depends on complex technieatagpat have been abstracted away using non-
determinism (e.g., see transitions from st@tend0’ on proposg. Since laws and acts are to be applied differently,
the protocol for passing them differs as well, which is rafiddn the models in Figure 1 in the kinds of texts can
be amended and consequently re-proposed.

We now discuss the feedback that would be appropriate t@exhle difference between these models and thus
might be automatically computed by a tool.

A common approach to providing feedback on behaviour mddetsshow traces, or executions of the model,
that highlight the problem at hand [CGP99]. To show the usExrueseof inconsistency, one could follow the same
approach producing a trace that is possible in one of the mdul is forbidden in the other. However, it is not
always the case that inconsistent models have differergdrd-or example, model$ and 3 have the same traces,
yet they are inconsistent as they disagree on whether anertdican be made on laws-to-be or acts-to-be: In model
A, amendments can occur only in staf@nd in this state, the proposal, if accepted, becomes tate{3. In model
BB, amendments can only occur in stdtas well, but an accepted proposal becomes an act instesely(3ta

Traces such as

propose amend propose accept applyLaw ...

do not reveal the different criteria for applying amendmseAithough both models can exhibit the trace, they do so
by traversing statest(@nd4’) that have differenpotentialbehaviour: from state, the behaviouaccept applyLaw
can be exhibited; while from statié, accept applyActcan occur.

The natural language explanation given above of wvilhgnd3 are mutually inconsistent refers to the potential
behaviour of stateg and4’ which essentially refers to the branching structure of thoelabs. Indeed, as claimed
in [CLJV02], a more appropriate form of feedback to useranchingstructures instead of traces. For instance,
consider the structure in Figure 1(c). It conveys that themptial behaviour afteproposeis to amend or toaccept
andapplyLaw Such behaviour can be exhibited by madel a witness is in Figure 1(d), where transitions providing
the behaviour are dashed. However, it cannot be exhibiteddalel 3. The counterexample in Figure 1(e) indicates

that thenegationof this behaviour holds: for evemgroposetransition, eitheraccept applyLawor amendis not
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Fig. 1 (a)-(b) Two models of the law-making process; (c) Examplanshg their inconsistency; (d)-(e) Graphical explanagion

of inconsistency.

possible. In other words, branching structures can exémphy two models are inconsistent in general, whereas
traces cannot. Furthermore, branching structures candraged over the inconsistent models to better exemplify
how one of them can and the other cannot provide the behaviour

The structure in Figure 1(c) actually corresponds paof that a specific property holds in the first model but
not in the second. The property states that, in the law-ngaékample, there is proposetransition leading to a

state that allows thaccept applyLaw andamend and can be formalized in propositionaicalculus as

¢ = (proposé((accep}(applyLawt A (amendt)

In the next sections, we present propositiomadalculus (see Section 3) and formally define a structurgvahin
Figure 1(c) as proof tree(see Definition 11 in Section 4).
An important observation is that the formal proof that madesatisfies propertg (depicted in Figure 6(a))

can be used to automatically generate the feedback showguneis 1(c), 1(d), and 1(e). Figure 1(c) is constructed
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by simply ignoring the contents of the states in Figure 6(&e other figures can be constructed by overlaying
Figure 1(c) onto the original models. Note that proof stuues are defined formally in Section 4, and soundness of

the graphical feedback produced by our approach is showadtidh 5.

Two models can be inconsistent for several reasons, andozeereason can be explained in a variety of ways.
For instance, the disagreement between the law-making lsmodevhether texts with the potential to be passed as
laws can be amended, could equally be explained based orotéetial to amend acts. Such an explanation also
can take the form of a branching structure induced by praadgrof a (different) distinguishing property. Thus,
while individual tree structures suffice to explain the eiffnce between two models, there are a number of them
that can be proposed, each potentially prompting a difteraction from the modellers. In our trivial example, the
first explanation may prompt a discussion on whether lawsetcan be amended or not, leading to the removal of
the transitiord to 0 or the addition of ammendtransition from1’ to 0’, while another explanation can prompt a
discussion on whether acts-to-be may be amended leadihg temoval of a transition froaf to 0’ or the addition

of anamendtransition froml to 0.

Although an explanation of inconsistency can be generatbddutomatically, we support user-guided genera-
tion of explanations by encoding all sources of inconsisfarompactly and allowing exploration of this encoding.
Figure 3 depicts a composition of the two law-passing mqdéBnd3, where states containingare the disagree-
ment states. This composition, which can be constructezhaatically (see Section 5), encodes all of the shortest
explanations of why two models are inconsistent. A modebergenerate an explanation of inconsistency by click-
ing on any transition that leads to a disagreement stateSgeton 6). Such explanations are then translated into
distinguishingu-calculus properties, and proofs that they hold in one madédifail in the other get visualized. For
example, selecting a transition froff, 5') to (5, x) generates the feedback we have discussed previously in this

section: the distinguishing properdyis identified and visualized as shown in Figure 1(d)—(e).

3 Background

In this section, we review definitions used in the rest of ffaper.

Transition systems.We express models &odal Transition SystenjtT88] which are generalizations of Labelled

Transition Systems [Kel76].

Definition 1 (Labelled Transition System)A Labelled Transition SysterfLTS) is a tuple(S, Act, A, so), where
S the set of statesdct is the set of actions (or alphabeth C S x Act x S is the set of transitions, ang), € S is

the initial state.
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Definition 2 (Modal Transition System) A Modal Transition SystertMTS) is a tupleS, Act, A", AP m), where
S is the set of statesdct is the set of actions (or alphabet\P C S x Act x S is the set of possible transitions,

A" C AP is the set of required transitions, amd, € S is the initial state.

We write m —e>p m’ when (m,¢,m') € AP (i.e., there is a possible transition betweenand m’ on ¢),
m —5 m! when(m, ¢,m’) € A" (required transition)y L when(m, £, m’) € AP\ A" (a transition which
is possible but not required, referred to amaybe transitiojy andm /—» whenvm' € S, (m,¢,m') ¢ AP (there
is no transition orf from m). Note that MTSs wheré\" = AP are LTSs.

For example, Figure 1(a) depicts an MTS. Pictorially, aditon between state 4 and state 3reject?means
that there is a possible transition between these statestiom eeject but there isn't a required transition between
these states on this action.

An MTS can be obtained from another one by removing somesséae all transitions to and from the removed

states, leaving all other transitions untouched. We callésulting MTS aubMT Sof the original one:

Definition 3 (SUbMTS) For an MTSM = (Sy, Act, A%, A%, m0), asubMTSw.r.t. a set of stateSy C Sy is
an MTSN = (Sy, Act, A'y, A%, ng), whereng = mg, AN = A}, N (Sy x Act x Sy), andAly, = AR N A7,

For example, an MTS consisting of states 0 and 4 and transitapropose amendand a self-loop onlebateis a
SubMTS of modeld in Figure 1(a).

Propositional p-calculus. In order to reason ovdinite behaviors of MTSs, we use a propositional subset of the

modal 3-valuedi-calculus of [HIS01] that does not include fixpoint opersitiYe refer to it a<’h.

Definition 4 (Propositional u-calculus) A formula of thepropositionaju-calculus(£E) has the grammar
p=tf[-plorneleVel|l)ellle,

where/ is an action.

(¢) means that there exists a required transitiod tara state in whicly is satisfied[¢] means that every possible
transition on¢ leads to a state in which is satisfied.

For example, a formula

& = (propose((accep}(applyLawt A (amendt),

introduced in Section 2, means that aftgprapose two choices must be available: to do acceptfollowed by
applyLawand to do aramend
In the remainder of the paper, when we discussalculus, we mean the propositional subset defined above.

Furthermore, we shall refer to a formula expressed in thy&las aproperty.
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Fig. 2 2-valued semantics af, in an MTSM = (Sar, Act, A}y, AR mo).

Given an MTSM = (Syy, Act, A, A%, mo), we write [¢] s to mean a set of states #), where formulap
holds; thusy holds in staten € Sy, iff m € [¢]ar. An often-used notation for this &/, m E ¢. If mg € [¢]u,
we often writeM E . Finally, when a transition system in question is clear fittwa context, it is often dropped
from the notation, so we simply writgo].

The meaning of the other operators is as usual. For example) holds in staten if either ¢ or ¢ holds in it,
or, formally,m € [ v ¢] iff m € [¢] V [¢]. Thatis, the set of states whepe/ ¢ holds is the union of those states
wherey holds and those wherg holds. The complete 2-valued semanticsCgfis shown in Figure 4. Under this
semantics, property holds in modeld and fails in modeB (see Figure 1).

Instead, consider another property

&, = (proposé(reject.
While this property clearly holds in mod# (via the path 0’, 4’, 2"), it does not hold in modgl. A proposeis
either followed by a maybe transition @gject, or a maybe transition oproposeis followed by areject Thus,
the desired behaviour is possible just not required. In order to allow us to make this disiioret we use the
3-valued semantics aff, where a property can evaluatett@rue), f (falsg and L (maybeor unknown).

Let an MTSM = (Sy, Act, A, A%, mo) and anL?, propertyy be given. Our goal is thus to determine
whether definite behaviours @f (i.e., either required or proscribed) are sufficient to eashaty holds or fails.

