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Abstract
In this paper, we analyze the possibility of detecting nontrivial quantum
phenomena in observations of the temperature anisotropy of the cosmic
background radiation (CBR), for example, if the Universe could be found
in a coherent superposition of two states corresponding to different CBR
temperatures. Such observations are sensitive to scalar primordial fluctuations
but insensitive to tensor fluctuations, which are therefore converted into an
environment for the former. Even for a free inflaton field minimally coupled to
gravity, scalar–tensor interactions induce enough decoherence among histories
of the scalar fluctuations as to render them classical under any realistic probe
of their amplitudes.

PACS numbers: 98.80.Bp, 98.80.Cq, 98.80.Qc

1. Introduction

According to the inflationary paradigm [1, 2], primordial cosmological fluctuations are not
only quantum in origin but are also created in a very non-classical state [3–6]. This raises
the tantalizing possibility of uncovering nontrivial quantum behavior through cosmological
observations. However, no known cosmological probe would reveal the actual quantum
state of primordial fluctuations: all known methods of observation focus on a restricted set of
properties of those fluctuations, thus leaving a remainder which must be traced over. Therefore,
to discuss nontrivial quantum behavior we have to consider not only the quantum features of
the cosmological fluctuations but also the loss of quantum coherence induced by the partial
description appropriate to the observation in question.

In this paper, we take as an example the case of observations of the amplitudes of
the temperature anisotropy of the cosmic background radiation (CBR). The temperature
fluctuations are determined by the scalar cosmological fluctuations. Unlike the case when
CBR polarization is being observed, tensor perturbations affect the result only through their
action on the scalar ones. Therefore, in the observation of CBR temperature fluctuation
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amplitudes, we must regard tensor fluctuations as an environment coupled to the system of
interest, namely the scalar fluctuations.

The coupling between the system and its environment induces decoherence in the former
[7, 8]. Adopting the Gell-Mann–Hartle consistent histories approach to quantum mechanics
[9, 10], we ask whether it is possible to observe the coherence between different histories
of the scalar fluctuations, after tracing over the tensor fluctuations. We only consider the
coupling between these fluctuations demanded by general relativity. We represent all matter
fields by a single free scalar inflaton field, minimally coupled to gravity. After identifying
the relevant gauge invariant variables and imposing the Newtonian gauge conditions (see
below), the momentum constraints of general relativity relate the inflaton field to the single
scalar degree of freedom in the metric, so there is only one gauge invariant scalar degree of
freedom in the theory. This scalar field is coupled to the graviton field, which after making the
graviton polarization explicit may also be described by two scalar fields. We disregard vector
perturbations.

Our conclusion is that the decoherence induced by tensor perturbations is strong enough to
erase any traces of quantum behavior in the scalar fluctuations, given any realistic observational
scenario by today’s standards. To this extent, our findings are consistent with other treatments
of the issue in the literature, based on different system–environment splits, or else on averaging
over the decaying mode of the cosmological fluctuations [11–20].

Within the Gell-Mann–Hartle formalism, one has the freedom to take any pair of histories
to compute the decoherence functional. We choose these histories to answer if quantum effects
in the CBR spectrum can be detected. According to the present paradigm, the amplitudes of
the temperature fluctuations in the different modes in which the CBR may be decomposed
are the result of a stochastic process. The amplitudes themselves are independent very nearly
Gaussian random variables. We regard each realization of this process as a ‘history’ and
ask whether decoherence between different, independent typical histories may be observed.
Since the histories themselves are random, we will compute the expectation value of the
influence functional between two independent histories. We will also show that the mean
quadratic deviation of the influence functional from its expectation value is negligible.

To translate the instantaneous picture of the CBR temperature fluctuations at the time of
last scattering into a history of scalar fluctuations evolving in spacetime, we use the Sachs–
Wolfe effect [1, 21, 22, 23]. This allows us to find the amplitudes of the growing modes in
the scalar fluctuations corresponding to given temperature fluctuations. To link the amplitude
of scalar perturbations in the recombination era with the inflationary period we use Bardeen’s
conservation law [24, 25]. Once we have associated the history of the scalar fluctuations
with the given temperature fluctuations, we compute the expectation value and the standard
deviation of the decoherence induced by the gravitons on two independent histories chosen at
random.

This paper is organized as follows. In section 2, we give a brief summary of inflation,
gauge invariant cosmological perturbations, their link to CBR temperature, and we compute
the interaction between the scalar and tensor modes which is necessary to calculate the
decoherence functional. Section 3 is devoted to decoherence: we first give a brief summary
of the Hartle-Gell–Mann approach, mainly to fix our notation and and then we compute the
decoherence functional and its standard deviation. Finally, section 4 contains our conclusions.

2. Inflation and cosmological perturbations

The aim of this work is to compute the decoherence suffered by the scalar perturbations due to
its interaction with the tensor perturbations in the inflationary stage of the Universe. For such
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calculation it is necessary to find the interaction between the perturbations. In this section,
we calculate the interaction between scalar and tensor modes using the ADM formulation of
general relativity [26]. Then, we compute the free action of the tensor perturbations and the
Hadamard propagator [27] associated with them. We will use the Newtonian gauge to find the
cosmological perturbations [25].

Let us begin by describing the cosmological model we have in mind. We adopt units with
c = h̄ = kB = 1; therefore, the Plank mass mp = 1019 GeV, the present temperature of the
Universe is T0 = 10−13 GeV and the present age of the Universe, which is also essentially
the size of the present day cosmological horizon, is L0 = 1042 GeV−1. Up to that distance,
the Universe is well described by a spatially flat Friedmann–Robertson–Walker (FRW) model
with scale factor a (t); we assume a = 1 at the present time. We assume the Universe
underwent a stage of inflationary expansion which ended at the time of reheating tr. For
concreteness we assume a reheating temperature of Tr = 1016 GeV. This means that at the
time of reheating, and therefore also during the inflationary era, the Hubble parameter was
H = T 2

r /mp = 1013 GeV. The scale factor at reheating was ar = T0/Tr = 10−29. In
terms of conformal time η = −1/aH this means inflation ends at a time |ηr | = 1016 GeV−1.
Our present horizon crossed the horizon during inflation at the time when the conformal
factor was ai = 1/HL0 = 10−55. Observe that as expected ar/ai = 1026 = e60. At this
time, the conformal time was |ηi | = 1042 GeV−1. For all practical purposes, we take this
event as the beginning of inflation. We will be concerned with cosmological modes which
crossed the horizon during inflation sometime between |ηi | and |ηr |. This means their
conformal wave numbers are in the range 10−42 GeV < q < 10−16 GeV. Concretely,
the mode q crosses the horizon at a conformal time |ηe| = 1/q, when 1/a(ηe)H = 1/q.

2.1. Quick review of inflation

The necessary condition to achieve an accelerated expansion is p = −ρ. This condition yields
the de Sitter stage when the scale factor grows exponentially, a ∼ eHt [1, 2, 34]. This stage of
evolution is dominated by a homogeneous scalar field called inflaton (ϕ0). Its energy density
and pressure are given by

ρ = 1
2 ϕ̇2

0 + V (ϕ0) (1a)

p = 1
2 ϕ̇2

0 − V (ϕ0), (1b)

where V (ϕ0) is the potential energy of the inflaton.
In an expanding, homogeneous and isotropic spacetime described for the plane FRW

metric—ds2 = −dt2 + a2(t) dx2—the inflaton follows the field equations:

H 2 = 8π

3m2
pl

[
1

2
ϕ̇2

0 + V (ϕ0)

]
(2a)

0 = ϕ̈0 + 3Hϕ̇0 +
∂V

∂ϕ0
, (2b)

where H = ȧ/a is the Hubble factor (approximately constant during inflation) and mpl is the
Planck mass.