In these circumstances, we wanto evaluate tdrue or false respectively. In all other cases we wanto evaluate
to maybe Let [[¢]%, denote the set of states i whereyp is true, and let[»])%, denote the set of states wherés

false The set of states wheteis maybes thenSy,\ ([¢]4, U [¢]%,) (i-e.,¢ is neithertrue nor false).

Definition 5 (3-valued Semantics of£?)) For an MTSM = (Sy, Act, A}, AR, mg) and a propertyp in LE,
[els, € Sam and[¢]f,; € Su are defined as shown in Figure 5. We often use abbreviafiérts ¢ and M F =

to meanmy € [¢]%, andmy € [¢]%,, respectively.

Note that if M E -, we say that is falsein M. This is not the same a¥ ¥ ¢, since wherp is nottruein M, it

can evaluate to eithenaybeor false
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Fig. 3 3-valued semantics af?, in an MTSM = (Sar, Act, Alyy, A%, mo).

The semantics of’f, defined in Figure 5 is straightforward. For instance, propeiis true in all states (line
1), neverfalse(line 2) or maybe(line 3); if either propertyy and propertyy is true, then so is their conjunction
(line 4); and if either property or propertyy is false then so is their conjunction (line 5). Propett) is false
if every possible transition leads to a state wherkas valuefalse (line 8). This semantics explicitly enumerates
states where a formula irue andfalse In all other states, it evaluatesrtaybe

Under this semantics, propeevaluates toruein model.A and tofalsein model, as expected. And property
&, evaluates tarue in model8 and tomaybein model A.

Semantics of the remainder of the operators from Definitianglven via negationp; V ¢2 = =1 A -2, and
e = ~{6)=.

Every formula inLf, can be put in a form where negation is applied only to the le¥eitomic propositions,

referred to amegation normal form

Definition 6 (Distinguishing property) Let MTSsV and N be given. ArCt formulay is adistinguishing property
iff M F pandN F —yp, or vice versa.

For example, propert® is a distinguishing property for model$ and5 whereasp, is not. Note that ifp is
distinguishing, then so is¢p. In the rest of this paper, we usually pick distinguishinggerties that evaluate toue

in the first model andialsein the second.

Refinement.As mentioned earlier in the paper, we ugBnemenas a relation that captures the notion of one model
having more information than another. Intuitively, an MNSrefines an MTSV if IV includes all ofM’s required
behavior and does not have any &f's proscribed behavior. That is, ontpaybebehaviour might get changed,

either into required or proscribed.

Definition 7 (Refinement) [LT88] An MTSN = (Sy, Act, A%, A%, ng) is a refinementof an MTSM =

(Sm, Act, A", A’J’w, mo) over the same alphabet, writteW =< N, iff there exists a refinement relatid® such
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a? a?
C D: — 0 e 1
b? b?

Fig. 4 Two MTSsC andD whereD refinesC.
that (mo, no) € R and¥(m,n) € R, the following hold:

m—5em! = (3n’~ni>rn’/\(m’,n’) €ER)

n—é>p n’é(ﬂm“m—é»p m' A (m/,n') e R)

The above definition means that has all required behaviours éf, and N does not introduce any nemaybe
behaviour that was not presentifi. The above definition also indicates that refinement is axigéleand transitive
operation.

For example, modéD refines modef in Figure 2 withR = {(0,0), (0,1)}.

Refinement of a given MT3/ can proceed until all behaviours are known, and the regulfifs is called
animplementatiorof M. Since different refinements yield different LTSs, one caawan MTS as the (possibly
infinite) set of its implementations denot&d/).

Refinement also preserves values of “definif&”formulas. That means that if &, formulay true or falsein
an MTS M, it is guaranteed to have the same value in each of its refinesm& as formalized below. However,

nothing can be concluded aboff formulas which evaluate tmayben 1/: they can berue, falseor mayben N.

Property 1Let MTSsM and N, whereM =< N be given. Then for eacli!, propertyyp, if M F ¢, thenN F ¢,
and if M E -y, thenN E —¢.

The above property is very important for the use of refinerasrthe underlying operation supporting development
of implementations from partial models: once a value of gprty has been established (i.e., it is no longgrit

will remain so for all implementations of this model.

ConsistencyWhen MTSs represent partial views on the future system, kemaense to determine whether a pair
of views is consistent.
Two MTS models areonsistentf they allow at least one common implementation. Formatlypeans that a

common refinement of these two models exists:

Definition 8 (Consistency)Two MTSsV/ and N over the same alphabéict are consisten{denotedCons(M, N))
if there is an MTSP such thatd < P andN < P.
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Intuitively, MTSs are consistent if they can match each dshigehaviour, i.e., there isn’t a case where one MTS
has a required transition on an actiband the other does not allow a transition#fnom this state. Thus, we want
to match states of the two MTSs so that when one has a requinesition on an action, the other has a possible

transition on this action and vice versa. This matching gwaed in aconsistency relation

Definition 9 (Consistency relationfUC04] A Consistency relatiopetween two MTSE = (Sy, Act, A%, A%, mo)
andN = (Sn, Act, A%, AR, ng) is a binary relationCy; xy C Sy x Sx such that(mg, ng) € Cyr, v and for all

¢ € Act and all (m,n) € Cy v, the following hold:

m in m' = 3n' -n l>p n' A(m/,n') € Cun
n —Zn n' = 3Im' -m l>p m' A (m/,n') € Cyun
For example, the consistency relation between madelsdD in Figure 2 isCc » = {(0,0), (0,1)}.
Two states areonsistentdenotedCons(m, n), iff they are in a consistency relation. Moreover, consisyeof

models and presence of a consistency relation are clodatede

Property 2[FU08] Two MTSsM and N over the same alphabet are consistent if and only if therednaistency

relation between them.

Thus, if we want to prove that two models are consistent, wedceso by identifying a consistency relation between

them.

Merge. The process ofmergingtwo consistent MTSs aims to put together knowledge contkinesach of them

into a common model.

Definition 10 (Merge) [UC04] A mergeof MTSsM and N with identical alphabets is an MTB, over the same

alphabet, such thaP is a minimum common refinemewf A/ and V:
(M=P)A(N=P)A(MQ (M2QANN=Q) =P=Q)

Intuitively, any common refinement adds knowledge frairo elaboratanaybebehaviours of\/ and vice versa.
The fact that the common refinement we are looking fanisimalmeans that no extra knowledge gets introduced.
For example, model over the alphabefa, b} in Figure 2 has no required or proscribed behaviour — all ©f it
behaviour isnaybe and thus merging it with modé&» over the same alphabet leav@sainchanged.

Moreover, by Property 1£F properties which have valueue or falsein the original models have the same

value in their merge. For example, propefaéyt wastrue in D and this value is preserved in its merge with

Merge and inconsistencyClearly, inconsistent models cannot be merged as they lmgemmon refinements.
Moreover, if models disagree on some property, i.e., ituie in one model andalsein the other, clearly they are

inconsistent and cannot be merged.
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The theorem below indicates that presence of such disshing properties is necessary and sufficient for a pair

of models to be inconsistent:

Theorem 1MTSsM and IV over the same alphabet are inconsistent iff there exist§faproperty distinguishing

between them.

This theorem follows from an analogous one in [BCUO6] thadrgmtees the existence of a fuHcalculus prop-
erty iff the models are inconsistent. The theorem holdsfprbecause we aim to find a reachable pair of states
where models cannot simulate each other’s behavior — samgetiat needs only a finite path for MTSs with finite

statespaces.

The above theorem allows us to use distinguishing propeidieproviding feedback for exploring inconsisten-

cies between models — the subject of the rest of this paper.

4 Explaining Inconsistency Graphically

In this section, we describe sound graphical feedback eptawhy two models are inconsistent.

As shown in Section 3, inconsistency between two models eachlaracterized by the existence of a distin-
guishingL?, property. AsCE is clearly not an accessible language from a practitiontspective, we show how
graphicalfeedback, in terms of two directed acyclic graphs (DAG) —-heatte overlaid on one of the models being
compared — can provide an intuitive explanation to incdasisy. These graphs formally correspond to proofs as to

why the property does or does not hold in the inconsistentaisod

We first define the notion of a proof-tree. For a motieivith initial statem, and an’l, propertyy, aproof-tree
encodes a proof that/ F ¢. Each node of the tree consists of a tufrlede, property;, with the root labelled with
(mo, ¢y, and each transition labelled with an actibre Act U {r}. Labelr symbolizes a silent action. A node
(m, ¢) has successofs;, ;) reached via transition if m E ¢ follows fromVi - m; £ ¢, Am N m,;. Leaves

of a proof-tree can be of the forfm, t) or (m, [¢]¢), where there is no transition drfrom m.

Definition 11 (Proof-Trees)Let an MTSM = (S, Act, A, A, me) and anLy, propertyo such thatM F ¢
be given. Further assume thais in negation normal form. Thengroof-treefor ¢ in M, denoted?},, is a labelled

treeT'(my, ¢), whereT is inductively defined as follows:
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< 0. (proposs (accep}(applyLawt / (amendt) >

propose

4, (accepj(applyLawt A (amendt
T T
4, (accepj (applyLawt

accept amend

5, (applyLawt

<0’ [propos([accepiiapplyLauif v [amends) >

propose propose

4’, [accep}{applyLawf Vv [amendif 1', [accepf{applyLawf v [amendf

T T

4’, [accept{applyLawf 1, [amendf

4', [applyLavif

@) (b)

Fig. 5 Proof-trees: (a) for a property in model.A; (b) for a property-® in models.