The inflationary condition requires a sufficiently flat potential so that the potential energy
dominates over the kinetic energy, ϕ̇2

0 < V (ϕ0). This condition, known as slow-roll, is satisfied
if

ε = m2
pl

16π

(
V,ϕ

V

)2

� 1 (3a)
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ζ = m2
pl

8π

V,ϕϕ

V
� 1 (3b)

where ε and ζ are the so-called slow-roll parameters.
Using equation (3a) to rewrite V,ϕ in terms of ε and neglecting the ϕ̈0 term in (2a), the

first slow roll parameter can be written in terms of the kinetic and potential energies as

ε ≈ ϕ̇2
0

V
. (4)

Now, using that V = m2
ϕ0

ϕ2 in (3a), the inflaton field results

ϕ0 = mpl√
ε

(5)

and the Hubble factor is

H ∼ mϕ√
ε
. (6)

It will be convenient to put the time derivative of the inflaton field (ϕ̇0) in terms of the conformal
time η. A derivative with respect to η is denoted by f ′. We also define H = a′/a = aH .

Using the conformal time and the slow-roll parameters, equation (2b) becomes

ϕ′
0 ≈ √

ε
mpl

η
. (7)

We will use those equations in the following subsections and in section 3 in order to compute
the decoherence functional.

2.2. Invariant cosmological perturbations

Perfectly homogeneous and isotropic spacetime is only an idealization. This description
cannot explain the large structures observed in the Universe. One way to achieve a satisfactory
explanation for the structure distribution is to include small perturbations in the FRW metric.

We will consider only linear perturbations about the fields:

ζ = ζ0(t) + δζ(t, x). (8)

The linear part of the perturbed FRW metric is [25]

ds2 = a2(η){(1 + 2φ) dη2 − 2(Si + B;i ) dxi dη

− [(1 − 2ψ)γij + Fi;j + Fj ;i + 2E;ij + hij ] dxi dxj } (9)

where the ‘;’ subindex is the covariant derivative with respect to the background spacetime γij

and a(η) dη = dt is the conformal time. In the flat FRW spacetime, γij = δij and therefore
the covariant derivative is the usual one.

The perturbations can be split into scalar, vector and tensor components according to their
properties transformations in the spatial hypersurfaces. The scalar perturbations are φ, B, ψ

and E.
The vector component is given by S and F which satisfies S

;i
i = F

;i
i = 0. The symmetric

tensor hij gives tensor perturbations with the constraints hi
i = 0 and h

;j
ij = 0.

All those variables are gauge dependent. To describe the inhomogeneities of the universe
through linear perturbations, we must first distinguish which of the quantities have a well
defined physical interpretation, not related to a change of coordinates or a change in the
system of reference. There is an infinite number of invariant quantities, but two commonly
used are [25]
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 = φ +
1

a
[(B − E′)a]′ (10a)

� = ψ − a′

a
(B − E′). (10b)

The reason for choosing these quantities is that in the Newtonian gauge, B = E = 0, the
two gauge invariant quantities coincide with the scalar perturbations in the metric that were
not canceled, 
 = φ and � = ψ . Moreover, when the spatial part in the perturbation of the
energy–momentum tensor is diagonal, the scalar perturbations φ and ψ are equal and only
one scalar degree of freedom in the metric remains. Furthermore, a scalar quantity that is not
included in the metric is already gauge invariant.

Regarding the tensor perturbations, they are gauge invariant by definition. Having zero
trace and divergence, they do not have quantities that transform as scalars or vectors.

The ADM parameterization of the metric in terms of gauge invariant variables is as
follows. The shift function is

Ni = a2B,i (11)

the lapse function is

N2 − NiN
i = a2(1 + 2φ)

N2 = a2(1 + 2φ + B,iB,i)

N ≈ a
(
1 + φ − 1

2φ2
) (12)

and the extrinsic curvature tensor is

Kij = a(η)
{
(1 − φ)Bij −(3) �k

ijB,k

[
φ′(1 − 2φ)H − φφ′ + φ(1 − 2φ)H 3

2φ2H
]
δij

+
(−1 + φ − 3

2φ2
)
Hhij + 1

2

( − 1 + φ − 3
4φ2

)
h′

ij

}
(13)

where

�k
ij = 1

2gkl(gil,j + gjl,i − gij,l) (14)

is the spatial part of Christoffel’s coefficients with

gij = −a2(η)[(1 − 2φ)δij + hij ] (15)

being the spatial part of the plane perturbed metric without vector perturbations. So far, we
have defined the scalar perturbation in the Newtonian gauge, now we move on to analyse its
dynamics and its link to CBR temperature.

2.3. Free scalar perturbations and CBR temperature

The evolution of φ is obtained from the perturbed Einstein’s equations. Let us write
u = (a/ϕ′

0)φ. Under the slow-roll approximation, (a/ϕ′
0) ∝ η−1 and u obeys the equation

u′′ − ∇2u − 2

η2
u = 0. (16)

The equation for the modes uk results

u′′
k(η) +

(
k2 − 2

η2

)
uk(η) = 0. (17)

As |η| → 0, we see there is a growing mode ≈ 1 and a decaying mode ≈ η. The latter
becomes negligible against the former, which is the sole contribution to CBR temperature
fluctuations. We assume that the φ field is a superposition of growing modes only, namely

φ(x, η) =
∫

d3k

(2π)3
eikxφkFk (η) (18)
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where

Fk (η) = cos (kη) + kη sin (kη) . (19)

It is readily seen that Fk/η is a solution to equation (17).
Once the modes cross the horizon, k ∼ aeH , their amplitudes are frozen at the value φk

until they re-enter into the recombination era. At this stage their amplitudes are amplified and
can be related to the inflationary stage through the equation [24, 25]

φk ≈ ϕ̇2
0

V (ϕ0)
φk(ηk,rec) (20)

where ηk,rec is the k dependent time of final horizon crossing. Moreover, using the Sachs–
Wolfe effect [1, 21, 22, 23], we can relate the scalar perturbation with anisotropies in the
cosmic background radiation during the recombination period as follows:

δTk

T0
= 1

3

V (ϕ0)

ϕ̇2
0

φk. (21)

With this last equation we can relate the scalar perturbation modes during inflation with the
CBR anisotropies, which are an observable magnitude.

2.4. Scalar–tensor interaction

The scalar perturbation φ to the metric (in the Newtonian gauge) and the perturbation δϕ to
the inflaton field ϕ0 are linked through the equation [25]

φ′ + Hφ = 4πm−2
pl ϕ′

0δϕ. (22)

Then, a single scalar degree of freedom remains in the Newtonian gauge.
We consider now the derivation of the coupling current between the gauge invariant scalar

mode φ and the gravitons. We start with the usual Einstein–Hilbert action written in the ADM
form [26] plus the Klein–Gordon action for the inflaton

S = m2
pl

2

∫
d4x

[
Ng1/2

(
Ki

jK
j

i − K2
)

+
1

2
(g1/2gijN),i(ln g),jN,i(g

1/2gij ),j

+
1

2
g1/2N(3)�k

ij g
ij

,k

]
+

∫
d4x

√−g

[
1

2
gμνϕ

;μϕ;ν − V (ϕ)

]
(23)

where 2Kij = N−1[Ni;j + Nj ;i − g′
ij ] is the extrinsic curvature tensor, N the lapse function

and N,i the shift function.
The extrinsic curvature tensor does not contribute to the scalar–tensor coupling, neither

do terms containing the trace hii = 0. Keeping terms containing two scalar and one graviton
field, we obtain

1

2
m2

plN,i(g
1/2gij ),j 
→ −1

2
m2

pla
2φ,iφ,jhij (24a)