T(m,t) = (m,t)
T(m,{l)p) = (m,{)p) LN T(m',p), wherem 5 m’ andm/ E ®
: ¢
T(m,[le) = (m,[le)iff m', (m,£,m") & AY or (m, [llp) — {T(m, )., T(mj, ¢)},
where{m!}1 <<y are all states such that —e>p m; and foreach € {1,...,k} m}F ¢

T(m7 /\f:l (pz) = (m7 /\f:l (pl) L} {T(m7 (Pl)a DR aT(mv (Pk)}
T(m, Vi, i) = (m,Vi_y ¢i) == T(m, p;) for somej, 1 < j < kstm k= g;

For the modelsA and B in Figure 1 and the distinguishing propedy = (propose((accepf(applyLawt A
(amendit), the proof-treelI% is shown in Figure 6(a). Note the conjunction in the propéstgncoded as two
separate branches.

A proof-tree for a property and modelM/ can be depicted graphically by projecting it odth which highlights
the portion of M covered by the proof. For example, Figure 1(d) depicts,gidashed lines, the projection of the

proof-tree shown in Figure 6(a) onto modél

Definition 12 (Proof-tree projection) Let MTSM = (S, Act, A, A, mo) and anL¥, property o such that
M E ¢ be given. Lef I}, be a proof-tree forp in M, defined as in Definition 11. Themojectionof I}, is an MTS
N = (Sur, Act, Ay, AR my) such thatA’y, C A", is the largest set whergn Lol € ALY iff ((m, ¢o) £,

(m/, 1) € IT%)), and AR, C AP is the largest set whete, —5, m’ € AR) iff ((m, o) —— (m’,¢1) € 1)),

To aid user comprehension, we explicitly display theansitions that are not possible from the leaf node of the
form (m, [¢]). For example, the proof-tree shown in Figure 6(b) has a&ésdlled(4, [applyLawf) which indicates
that there is n@pplyLawtransition from statd of model. This fact is shown in the projection of the proof-tree
onto B in Figure 1(e) with a dashed crossed out transition. We cah saugmented projectiomxplanationsin

Section 6 we show how to a modeler can use these explanatierplore the inconsistencies between two models.
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applyAct  _--~
_.--Teject

~~._ applyLaw

accept reject~~ _ _

Ry - Tesg
applyAct: ™2/ « 5/ reject @‘e applyLaw
; SE
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debate-',':__'_?_ *, 4 debate
reject . 4 A reject?
/ propose; amend PVOPOSGEZ { amend ",
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AV AT .
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ol o applyAct applyLaw i i
appi;/Law debate debate applyAct

Fig. 6 Pseudo-merge of model$ andB. State3, 2’ appears twice for clarity.

5 Characterization of Inconsistency

In this section, we definpseudo-mergenhich is the basis for providing the various features désttin Section 2.

Intuitively, the pseudo-merge of two models is a model whdidtinguishes the behaviour for which the models
agree and captures the states in which they show disagréenethen provide an algorithm that builds a pseudo-
merge that is correct and complete with respect to explgittie inconsistencies of the models being compared.
These results allow us to conclude that pseudo-merge is rdsaompact representation of the inconsistencies
between two models which can be used to generate approfg@tback to users. In Section 6, we discuss how

users can choose which of the many properties encoded irstugp-merge is to be used as feedback.

5.1 Pseudo-merge

A pseudo-mergef MTSs M and N is an MTS with two identified subsets of states: disagreerseés for)M/
(called D)) and disagreement states fiyr(called D) such that if disagreement states farare removed, then
the pseudo-merge is a refinement\df and if disagreement states fdr are removed, then the pseudo-merge is a
refinement ofV. All other states are callereemenstates, with the interpretation that the transitions betwaich
states are behaviours thiat and N agree upon. All behaviours leading to disagreement stageiseonsistent with
either M or N. Transitions between two disagreement states are adibegireement transitionshile transitions

that go from agreement states to disagreement states e lwalindary disagreement transitianghe later are of
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particular interest as they represent the first points irctvbine model disagrees with the other. Finally, a pseudo-

merge forM andN with empty disagreement states is a common refinemehi ahd V.

Definition 13 (Pseudo-mergelet MTSSM = (Sy, Act, A}, AR, mo) and N = (Sn, Act, A%, A%, ng) be
given. Theirpseudo-mergés a tuple (P, Dy, Dy), whereP = (S, Act, A", AP po) is an MTS,D,, C S and
Dy C S such that subMTSs déf over statess \ D, and S\ Dy refineM and N, respectively. We call transitions
in S x Act x (D UDy) and (S \ (Dar U Dy)) x Act x (Dpr U Dy ) disagreement transitiorad boundary

disagreement transitionsespectively.

A pseudo-merge of modeld andB in Figures 1(a) and (b) is depicted in Figure 3. The disagergrstates
for A are labelled pairs in which the first elementigthey appear on the left-hand side of Figure 3 and are shown
in light grey). Similarly, the disagreement states Fohavex as as second element of the pair (they appear on the
right-hand side of Figure 3 and are shown in dark grey). Bamndisagreement transitions are dashed, and the rest
of the disagreement transitions are dotted.

We now present an algorithm,,,,, for computing a pseudo-merge of two models. It is an admptatf the
algorithm introduced in [UCO04] for constructing common nefinents of consistent MTSs. The algorithm, applied
to modelsM = (Syr, Act, Ay, A, mo) andN = (S, Act, A, AR, no), first builds a synchronous product by
constructing the Cartesian product{6h, U{x}) x (SyU{x*}), wherex is a special symbol for denoting states in one
model that do not have correspondences in the other. Settandlgorithm removes transitions related to specific
non-deterministic choices from the result. Finally, thessg disagreement states are define@as= (Syr x {*})
andDy; = ({x} x Sy). Intuitively, D, means thafl/ has gone into an inconsistent state from followi¥ig

We now explain the algorithm in more detail. The synchronmusluct is built over the Cartesian product of
(Sam U {x}) x (Sy U {x}). The algorithm adds transitions resulting from executiigand N synchronously,
i.e., simultaneous transitions synchronizing on the adabelling these transitions. Transitions in the syncbren
product are computed based on the rules in Figure 7. Fomiostd M and N can transit orf through a required
transition, then the synchronous productdf and N can transit or¢ through a required transition as well, as
indicated by ruleRR. If M can transit orf over a required transition ard can transit orf over a maybe transition,
this means thad/ has more information over the occurrence/aghan N does (V does not rule out the fact that
that the transition of can become required or prohibited in the future). Hencegtiean agreement, and the
synchronous product dff and N can transit orf through a required transition. This is codified in r&@#, while
the symmetric situation is described in riUR . Using a similar reasoning, it is expected that the rulesat@low
a transition or? in the synchronous product if one model can transi? evith a maybe transition while the other
cannot transit or at all. The rules also do not allow @rransition on the synchronous product™dfand if they

both agree on prohibitingtransitions.



16 Mathieu Sassolas et al.

RulesFR andRF are of particular interest as they capture the situatiorhiicku) andN disagree. For instance,
RF states that if a-transition is required i/ but prohibited in/V, then the synchronous product has transitions
on/ to a state inSy; x {x}. Such states express thi¥thas flagged the fact that a transition has occurred which is
inconsistent with its own behaviour. Rulfs and«I" encode the synchronous product once one of the models has
reached a&-state. Essentially, the synchronous product allows thdahthat is not in a-state to transition freely
while prohibiting any transitions of the other model. Th&erensure that while one of the models has gone into a
x-state, the synchronous product can simulate the behawidhe other.

We give special treatment to the case in which both models hreaybel-transitions: RuleMM  states that the
synchronous product o/ and N has a maybé transition if M and N have maybé&-transitions, and the states
reached by these transitions are consistent (recall Diefin®). The intuition here is that we are not interested in
introducing inconsistent pairs of states reachable thigugybetransitions because these do not represent true
disagreements betwedii and N as they can be removed by refining thaybetransition.

Once the synchronous productis constructed, a subsenefticans is then removed to resolve non-deterministic
choices ofM and N according to the following rule: if a staten, n) of the synchronous product has@transition
to (m/, n’) such thain’ andn’ are inconsistent, remove this transition unlesm(i)i>r m/ and there is no transition
on/ from n to any stater”, wherem’ andn’ are consistent; or (ii) a dual case involving—l>r n' occurs. The
intuition for this rule is similar to that of rul®M : we do not want to include transitions to pairs of inconsiste
states if these can be avoided in common implementation$ ahd /V, because then they do not represent proper
disagreements. The rule states that non-deterministisitrans on/ should be paired in a way that the resulting

state in the synchronous product is consistent, if possible

Definition 14 (The Synchronous ProductlLet M = (Sy, Act, A}, AR, mo) andN = (Sy, Act, A, A%, no)
be MTSs. Asynchronous produdaif M and N is an MTSP = (Sp,Act,Arp,A‘]’g,po), whereSp = Sy x Sy,

po = (mo,no), and A, and A%, are the smallest relations that satisfy the rules given gure 7.

Definition 15 (The +,,, Operator) LetM, N and P be MTSs in Definition 14 +,,, N = (Sp, Act, A%, A%, po),

whereAY,, is as shown in Figure 8 and’,, = A, N AY,.