− 1

2
m2

pl

1

2
Ng1/2�k

ijg
ij

,k 
→ −2m2
pla

2φ,iφ,jhij (24b)

1

2
m2

pl

1

2
(g1/2gijN),i

g,j

g

→ 3m2

pla
2φ,iφ,jhij (24c)

1

2
Ng1/2gijϕ,iϕ,j 
→ 1

2
a2δϕ,iδϕ,jhij . (24d)

We may summarize these equations writing

Sint =
∫

d4xJijhij (25)
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where

Jij = m2
pl

2
a2(η)

[(
1 + 16m2

plH2ϕ′−2
0

)
φ,iφ,j + 16m2

plϕ
′−2
0 φ′

,iφ
′
,j + 32m2

plHϕ′−2
0 φ,iφ

′
,j

]

≈ m2
pl

2
a2(η)φ,iφ,j . (26)

This is the coupling current that is used to calculate the decoherence induced on the scalar tensor
modes. To this aim it is also necessary to calculate the Hadamard propagator: equation (43)
below shows that the decoherence functional is written in terms of the Hadamard propagator
and to compute it requires first to find the free action for the tensor perturbations.

2.5. Free graviton Hadamard propagator

To second order in hij, the free action of the gravitons is the Klein–Gordon action for
tensors hij:

Sfree = m2
pl

4

∫
d4xa2(η)[h′

ij h
′
ij − hij,khij,k]. (27)

The free dynamics of the gravitons is described in terms of their physical degrees of
freedom [12]

hij (x) = 1

a(η)mpl

∫
d3y[G+

ij (x − y)h+(η, y) + (+ ↔ ×)] (28)

where + and × are the graviton polarizations and

G+
ij (x − y) =

∫
d3k

(2π)3
eik(x−y)A+

kij . (29)

The matrix Aij verifies

A+
kii = kiA

+
kij = A×

kii = kiA
×
kij = 0 (30)

and h(η, y) obeys

h′′ + 2
a′′

a
h − ∇2h = 0. (31)

We assume that the scalar field h(y) is in the usual Bunch–Davis vacuum state.
The scalar Hadamard propagator is defined as

G1(y, y ′) = 〈h(y)h(y ′) + h(y ′)h(y)〉. (32)

It results

G1(y, y ′) =
∫

d3k

(2π)3
eik(y−y′) 1

k
G1k(η, η′) (33)

where

G1k(η, η′) =
(

1 +
1

k2ηη′

)
cos[k(η − η′)] +

1

k

(
1

η
− 1

η′

)
sin[k(η − η′)]. (34)

Therefore, for the gravitons themselves we obtain

G1ij lm(x, x ′) = 〈{hij (x), hlm(x ′)}〉

= 1

a(η)a(η′)m2
pl

∫
d3k

(2π)3
�kij lm eik(x−x′)G1k(η, η′) (35)
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where

�kij lm = A+
kijA

+
klm + A×

kijA
×
klm. (36)

In the next section, we compute the decoherence functional using the coupling current given
by (26) and the Hadamard propagator showed in (34). At last, we will relate the scalar
cosmological perturbations to CBR temperature fluctuations. This was done in section 2.3
and allows us to rewrite the decoherence functional in terms of an observable.

3. Decoherence functional

We use the Hartle-Gell–Mann formalism to quantify the decoherence induced by the gravitons
on the scalar perturbations. We first give a brief description of this formalism and then we
compute the decoherence.

3.1. Hartle–Gell–Mann formalism

In this section, we give a quantitative discussion of decoherence. To calculate the loss
of coherence induced on the scalar tensor modes (which are in the FRW metric) we use
the decoherence functional developed by Gell-Mann and Hartle [9, 10]. We give a brief
description of closed quantum systems including the decoherence term that is related to the
classical sum rule of probabilities for different histories of a closed quantum system.

In the consistent histories description, there is a subset of configuration space variables
that are distinguished (ψ , system) while another subset is ignored (ξ , environment). An
individual coarse-grained history is described by the path ψα(t) along with all possible
paths ξα(t).

When the probability of each history can be assigned individually, the system behaves
like a classical one and we say it has decohered. This means that the quantum interference
between any two elements of this set of histories is negligible and the probability of reaching
the same final state through two different stories is the sum of the probabilities of each history.
The interest in finding histories that have undergone decoherence lies in the fact that these
histories will be the ones that describe the classical domains.

One way to measure the decoherence suffered by two histories is through the decoherence
functional (D), which is [9, 10]

D(α, α′) =
∫

α

Dψ1
∫

α′
Dψ2 δ(ψf − ψ ′

f ) eiS0(ψ
1)ρs(ψi, ψ

′
i ) e−iS0(ψ

2)

×
∫

dξi dξ ′
i

∫ ξ 1

ξi

Dξ 1
∫ ξ 2

ξ ′
i

Dξ 2 δ(ξ 1 − ξ 2) ei[SE(ξ 1)+SI (ψ
1,ξ 1)]ρE(ξi, ξ

′
i ) e−i[SE(ξ 2)+SI (ψ

2,ξ 2)]

(37)

where S0 is the free action of the system, SE is the action of environment, SI is the action for
the system–environment interaction and ρ0 and ρE are the system and environment density
matrices, respectively. It is assumed that the system and environment are initially uncorrelated
and therefore the density matrix can be factorized.

The influence functional (F) is obtained through the integration of two final states of
environment that are the same, i.e. ξ 1 = ξ 2 = ξ [27, 28]:

F(ψ1, ψ2) = eiSIF

=
∫

dξ

∫
dξi dξ ′

i

∫ ξ

ξi

Dξ 1
∫ ξ

ξ ′
i

Dξ 2 ei[SE(ξ 1)+SI (ψ
1,ξ 1)]ρE(ξi, ξ

′
i ) e−i[SE(ξ 2)+SI (ψ

2,ξ 2)]

(38)
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Therefore, the decoherence functional is

D(α, α′) =
∫

α

Dψ1
∫

α′
Dψ2 δ(ψf − ψ ′

f ) eiS0(ψ
1)ρs(ψi, ψ

′
i ) e−iS0(ψ

2) eiSIF (ψ1,ψ2). (39)

The weak decoherence condition is recovered when[9, 10]

e−Im[SIF (ψ1,ψ2)] � 1 ⇒ Im[SIF (ψ1, ψ2)] � 1. (40)

If the interaction between the system and environment can be written by a current coupling as

SI (ψ, ξ) =
∫

d4x J (ψ(x))ξ(x) (41)

and the environment corresponds to free fields, then the influence functional can be written in
terms of Jordan and Hadamard propagators as [27]

SIF (ψ1, ψ2) = i

4

∫
d4x d4x ′[J (ψ1) − J (ψ2)](x)[J (ψ1) + J (ψ2)](x ′)G(x, x ′)

+
i

4

∫
d4x d4x ′[J (ψ1) − J (ψ2)](x)[J (ψ1) − J (ψ2)](x ′)G1(x, x ′). (42)

Since the currents J (ψ) are real, all we need to consider to find the real part of the decoherence
functional are propagators: the Jordan propagator (G) is imaginary while the Hadamard
propagator (G1) is real. Considering the factor i before the influence functional, the imaginary
part can be written as

Im(SIF ) = 1

4

∫
d4x d4x ′[J (ψ1(x)) − J (ψ2(x))][J (ψ1(x ′)) − J (ψ2(x ′))]G1(x, x ′). (43)

This is the expression to be computed to determine the decoherence of the scalar perturbations
during inflation. The coupling current between the graviton and scalar fluctuations is given
by (26). In subsection 3.2, we make the calculation of this expression. Before that we pass
to relate the scalar perturbation with the CBR temperature in order to put the decoherence
functional in terms of an observable.