Applying +,,, to the models of the law-making process (see Figure 1 in §edj, we obtain the model in
Figure 3. This model includes three branches from the Irstate on actiompropose corresponding to all possible
matchings containing at least one required transition efrtn-deterministic choice on this action in the origi-
nal models. The boundary disagreement transitions in threxiels arg4,1’) amend (4,%), (5,5 applyLaw (5, %),
(5,5") 0% 5, and(1, 4') 0, 47).

As in the merge operation in [UC04], the pseudo-merge opera},, works inO(|M| - |N| - |Act|), where

M andN are the original MTSs, size of a model is a number of states and Act is their shared alphabet. The
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; RR ; MM
(m,n) —r (m/7n/) (m,n) —m (mlvnl)
£ / 4 ’ 4 ’ £ ’
m —rm n—mn m —mm n—rn
J RM ; MR
(m,n) —r (mlvnl) (m,n) —r (m/7n/)
4 / ¢ ¢ 4 /
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Fig. 7 Rules for the pseudo-merge operatay,..

AR, = AL\ {(m,n) L (m/,n) € AP, | =Cons(m/,n') A (m A5 m! v I - (Cons(m’,n") An —5p 1))

A (n 7&,, n’ vV 3Im” - (Cons(m”,n') Am —Z>p m’"))}
Fig. 8 Definition of possible transitions fa¥/ +,.,, N.

maximal size of the resulting pseudo-mergé€|i&/| + 1) - (|N| 4+ 1) since it is comprised of pairs of states in
M U {x} x N U {«}. We discuss the impact of the size of the pseudo-merge orbiliy ®f users to inspect and
select alternative explanations to an inconsistency ii@e6.

We shall now prove that the object built by,,, corresponds to the definition of a pseudo-merge which was

tailored to capture refinement-related properties.

Theorem 2Let M = (Syy, Act, Ay, AR, mo) and N = (S, Act, Ay, A% ng) be MTSs and leM +,,, N be
an MTSP = (Sp, Act, AT, A%,p()), defined as in Definition 15. The&®, Dy, Dy), whereDy = (Sar x {*})
andDy; = ({*} x Sy), is a pseudo-merge 6ff and N .

Proof Let Py, be a subMTS ofP w.r.t. statesSp \ D,s. We show thatM =< P, by defining the relatiorR =
{(m, (m,n))|(m,n) € Sp \ Dn} (n may well bex) and showing thaR is a refinement relation betweét; and
M; that is, it satisfies both conditions of Definition 7.

Let ((m,n),m) € R. If m —5 m’, then by one of the ruleBR, RM, RF, or I'x with v = ¢, there is a
transition(m, n) "N (m/,n’). Of all such transitions, at least one has remained afterdhmval step shown
in Figure 8. Otherwise, if a pair of consistent targets ditl east, the removed transitions could just be the ones
corresponding to cases where neith13|’—l>r m’ norn —Z>r n'. These transitions would not have been inserted in

the product in the first place because of the condition onlviNe. And since there is a pair of consistent targets,
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((m,n), £, (m',n")) € Ag = ((Vm", ((m,n), £, (m",n")) € A" = ((m,n), £, (m",n")) € Ac) A
(vn”, ((m,n), £, (m',n")) € Ag = (n’ =n")) A ((n,€,n') € AY))
((vn", (m,n), £, (m',n")) € A" = ((m,n),£,(m',n")) € Ac)
(

Fig. 9 Formalization of condition (6) of Definition 16.

the corresponding transition has to remain in the produetti® other hand, the transitigm, n) —Z>p (m/,n’)
could not have been created by rukeR or «T", since those would imply thdin’, n’) € D,,. All other rules have

the premise thatr ip m/; therefore, usin@R as a refinement relation proves the theorem.

5.2 Correctness and Completeness

We now define the set @ff, properties denoted by/ +,,,, IV, show that all the properties in the set are distinguishing
properties of\f and N, and then that there are no distinguishing properties ttwatighe shorter explanations (in the
sense of Definition 12) of the inconsistency betwéérand V.

The set ofCF, properties denoted by! +,,, N is defined as those that can be constructed bydastinguishing
DAG embedded intd/ +,,, N.

Definition 16 (Distinguishing DAG) Let M +,,, N = ((S, Act, A", AP, pg), Dy, Dn). We call a DAGG =
(vo, V, Ag), whereV C S, adistinguishing DAGHT all of the following conditions hold:

(1) G has the same initial state, i.ei = po ;

(2) G contains only required transitions, i.edg C A";

(3) G contains no transitions from a disagreement state pee—> p € A = p ¢ (Dpy UDy);

(4) Leaftransitions are the only disagreements, pes, V A (Vp' € S - p - P ¢ Ag) = p € Dy U Dp;

(5) All transitions from a given state are on the same synite|,(p LI p e AcAp N pleAg)= (=1,

(6) Each transition corresponds to taking all transitions & symbol in one original MTS and only one,

required, transition in the other, as formalized in Figure 9

A distinguishing DAG represents a joint execution in MTBsand N that highlights a disagreement. Rule (1)
expresses the fact that the execution starts in the initgaé ©f both models. Rule (2) means that each step cor-
responds to a required transition in at least one of the nsodRelles (3) and (4) express minimality, while rule
(5) ensures that only a single execution is followed. Finallle (6) means that a required transition on a given
action in one model is matched by all transitions on the sactierain the other. An example distinguishing DAG
for M +,m N is the subgraph which consists of transitiqis0’) 2% (4,4") 2% (5,5") %2 (5. %) and

(0, 07) oSS (4 17) 2me! amend(o ).
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Definition 17 (Property of a Distinguishing DAG) Thepropertyinduced by a distinguishing DAG = (vo, V, Ag)
on the pseudo-merggs, Act, A", AP, (mqg,no)), D, D) is an L7, property 7, defined inductively as follows:
@) If ((m,n),L,(m', %)) € Ag, then Fa((m,n)) = ({)t;
(i) If (m,n), ¢ (x,n')) € Ag, then Fe((m,n)) = [{]f;
(i) If Vi,1<i<k-((m,n),¢ (m,n))) € Ag,orif k =1andm — m/,
thenF((m.n)) = (0) \i_y Fo((m',n);
(v) I Vi, 1 <i<k-((m,n),t,(ml,n')) € Ag,orif k=1andm /5 m}
thenF((m, n)) = [0 Vi, Fa((mf,n)).
Note that the property built from the above definition is ngnsetrically defined. Indeed, we chose it tothee
in model M andfalsein model V, as shown in the proof of Theorem 3. The property for the miigtishing DAG
in our example ix> = (proposé((accepf(applyLawt A (amendt) which evaluates ttruein the modelA and to
falsein the modelB. Projecting this DAG onto the model in Figure 1(a), we obtain the diagram of Figure 1(d)
(see Section 2), where the dashed edges correspond to thased by the DAG.

Definition 18 (Properties of+,,,) Let MTSsM and N be given. The set of properties of a pseudo-merge aind
N, M +,,, N are those induced by all distinguishing DAGS\df+,,,, N.

Theorem 3 (Correctness oft-,,,,) Let MTSsM and N be given and lef\/ +,,,, N be their pseudo-merge. Then
all properties ofM +,,,, N are distinguishing properties af/ and V.

The proof consists of proving the following lemma which stathat the distinguishing propertiesiaf+,,,,, N

hold in M and their negation holds iN.
Lemma 1 LetG be a distinguishing DAG aP = M +,,, N andy = Fg(M, N). ThenM E ¢ AN E —¢.

Proof 1. If G has only one transition, then it is between a regular state:) (in this case being the initial states of
M and N, respectivelyMC: | do not get it! ) and a disagreement state (case (4) of Definition 16). Tarssttion
could only have been created by ruRE or FR.

If rule RF was applied, then the transition is of the fofm, n) R (m/, %). Hencep = ({)t, by case (i) of
Definition 17. As a premise of rulRF, there is a transitiom L m!, soM E ©. Since we know that there is no
transition oné from N, soN E —.

If rule FR was applied, we have a dual situation. The property we oligditif (case (ii) of Definition 17),
which is true in states af/ that do not have a transition drand false in those states df that require one.

2. Suppose the lemma holds on all DAGs with up to hefghtVe prove it for a DAGG with heightk + 1.
Consider all transitions stemming from the r¢ot, n) of G. By case (6) of Definition 16, we have two dual cases.

Suppose these transitions arefimom (m,n) to stategm’,n}),. .., (m’,n}). By case (iii) of Definition 17,

the propertyy is then (¢) /\f:1 vi, whereg; is a shorthand fotF¢ ((m’,n})). By induction hypothesisy: €
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{1,...,k},E @; An; E —p;. In that case, we also know that there is a transition-%, m’. Therefore M k& ©.
With rulesRR andRM, the operator builds a transiti¢gm, n) £, (m/,n’) for everypossible transition ofrom
n. Thereforeyn l>p/, i € {1,...,k} such that’ = n}. Since for all possible targets érirom n the conjunction
of thep;s does not holdN E —.

The dual case is treated with case (iv) of Definition 17.

All properties induced by the pseudo-merge are built fronistirdyuishing DAG, and are therefoteie in M

andfalsein N. O

We now express the notion of completeness of the pseudoergergstructed by-,,,,. We say that\l +,,, N
is completen the sense that for any explanation of a distinguishingerty for M and N, there is an explanation

for a property derived from/ +,,,, N which is a sub-graph of the former.