3.2. Decoherence functional computation

The Hartle–Gell–Mann formalism lets us choose between the histories involved in the
decoherence functional. In this work, we wish to choose histories representing different
outcomes regarding the CBR temperature. Since nonlinear effects are small, the CBR
temperature is determined by the scalar perturbations, and these evolve as a nearly free
field. Therefore, we assume histories where the single gauge invariant scalar perturbation
φ(η) allowed in the Newtonian gauge evolves as a free perturbation, as described in
section 2.3 , while tensor perturbations are totally unspecified.

We start the decoherence functional computation by writing equation (43) in terms of
the coupling current given by (26), the Hadamard propagator given by equation (34) and the
polarization tensors of the gravitons (equation (29)). The decoherence functional results

Im(SIF ) = 81

16
ε4

m2
pl

H 2

∫
d3p

(2π)3

d3q

(2π)3

d3p′

(2π)3

d3q ′

(2π)3 (2π)3 δ(p + q + p′ + q′)

×�(p+q)ij lmpiqjp
′
lq

′
m

×
∫

dη dη′ 1

|p + q|G1|p+q|(η, η′)η−1η′−1Fp(η)Fq(η)Fp′(η′)Fq ′(η′)

× 1

T 4
0

[
δT 1

p δT 1
q − δT 2

p δT 2
q

] [
δT 1

p′δT
1

q′ − δT 2
p′δT

2
q′
]
. (44)
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Let us assume
1

T 2
0

〈
δT a

p δT b
q

〉 = N

p3
δabδ (p + q) (45)

where N ≈ 10−10 is the square of the fractional temperature fluctuation of the CBR given by
the current observations.

Then

〈Im (SIF )〉 = 81

4 (2π)3 ε4
m2

plN
2

H 2
L3

0

∫
d3p

(2π)3

d3q

(2π)3

�(p+q)ij lmpiqjplqm

|p + q| p3q3

×
∫

dη

η

dη′

η′ G1|p+q|(η, η′)Fp(η)Fq(η)Fp(η′)Fq(η
′) (46)

where moreover �(p+q)ij lmpiqjplqm = 4 (p × q)2.
The conformal time integrals may be written as a sum of two squares, I 2

1 + I 2
2 , where

I1 =
∫

dη

η

[
cos (kη) +

sin (kη)

kη

]
Fp (η) Fq (η) (47a)

I2 =
∫

dη

η

[
cos (kη)

kη
− sin (kη)

]
Fp (η) Fq (η) (47b)

where k = |p + q|. Now

1

η
Fp (η) Fq (η) = pqη

2
[cos (p − q) η − cos (p + q)]

+
p

2
[sin (p + q) η + sin (p − q) η]

+
q

2
[sin (p + q) η − sin (p − q) η]

+
1

2η
[cos (p + q) η + cos (p − q) η] . (48)

Keeping only the large |η| terms is consistent with assuming that most decoherence occurs
when modes are within the horizon. Keeping only the highest powers in conformal time, we
transform this integral into

〈Im(SIF )〉 = 81

(2π)3
ε4

m2
plN

2

H 2
L3

0

∫
d3p

(2π)3

d3q

(2π)3

(p × q)2

|p + q|pq

∫
dη dη′ηη′ cos{�pq(η − η′)}

(49)

where �pq = |p + q| − p − q.
The time integrals may be performed to yield

〈Im (SIF )〉 = 4 81

(2π)3 ε4
m2

plN
2

H 2
L3

0

∫
d3p

(2π)3

d3q

(2π)3

(p × q)2

pq |p + q|
|ηi |2
�2

pq
sin2(�pqηi). (50)

Observe that the integrand is well behaved as p, q → 0, so we can extend the momentum
integrals all the way to the origin. Also because of the large frequency involved, we may
approximate the sin2 by 1/2. The only dimensionful quantity which remains is the upper
integration limit |ηr |−1, and we obtain by dimensional analysis

〈Im(SIF )〉 ≈ ε4
m2

plN
2

H 2
L3

0
|ηi |2
|ηr |5 (51)

which is about 10120ε4.

10
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3.3. Quadratic deviation of the influence functional

If we regard ImSIF as a stochastic variable, we may devise a Feynman graph representation
for its moments. These graphs are composed of graviton lines and CBR lines joining at cubic
vertices, according to the Feynman rules:

(1) a graviton line carries a momentum label k and coordinate labels ij and lm and time
labels η and η′ at each end. It corresponds to the element

1

a(η)a(η′)m2
pl

�(k)ij lm

|k| G1|k|(η, η′); (52)

(2) a CBR line carries a momentum p label and also labels time η, η′ and ‘history’ a, b at
each end. It corresponds to the element

Nε2

p3
δabFp(η)Fp(η′); (53)

(3) a vertex joins a graviton line (labels k, ij, η), a CBR line (labels p, i, η, a) and a second
CBR line (labels q, j, η, b). It corresponds to the element

m2
pl

2H 2η2
piqjσ ab

3 δ (p + q + k) (54)

(for an outgoing line the sign of momentum is reversed). σ3 is the third Pauli matrix
diag (1,−1). Observe that tadpoles vanish identically because of the sum over the history
label.

In this language, 〈ImSIF 〉 is the setting sun graph [27]. The second moment 〈(ImSIF )2〉
corresponds to graphs containing two graviton lines and four vertices. We discard graphs
containing tadpoles and also the disconnected graph, which equals 〈ImSIF 〉2. The remaining
graphs contain three loops and therefore four CBR lines. Since they are connected, there is a
single overall delta function from momentum conservation which contributes a factor of L3

0
to the final amplitude. From simple power counting, we obtain

〈(ImSIF )2〉 − 〈ImSIF 〉2 ≈
(

m2
pl

H 2

)4 (
1

m2
pl

)2

(Nε2)4L3
0H

4J (55)

where J is the remaining momentum and time integration. We analyze this in the same terms
as in the previous section to conclude that J ∝ |ηi |4 |ηr |−7. We therefore find

〈(ImSIF )2〉 − 〈ImSIF 〉2

〈ImSIF 〉2
∝

( |ηr |
|ηi |

)3

≈ e−180. (56)

This result, together with the result for 〈Im(SIF )〉, shows that the decoherence functional
behaves as a Gaussian variable strongly centered in its mean value. Furthermore, this mean
value is large enough to produce an effective decoherence process on the scalar perturbation,
turning impossible to detect quantum effects on the CBR spectrum.

4. Conclusions

In this paper, we have computed the decoherence functional between two histories of
the Universe where scalar primordial fluctuations evolve in a prescribed way while tensor
fluctuations are regarded as an environment. This decoherence functional is relevant to the
question of whether it is possible to detect nontrivial quantum behavior in observations of
the CBR temperature alone (that is, blind to CBR polarization). Our result implies that such

11
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detection is unrealistic by today’s standards. Because of the well-known triangle inequality
[29–33], we expect the same would be obtained if the scalar fluctuations were regarded as an
environment for the tensor ones.

This finding is consistent with earlier analysis of decoherence of cosmological fluctuations
[11–20]. We hold this paper as an advance with respect to those earlier analyses because our
system–environment split is related to the features of a realistic observational scheme, rather
than just being assumed. Moreover, we make no ad hoc assumptions regarding the model,
since the only coupling we are considering is demanded by general relativity. The present
work is probably closest to [12], but goes beyond it in that the proper gauge invariant degree
of freedom is identified, rather than just the inflaton field.

Finding tangible proof of the quantum nature of our Universe is one of the most fascinating
challenges faced by cosmology today. We believe our result should not be read in a negative
way but rather in a positive one, as pointing to the direction in which a successful scheme
could be found. We are continuing our research with this goal in mind.
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