Theorem 4 (Completeness of-,,,) Let M and N be inconsistent MTSs. For any distinguishing propertsind
two proofs,IIy, and 17, there exists a property’ induced byM +,,, N, and proofsﬂjﬁ and U;ﬁ’l such that
the projection oﬂ]}ffl on M is a subgraph, with the same initial state, of the projectdf/ ;, on M; and similarly,

the projection oﬂY;ﬁ’/ on N is a subgraph of7,” on N.

Proof (Outline)We start by combining the given proofd,;; andI 7, into one tree. We then collapse those nodes
that correspond to loops in the pseudo-merge, and cut sopefkious subtrees: the ones corresponding to an
execution that already reached an inconsistency or reduied@lanation of an inconsistency for a pair of states.
The result is a simpler tree, encoding the (smaller) proafafther property. We show that we can project this tree
onto the pseudo-merge, and that the projection yields edisshing DAG. We also show that the property induced
by the distinguishing DAG is the same as proved by the trewllyi we split the tree into two proof-trees, one for
each model. The way the new tree is built ensures that the renfgstart at the same state as the original ones and

are projected as subgraphs of the original trees.

A detailed proof of this theorem is given in Appendix A.

It is interesting to note that if MTS8/ and NV are consistent, then! +,,,, IV yields a common refinement.
Although procedures for constructing common refinemems fconsistent MTSs exist (e.g., [FU08]), this result
indicates that pseudo-merge extends the theory of MTSsaudsway as it works both for consistent and incon-

sistent cases.

6 User-guided Feedback Generation

We now show how a compact representation of all explanatmireconsistency, constructed in Section 5, can be

used by a modeler to explore the inconsistencies betweemivetels. Having constructed the pseudo-merge, the
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Input: P = M +p,m N, t = (s,¢,5").

1. Compute the shortest sequence of transitioast, . . ., t, in P from the initial state tc.

2. Appendt to 7.

3. Perform a depth-first search for a distinguishing D&Gsee rules in Definition 16) such thats included inG:
a. Define a sef containing the transitions of and an empty sef.
b. Addr, the next transition id or in J if I is empty, toG. Stop if both are empty.
c. Add all new transitions required to comply to the rules efibition 16 toJ.

4. If found, RETURN G. ElseABORT.

Fig. 10 Algorithm for computing user-guided feedback.

modeler can select a boundary disagreement transitiongsWy the models are inconsistent at that point. We
show how this user-selected boundary disagreement iams#n get converted into a distinguishing property that,
when explained using the technique in Section 4, coversdleeted transition.

The general algorithm for computing user-guided feedbackoonsistent models is shown in Figure 10. The
algorithm receives the pseudo-merge of two mod&fsand NV, and a boundary disagreement transition of the
pseudo-merge, and produces a distinguishing DAG (see bDefiri6) over the pseudo-merge which covers this
transition. This disagreement DAG encodes (see Definitiradistinguishing property for M andN, i.e., there
exist proof-trees showing that holds in M and does not hold iV, and, projected ontd/ and N respectively,
these trees cover the boundary disagreement transitiectedlby the user. In other words, the algorithm constructs
explanations, in the form of highlighted transitionslihand N, of a distinguishing property fat/ and N such that
the explanations cover the user-selected disagreemasitios.

The more detailed procedure is given in Appendix B.

Applying the algorithm on the pseudo-merge in Figure 3 anghidary disagreement transitions
{(5 5 ) appIyLaw(5 ) (4 1 ) amend(0 ) (5 5 ) appIyAct( 5 ) (1 4 ) amend(>'<7(),)}7

we respectively obtain distinguishing graphs correspugtth the properties

(propose((accepi(applyLawt A (amend)t)
(propose((accep}(applyLawt A (amendt)
(propose((accept[applyActf A (amendt)
[proposé((accepf(applyLawt v [amendif)
More specifically, the first boundary disagreement propgity’) 252" (5, ) yields the following subset of the

pseudo-merge of Figure 3:

(0, o’ ) propose (4 1 ) amend (07 *); (07 0 ) propose (4 4 ) accem (5 5 ) applyLaw (57 *)
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This DAG is then converted into formuiaand proof-trees of Figure 6. The first two properties aretidahbecause
both (5, 5) aﬂ’*ﬁ‘(*, 5") and(4, 1), anli”rd(o, ) form part of exactly the same argument as to why the models are

inconsistent.

There are cases when a distinguishing DAG covering the sedected disagreement transition cannot be con-
structed. For example, suppose we want to distinguish letweodels€ andg in Figure 11 and use their pseudo-
merge, selecting transitio(8, 2’) - (x,3"). If we want to reach this transition, we have to take traositi
(0,0") —%, (2,1') first. However, since condition (6) of Definition 16 tells usinclude all possible transitions
on a from state0, we have to add transitiof, 0’) —%, (1, 1) to the DAG. Condition (4) of Definition 16 forces
us to continue frong1, 1), which is not a disagreement state, including transitior ) " (0,0") which forms a

loop, violating condition (1) that requires the graph to bgdic.

The reason why we were unable to find a distinguishing DAGubhd3, 2) 4, (x,3") is that distinguishing
properties that cover this transition are mohimal For example, property]({c)[d]fV(b)(b)t) covers the transition,
but its proof-trees are strictly larger than those for theperty (b)t. The latter are generated by the algorithm in
Figure 10 when transitiof0, 0) " (4,x) is selected. We believe that the problem is caused by thefoule
removing unnecessary transitions for non-deterministgecheing too weak, and thus this irrelevant transition is
kept in the pseudo-merge. Informally, the fact that we caluce a distinguishing property coveri(g 2) i>r

(*,3") into one that does not cover it, shows that this disagreememt relevant.

For the cases in which a distinguishing DAG cannot be coottluto cover the user-selected disagreement
transition, as described above, the user is forced to selifferent disagreement transition. In future work, we aim

to strengthen the rules defining pseudo-merge in order tid aueh situations.

One of the potential difficulties related to the complexitgonstructing a pseudo-merge (see Section 5) to allow
for user-selected generation of inconsistency feedbatheisize of the pseudo-merge state space. Pseudo-merge
models can be large; it is the price to pay for providing akbgible explanations to an inter-model inconsistency
in one compact representation. The problem can, howevenjtigated via tool support. We believe that existing
tools for validating traditional behaviour models can b&eaxed to support inspecting pseudo-merge models and
selecting distinguishing DAGSs. In particular, support &mimation, hiding, minimization, and hierarchical states

can aid these tasks significantly.

Summarizing, in this section we have shown how to build airdistishing DAG that covers a user-selected
disagreement transition in a pseudo-merge of MTi&sand N. The resulting DAG can be used to generate a
distinguishing property that holds iV . The proof of such property in/ and the proof of its negation iN can be
visualized as explanations (see Section 4). This procksssalis to provide sound feedback on the inconsistencies
between the models being compared. We have also shown thps#udo-merge may include some disagreement

transitions, related to non-deterministic choices, tlahdt yield minimal distinguishing properties. Althoughsth
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g.—lo

Fig. 11 Two models€ andg, and their pseudo-mergé+,. G.

situation did not occur in the validation of our approacle, phactical implications, if it does occur, is that the user,
when selecting one of these transitions, may be requiredtkogpdifferent transition in order to produce feedback

on inconsistency.

7 Validation

In this section, we briefly describe tool support for our aygmh and then discuss two case studies.

7.1 Tool Support

In order to validate our approach, we have built a prototyyme [Sas09] that constructs a pseudo-merge from
two MTS models and ai?, property for a given boundary disagreement transition,nvpessible. The tool is
implemented in OCaml, and exchanges information with MTBARCUOQ8] by using the same textual representation

for MTSs in order to allow automated graphical represeotatif models.

7.2 The Printer Case Study

The aim of this case study was to (1) compare models develmppdople not involved in the development of our
approach; and (2) to evaluate the effectiveness of our tqaba to identify and explain the inconsistencies between
the models.

We developed a deliberately underspecified natural largjapgcification of a printer controller (see Table 1),
and two PhD students with behaviour modelling experienceewequested to build behaviour models from the

specification. Our approach was then used to generate exaropinconsistency which became the basis of a
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— The system: a printer with a pre-output tray block The sheet folds and get stuck in the printer
— One model: noPaper No more paper in the tray

— No difference between input and output nolnk No more ink in the toner

— No modelling of the repairman or the job giver/taker resume A repairman fixes the printer
— Alphabet :

. . . — Requirement: A sheet never goes backwards. Instead, it
idle The printer doesn’t do anything

. o . follows these steps:
jobln A print job is given to the printer

jobOut Ejects the printed job and reports 1. sheetis on the paper tray

jobDiscard Discard whatever was printed and reports 2. sheet is taken off the tray

takeSheetThe rolls takes a sheet from the tray 3. sheetis printed

printSheet The ink is put on the paper 4. sheet goes on the pre-output tray

staple Staple the sheets together 5. sheet goes on the output tray (or garbage)

Table 1 The informal specification of the printer.

“negotiation” — discussion with the two modellers aimed twerstand the difference in their interpretation of the
printer specification.

The specification fixed a communication alphabet for thetpricontroller and described the process for printing
paper (from the paper tray through to the output tray), mreéogithat the paper never goes backwards even in the
case of events such aslnk jobDiscard (paper-block Note that we asked the modellers to produce LTS rather
than MTS models (i.e., to make explicit decisions when thegoenter underspecification, since LTSs do not allow
possible transitions). The goal here was two-fold: to eliaé problems stemming from inexperience with the MTS
formalism, and to increase the likelihood of modellersadtrcing inconsistencies.

Figure 12 shows the resulting models. The pseudo-mergéstddpn Figure 13, results in 13 boundary dis-
agreement transitions, from which 11 different distinging properties were constructed. Interestingly, althoug
modelH in Figure 12(a) is non-deterministic, all properties wener, and hence feedback was produced in the
form of traces. This is because the non-deterministic hiebain modelH was matched by deterministic behaviour
in model 7 (see Figure 12(b)).

Tracejobln, takeSheetprintSheet jobOut is an example of an inconsistency produced by our approach. |
identifies a difference in criteria for when stapling ocewarrin modelH, it was an optional step in the workflow,

while model7 made it mandatory. The trace corresponds to the proof ofribygepty
(joblIn)(takeSheetprintSheet(jobOubt

which holds in modeH. A second example tracgbln, noPapertakeShegidentifies an inconsistency on a com-

pletely unrelated matter: in mod@&i, human intervention, followed by pressing tlesumebutton, is needed to
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nolnk noPaper resume block resume block
jobin takeSheet printSheet
< D &

jobDiscard jobOut

resume

resum block

jobDiscard noPaper

i idle
jobOut !
R

jobIn R takeSheet
T:=> 0 i 2 7D nolnk

staple

iobDi
}gbo'jfard jobDiscard

jobOut printSheet

jobDiscard,jobOut

D
resume block staple

(a) (b)

Fig. 12 Two models of a printer.

handle errors such as the lack of paper, whereas in the otbdelthe printer can sense that paper has been
introduced and camakeSheetmmediately. This trace corresponds to the proof of theirdjstishing property

(jobln) (noPapej(takeSheét over model7; its negation holds in modé{.

7.3 The Safety Injection System Case Study

In this study, we explored inconsistencies between behawmimlels automatically synthesized from declarative
specifications. The inconsistent models were generatedayng changes in the declarative specification, and we
validated whether the exploration of the pseudo-merge \&palie of generating examples that could be traced
back to the changes we made in the specification.

The safety injection system is part of a controller for a eaclpower plant. It is supposed to maintain a suffi-
ciently high pressure of coolant in the reactor, except wheperates in a speci@verriddenmode, in which case
a lower pressure is allowed. It was presented in [LKMUOQ8] wehte global goal is refined into smaller ones used
to generate a model. The specification is given as a set of post- and trigger-conditions (formalized in fluent
linear temporal logic [GMO3]) over the operations to be pded by the system.

Two behaviour models were automatically synthesized [LKD8D one from the original and the other from a
modified specification. The modifications consisted of cliagthe pre- and the triggering conditions related to the
urgency for starting and stopping the safety injection aigRather than requiring these actions to occur within one
time unit after sensing particular environment conditioms required them to be triggered in thexttime unit.

In addition, to increase the degree of non-determinism énnttodels, we abstracted away the various degrees of
domain-related quantities in the model. For instance eratian having events modelling the change of pressure

levels tox (raisePressure[xJand lowerPressure[x], we introduced more abstract events indicating whether th
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printSheet

resume
jobDiscard
jobOut

jobDiscard
jobOut

nolnk nolnk

idle noPaper

resume jobDiscard
jobOut

H +pm T2 —{00)

takeSheet

idle

jobDiscard jobOut jobDiscard

jobOut

jobDiscard
jobOut

jobIn

jobDiscard jobOut

jobOut
idle d_ *,0 —————————— s 5

idle

Fig. 13 The pseudo-merge of the printer models shown in Figure 12.

pressure level was raised or lowered w.r.t. the relevaestiold. The resulting synthesized models have 36 and 48
states, respectively.

The pseudo-merge of these models consists of 220 statesaarfiecanimated in order to aid the exploration
of agreement and disagreement states. Of the 104 disagnetaresitions, one of the distinguishing properties we

have found was
¥ = (enable(tick) (pressuré((sendSignaltick) (stopSignal(tick)t A [tick]f).

When projected on the synthesized models, this feedbaekttirrelates to the changes made in the specifica-
tion (due to space restrictions, we cannot show this priojertThe feedback indicates that once the safety injection
has been enabled and there is high pressure, the two mosiaigeie on the potential behaviour of the system. In one
model, itis possible to send and then stop sending the safettion signal (thésendSignaktick) (stopSigngltick)t

branch), and time cannot advance (ftiek|f branch) without the controller performing an action. Thektes to the
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urgency requirement for sending and stopping safety ilgedignals that was part of the original specification. In
the other model, either sending and stopping the signaltipossible, or time can advance without the controller
performing an action. This relates to the change in the wgesguirement: in the modified specification, sending

and stopping the signal must occur after one time unit,aféey the occurrence oftick.

8 Related Work

Generation and Analysis of CounterexamplesThe original counterexample generation algorithm [CGM|Z95
implemented in most symbolic model-checkers, produceslicounterexamples. It was extended to handle arbi-
trary ACTL properties [CLIV02] using the notiontwée-likecounterexamples. However, navigating to “interesting”
parts of the counterexamples, and thus understanding tleemains difficult.

Our work assumed that proofs of whethet-galculus property holds or fails in the model can be obwjne.,
using the techniques of [NamO01, TC02], which concentratenty on creation of the proof but also on techniques
for presenting it to the user. We have relied on being ableveslay the proof onto the original models and then
use animation to help present the evidence to the user. Mpregticated methods for evidence presentation, which
provide a variety of graphical views, have been developedds e.g. [DRS03]. We also found it essential to be
able to generate multiple causes of inconsistency, whieheacoded compactly in our pseudo-merge. Multiple
counterexamples have been generated in the context of LTCIW 03] and in the context of CTL by [CGO07]. In
both approaches, users can visualize the result in variays.w

The problem of the automatic analysis of counterexamplesadaressed by many researchers, e.g., [GV03,
BPRO03]. While we assume that the (human) modeller does thlgsis, our work is complementary to this line of

research.

Treatment of Inconsistency.A number of approaches to inconsistency management hameshegied in the con-
text of viewpoint-based modeling [NKF94]. Some of this woekg., [FGH 94, NCEF02], detects inconsistencies
by using first-order logic rules and does not consider mesga means of model exploration and inconsistency
detection. Other researchers [HP01,EC01, SE03,NCO5psmpways of merging viewpoint models, where incon-
sistency is either explicitly represented using multiena logic [EC01, SE03,NCO5] or resolved across incondisten
viewpoints by using a dominance ordering on owners of theqpgnts [HPO1].

Our work is similar in spirit to [NCO05], but our goal is not ytet support negotiation, but just help users identify
causes of their disagreement. We augment the work of [NC@8]proof generation and visualization techniques.

Our pseudo-merge effectively allows to represent incoais@es, and is thus similar to the approaches of [ECO1,

SEO03]. In contrast, the work of [NS@®7] represents inconsistencies as variabilities, assyithiat the disagree-
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ments have already been resolved, and thus any remainiagpiéncies should be treated as variabilities in the

system’s intended functionality.

9 Conclusion and Future Work

In this paper, we have presented a well-founded approactotading feedback on inconsistencies between par-
tial behaviour models expressed as MTSs; a special casésddpproach is providing feedback for non-bisimilar
LTS models. We have shown why feedback in the form of tracemisadequate in the general case and how
sound explanations for inconsistencies, derived from &nonoofs of distinguishing properties, can be visualized
as branching structures, depicted independently or ddestathe models being compared. We have shown how
the pseudo-merge, implemented using thg, operator, compactly represents all relevant explanatdiiscon-
sistency between two models. Pseudo-merges can be useddajersto guide the generation of explanations by
selecting disagreement transitions, in order to explouses of inconsistencies.

While it has not hindered the application of our approactaspaie are planning to address the problem of deal-
ing with disagreement transitions in the pseudo-mergedbaiot represent distinguishing properties with minimal
explanations. We believe that this can be accomplishedfining the notion of pseudo-merge.

The scalability of our approach is currently limited by thgport to inspect large pseudo-merge models and
the distinguishing properties constructed from them. éliggh a large pseudo-merge model is the price to pay for
providing feedback on all possible explanations to an imedel inconsistency in one compact representation, scal-
ability, however, can be achieved via tool support. We kelithat tool support for validating traditional behaviour
models can be extended to support validating pseudo-mesgels In particular, we envisage the need for anima-
tion, hiding, minimization, and hierarchical states. W &b integrate our prototype into the MTSA toolset which

provides some of this functionality and use it to furtheidaie the approach.
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A Proof of completeness of the pseudo-merge

In this section, we prove Theorem 4.

The outline of the proof is as follows: We start by combinihg given proofs into a single tree (Section A.1).
We then collapse this tree, removing nodes that correspmtabps in the pseudo-merge and cutting superfluous
subtrees (Section A.2). This results in another tree thebdes the proof of a new, smaller, formula. We show
that we can project this tree onto the pseudo-merge, andhitbatrojection is a distinguishing DAG (Section A.3).
Moreover, we show that the distinguishing DAG induces theesdormula as proved by the tree (Section A.4).
Finally, we split the tree into two proof-trees, one for eaobdel. Our construction ensures that the new proofs are
projected as subgraphs of the original ones (Section A.5).

We illustrate steps of this proof using the following exampl

Example. Consider model&’ and) in Figure 14. Suppose that the original distinguishing propis

A= (a)([pl{d){c)()]al[d]f A [c](d)(b) a]f)

Proof-trees for this property on the models are shown onrEi@6. We do not show the projections of these proof-
trees on the original models since in both cases they carnelspearly to the entire respective model)inthe only

transition not included in the projection is the self-loapidn state4; in X it is the self-loop orb in state6’.

A.1 Combining the proof-trees

First, we define @ombination/7;, )

similar proofs for each model into a proof thats a distinguishing formula fod andN. This combination can be

of the proof-treedI}, and 7. Intuitively, 117

(1, n) €ncodes the two very

built with the Comb operator.

Definition 19 (The Comb operator) MC: Insert what is given! Given two proof-trees, for a formula and its

negation on two models, we define themb operator inductively as follows:

(i) Comb((II3;, (%, L)) = I}, where every nodén, ¢’) is replaced by a nodgm, x), ¢’);
(i) Comb((*, L), (ITy*)) = IIy*, where every noden, ¢’) is replaced by a nodgx,n), ¢');
(iiiy Comb((m, (¢)) “, (m’, ), ( [(]=¢)) = ((m.n), {€)) = Comb((m, %), v);
(iv) Comb((m, []p), (n, ()=p) —= (', =) = ((m,n), [(}p) — Comb((x,n), );
(v) Comb((m, (£)p) —= (m', ), (n, [(]~p) = {(n}, =) }:) = ((m,n), ALy @) == {Comb((m’, ), (n}, =) }i;



32 Mathieu Sassolas et al.

b
b? b
OO0 OO
c? c
C

@)
c?
b [
o NN L
0 5 8 —9
Nl N
‘ v
b?
(b)

Fig. 14 Models used to illustrate completeness of the pseudo-merge

(vi) Comb((m, [f]p) = {(mf. ©)}i. (n. (O)=p) —— (', 7)) = ((m,n), VV_; @) == {Comb((m], ©), (0, ~¢)) }:;
(vii) Comb((m, ALy i) — {(m.¢i)}i. (0, Vi, 1) = (n,—4,)) =

((m,n), Ny i) = Comb((m, @i,), (n, =i, ));
(v COmb«M Vi @) == (M, 4,), (N, Ny —i) = {(N, ~i) hi) =

(M, N), V5 @) = Comb((M, @i,), (N, ~3,))

Rules (v) and (vi) of Definition 19 duplicate the subformulabut the obtained formula is logically equivalent to
the original one. We treat each copy separately; in pagicule keep track of correspondences between each child
and each duplicate. Note that we actually lose some infeomat cases (vii) and (viii), but it is either not important
(in the sense that it represents a proof for a part of the ftaitat gets removed) or present in a sibling, and can be
retrieved when needed. The main property of this combireslifr that in each nodém, n), ¢’) with bothm # x
andn # *, m E ¢’ andn E —¢'. This property holds because for each such node there isa@(nady’) € II},

resp.(n, —¢’) € IIy¥). MC: can we change “resp.” to “and”?
N

Example. Combining the proof-trees of Figure 15 yields the prooétire Figure 16(a). If we project it onto the
pseudo-merge of models and), displayed on Figure 17, we get almost the entire graph (thdyself-loop orb
in state(4, 6') is not included in the projection). Here, we do not have a DAfBause of the loop on stafé, 7’)
(hence the graph is not acyclic); furthermore, there argang transitions on both and ¢ from state(3,5'),
violating condition(5) of Definition 16, and there is a transition stemming from adieement statéx, 8') ona

which violates conditiori3) of Definition 16.
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Fig. 15 The original proof-trees showing thatt is true in model X andfalsein model): (a) a proof-tree fotX F A; (b) a
proof-tree for)) £ —A.

A.2 Reducing the combination

Now we prune the tree, removing parts of the proof which ateneeded to show the explanation of the inconsis-
tency. We begin by removing loops. Suppose that two statemeonsistent and there are two ways of showing it,
in terms of proofs of formulag andy’. If ¢’ is a subformula ofp, the witnessy’ is smaller and therefore would
be preferred. Similarly, the witness is obtained as longresad the proof-trees being combined has reached a leaf.

More formally, we apply the following procedurem(“’MW):

Step 1 Replace each non-leaf nqde:, «), ¢’) by a leaf((m, ), t), and each non-leaf nodéx, n), ¢’) by a leaf
((+,n), ).
Step 2 For each node pdim, n), find the setF,, ,, of all nodes of the forn{(m, n), ¢’). Aiming to produce the

shortest proof (and thus the smallest distinguishing fdawe choose those that cannot be further reduced.
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Fig. 16 (a) Combination of the proof-trees of Figure I5transitions between identical nodes have been ignoreditaesthe

size of the tree. (b) Reduction of the tree in part (a).

Fig. 17 Pseudo-merge of the models of Figure 14.
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We do this by selecting a nodém, n), ¢") € F,, ,, such that no descendent of it is K, ,,, replacing all
subtrees rooted if{m, n), ¢') by the one rooted ifi(m, n), ¢").

Step 3 For each nodém, n), [¢(]¢’) with only one child((m/,n’), ¢"), if m L m/ € M, then chang@]¢’ into
(0)¢’. Thisis necessary in cases where a path is an explanatiafidomula and its negation. Tifeoperator
arbitrarily chooses the formula to be true in the first model false in the other; this step anticipates this
choice when building the new formula.

Step 4 Propagate the changes made to the formulas bottoBinge we have kept track of the correspondences
between children and subformulas, if the child has changedipdate the corresponding subformula in the

parent. Since we have made copies of the formulas, a chamgeisubtree does not affect its sibling.

The result of this procedure is a new tﬂg“,). Note that allr transitions have been collapsed in step 2. Therefore,
all formulas are either constarttandf, or start with(¢) or [¢]. In the latter case, the outgoing transitions are labelled
with £.

In Section A.4, we show that this tree encodes the proofs of the original models\/ and N, that is, we can

extract proof-treesl ¢, andITy¢ from it.

Example Applying the procedure described above to our example megatscing the branch
(4.7, [alld)f = (+,8"), [d)f ~ (+,9).f

by

(4,7, [a]f % (x,8),f.

Then we note that the pair of statgks 5') appears twice (we do not count the trivial collapsing-dfansitions).
Since neither of th¢3, 5') nodes are ancestors of one another, we can choose eitha@nofithreplace the other.
Suppose that we choose to keep the subtree for the forfaul@ [a][a]f (note that the changes made to one of
the branches of the proof-tree are not yet reflected in thadta). This still gives us two occurrences of the node
(4,7). Inthat case, the one labelled witt) [a][a]f is an ancestor of the one labelled wjtfa]f. We therefore keep
the latter and replace the former. Finally, we update theltabf the formulas, starting from the leaves, yielding the
new tree of Figure 16(b). The transformation of the treedgel transformation of the formulas, i.e., instead of the

original formula4, the root of this tree is now labelled by the formula

T = {a)(pl{d)(c)[alf A [e]{d){c)[alf).

Note that the graph we obtain by projecting this tree ontgd®udo-merge is a distinguishing DAG.
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A.3 Obtaining a distinguishing DAG

Here we show that the distinguishing formula is induced gy gteeudo-merge. Let us consider the projection of

%

(M,N) ontoM +,,, N. This projection is possible because each maransition in the original treé/ cor-

(M,N)
responds to at least one required transition in an origiraleh thus complying with condition (2) of Definition 16.
The reason for this is as follows. Rules in Figure 7 (exd&fgt, I'«, or xI' wheny = m) add a required transition to
M +,,, N. This transition is not removed because removal happegsfdhkre is no inconsistency on a lal#eind

we assume that a distinguishing property starts itBince the transformation df /, into I7¢,

(M,N) (M,N) collapses

only those nodes that share the same labels for states, aadauds transitions, we can still project it onto the
pseudo-merge.

Moreover, step 2 of the transformation removes all loop&ré&fore, the projection is a DAG, as required by
condition (1) of Definition 16. Step 1 has removes all traosi from nodes corresponding (o, ) or (x,n).
Hence. the projection satisfies condition (3) of Definitidén 1

In addition, all leaves of the proof are either created by &ter are copies of leaves of the original proof, created
either by case (iii) of Definition 19, followed by an applicat of case (i), or, dually, by case (iv) followed by case
(). In all such cases, the leaves are disagreement stagspadition (4) of Definition 16 holds.

By step 2, all nodes corresponding to a pair of states casresio the same formula, with the outgoing transition
from these labelled by the first letter of the formula. Thus)dition (5) holds.

Finally, in cases where the formula starts w{th, we have combined a proof-tree @ ¢ with one for[¢]—.

By construction, we consider a single required transitiol/i and all possible transitions iN. By a dual reasoning,
condition (6) of Definition 16 holds in the case when the folarstarts with[¢]. Therefore, we can projeﬂ(“’]\}w)
onto the pseudo-merge and obtain a distinguishing DAG.

A.4 Extracting a formula

We now show thap’ is exactly the formula obtained by applying theoperator on the DAG- built in Section A.3.
The proofis by structural induction on the size®f

By step 1 of the transformation, cases (i) and (ii) of Defonitil7 guarantee thef applied to a DAG with a
single transition yields a formula that labels the correstiog proof-tree.

Inductive hypothesis: Suppose thatapplied to any subgraph @f yields the formula that labels the corre-
sponding proof-tree.

Inductive case: Suppose case (iii) of theoperator is applied. That means that we have used the casé (v)
the Comb operator to produce the tree (or the subtree that has noaagit). In that case, we have introduced a

conjunction of formulas, one for each child. Even if the fotas were originally identical, they may have changed
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during the transformation. In all cases, the propagatia@mahges by step 4 changed the placeholder into the formula
that now labels the corresponding child. Since each chlbislled with the formula that could have been produced
by the F operator over the projection, so does the parent. Casediapkdual, nodes are always labelled with the
formula that would have been produced by the applicatiomefA operator over the projection dY(“”];I,N) over
M +pm N.

Therefore, applying” to the initial state of the DAG yields the formuld.

A.5 Building new proof-trees

We now show that’ produced in Section A.4 is still distinguishing by produgproof-trees for each model. We
do so by applying th&plit operator defined below to the tré]—f]\} N’ resulting in proof—treeﬂ;f; andH;,“”/.

Definition 20 (The Split operator) Let a tree with nodes labelled with a pair of stald€: More context needed
here! and an£#, formulay be given. Théplit operator is defined inductively as follows, withbeing the empty

tree transitions leading to which are ignored:

(i) Split((m,*),t) = ((m,t), 1)

(i) Split((x,n),f) = (L, (n,t))

(i) Split(((m,n). () Ny i) == {((m",n]), ) i) =
(m, (0 Ny 2i) == (', Ny i) = {53}, (0, [ ViZ, ~i) == {(n}, Vizy i) — I1,7'})
wherevi € {1,...,k}, (117}, U;fi) = Split(((m’,n}), ;)

(iv) Split(((m, n), [ Vi @) == {((m},n'), 00)}:) =
(M, AV @) == i, Visy @) == T2}, (n (O Ny i) == (0, Ny ) = {15 )
whereVi € {1,...,k}, (H;flz, II %) = Split(((mf,n'), ¢i))

If none of the above cases is applicable, then the resulteo$iii¢ operator is undefined.

Note that because of the form of trees built by our algorithims above definition is total. That is, one of the cases
()-(iv) always applies. To prove that the trees producedbiit are indeed proof-trees, we just have to show that
in the case of/] (resp.(¢)), we consider all possible transitions 6im 1/ (resp.N). This is the case because we
started with proof-trees and never removed just transtimstead, we replaced nodes by other nodes from the tree.

When we did remove transitions, we removed all of them, chragiipe formula accordingly.

Finally, we show that the proofs we produced are subgraptieaines we initially had. Since we never added
transitions and only replaced nodes with those with the dabms, all transitions of the projection ﬂ‘lf; overM

(resp.H;,“”/ over N) are also transitions of the projection Gt over M (resp.II* overN).
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Fig. 18 The proof-trees obtained from the reduced tree of Figurb)164) X = 7" and (b)Y F —T".

Example When we split the tree of Figure 16(b), we obtain the proeésrof Figure 18. The projection of each of

these new proof-trees is a subgraph of the projection of tiggnal corresponding proof-tree, as expected.

B Algorithm to build a distinguishing DAG

In this section, we describe the algorithmuiBD DAG. It builds a path to the targeted boundary disagreement
transition. The algorithm uses theoperator, defined below, that computes a “union” of sets wlabsments are of
the form(a, B), whereB is a set. The elements having the same head (e.g3) and(a, C)) are merged into a

single pair by mergind? andC'. For example,
{(a,{1,2}), (0,{2,3}), (¢, {1,3})} U {(a, {2, 3}), (¢, {0, 11} = {(a, {1, 2,3}), (b, {2, 3}), (¢, {0, 1, 3})}
Definition 21 (S U T) Let.S andT are sets of pairs of the forifa, B), whereB is a set. Then,

SUuT ={(a,BUC)|(a,B) € SA(a,C)eTYU{(a,B)|(a,B) € SABC-(a,C) €T} U
{(a,C)|(a,C) € TANPB-(a,B) € S}
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The algorithm B)ILDDAG uses a sub-routine to add the needed transitions to gowifil the conditions re-

quired by the definition of a distinguishing DAG (Definitiof)1 The newly added transitions may require additional

transitions in order to actually obtain a distinguishing®/ence the DAG is computed as a fixpoint.

Algorithm 1 BuildDAG

1: procedure BUILDDAG(M, N)

2:

11:
12:
13:
14:
15:
16:

17:
18:

19:
20:
21:
22:
23:
24:
25:
26:

Let <SM,ACt,A5V[,A?VI,m0> =M
Let(SN,ACt,ArN,A?\,,TL()> =N
LetP =M +pm N

Choos€(m., n.,) £ (my,ny,) € Psuchthaim!,n,) € Dy U Dy (x Chosen by the usex)
Letn be arequired agreemerpath with no loop tqm1, n1) traversing only pairs of inconsistent states
=11 (M, ) — (M, 1)) (x Extendr with our goal transition:)
X=0 (x Set of visited states)
Letl = {((m,n),{(m,n)})|(m,n) € 7} (* Pairs of states to traverse first
LetJ =0 (* Pairs of states to traversg
LetG = ((mo, no),V, Ag) = ((mo, no), {(mo,n0)}, ?) (x A placeholder for the DAG:)
while 7 U J # () do

if I =0 then

Let(m,n), F = J.pop()
else
Let(m,n), F = I.pop()
X =XU{(m,n)}
if (m,n) =%, (m/,n’) is a step inr then
(* Try to apply the normal algorithm with letter)
Let success =\ BROUTINE(m,n, F, {m'}, {n'}, {a})
if = successhen
Backtrack
else
Let success = BROUTINE(m,n, F, Sar, Sn, Act) (x Apply the normal algorithr)
if = successhen
Backtrack

return G

Recall the example in Figure 11 of Section 6. It showed thetefare cases wheW and N are inconsistent

MTSs over the same alphabet and yet a distinguishing DAGa@ting a given (boundary disagreement) transition

does not exist. We thus define the following notion of comess of Algorithm 1.:
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Algorithm 2 SubRoutine
1: procedure SUBROUTINE(m,n, F, targetsnr, targetsn, subAct)

2: if m —rm’ An 7& Am' € targetsyy A a € subAct then (* RuleRF %)
3 V=V uU{m, )}

4 Ag = Ag U (m,n) == (m/, %)

5 return True

6: elseifn -, n’ A m /a—> An' € targetsny A a € subAct then (* RuleFR %)
7 V=VUu{(,n)}

8 Ag = Ag U (m,n) % (x,n")

9 return True

10:  elseifm —%rm’ A (Vn/,n —%pn' = =Cons(m/,n') A (m',n’') ¢ F) A m’ € targetsyr A a € subAct then

(* RuleRR or RM x)

11 LetT = {n'|n —%p n'}

12: V=Vu{m,n)n eT}

13: Ag = Ag U{(m,n) —% (m/,n)|n’ € T}

14: for n’ € T such thaim,n) —= (m/,n’) € = do
15: [ = (TUu{((m',n), F U {(m/,n) )P\ X

16: T.renove(n’)

17: J=JUu{((m,n),FU{(m ,n)}Pn e TH\ X
18: return True

19:  elseifn —% 0’ A (Ym/,m —%p m/ = =Cons(m/,n’) A (m/,n') ¢ F) A n/ € targetsy A a € subAct then

(* RuleRR or MR x)

20: LetT = {m/|m —%, m'}

21: V=Vu{m,n)n eT}

22: Ag = Ag U {(m,n) =% (m/,n)|n/ € T}

23: for m’ € T such tha{m,n) —%; (m’,n’) € 7 do
24; [ = (TUu{((m',n), F U {(m/,n )P\ X

25: T.renmove(m’)

26: J = (JU{((m’,n'), P U{(m’,n")})lm’ € T} \ X
27: return True

28: else

29: return False
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Property 3 (Correctness of Algorithm Lpt M = (S, Act, AY,, AR, mo) andN = (Sn, Act, Ay, A%, ng) be
inconsistent MTSsMC: What is P? If the distinguishing DAG ofM +,,, N with the user-specified transition

(Mg, Ny . (m!,,nl) € P exists, Algorithm 1 computes it.

Proof We shall show that the graph that is built byBD DAG is indeed a distinguishing DAG, as defined by
Definition 16. First, we do build a DAG, because before addiey vertices, we check that the pair of states is not
in the setl” of ancestors in the graph we are constructing, preventmgttiusion of any cycle in the graph. In each
case of the call to $8ROUTINE, every transition we add corresponds to a required tramst the leaf of one of
the models. Therefore, by one of the ruRR, RM, MR, RF, FR, the transition we are adding to the DAG should
be a required one. Because we never add statesfromu Dy in setsl or J, we never take transitions that stem
from one of these in the DAG. On the other hand, a transiti@néaf only if it has been built by one of the two first
cases of 8BROUTINE: otherwise, we add its targets to one of the et J, unless it has already been visited. In
both cases, the pair has been or will be visited, and visdistate means adding transition from it in the DAG. As
we visit a given pair of states only once, and since an apgmicaf the SYJBROUTINE adds transitions labelled by
only one letter, all transitions stemming from a node of oA@will have the same letter. Finally, the conditions of
lines 10 and 19 of the algorithm ensure that we add all tremsiton a given symbol for one of the MTSs and only a

single, required, transition for the other. Therefore ghagph returned by BiLD DAG is a distinguishing DAG. O



