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a b s t r a c t

Two proton quasi-equilibrium states were previously observed in nematic liquid crystals, namely the S

and W quasi-invariants. Even though the experimental evidence suggested that they originate in a

partition of the spin dipolar energy into a strong and a weak part, respectively, from a theoretical

viewpoint, the existence of an appropriate energy scale which allows such energy separation remains to

be confirmed and a representation of the quasi-invariants is still to be given. We compare the dipolar

NMR signals yielded both by the Jeener–Broekaert (JB) experiment as a function of the preparation time

and the free evolution of the double quantum coherence (DQC) spectra excited from the S state, with

numerical calculations carried out from first principles under different models for the dipolar quasi-

invariants, in a 10-spin cluster which represents the 5CB (40-pentyl-4-biphenyl-carbonitrile) molecule.

The calculated signals qualitatively agree with the experiments and the DQC spectra as a function of the

single-quantum detection time are sensible enough to the different models to allow both to probe the

physical nature of the initial dipolar-ordered state and to assign a subset of dipolar interactions to each

constant of motion, which are compatible with the experiments. As a criterion for selecting a suitable

quasi-equilibrium model of the 5CB molecule, we impose on the time evolution operator consistency

with the occurrence of two dipolar quasi-invariants, that is, the calculated spectra must be unaffected

by truncation of non-secular terms of the weaker dipolar energy. We find that defining the S quasi-

invariant as the subset of the dipolar interactions of each proton with its two nearest neighbours yields

a realistic characterization of the dipolar constants of motion in 5CB. We conclude that the proton-spin

system of the 5CB molecule admits a partition of the dipolar energy into a bilinear strong and a

multiple-spin weak contributions therefore providing two orthogonal constants of motion, which can

be prepared and observed by means of the JB experiment. This feature, which implies the existence of

two timescales of very different nature in the proton-spin dynamics, is ultimately dictated by the

topology of the spin distribution in the dipole network and can be expected in other liquid crystals.

Knowledge of the nature of the dipolar quasi-invariants will be useful in studies of dipolar-order

relaxation, decoherence and multiple quantum NMR experiments where the initial state is a dipolar-

ordered one.

& 2009 Elsevier Inc. All rights reserved.

1. Introduction

Nuclear spin dipolar quasi-invariants are, together with the
Zeeman energy, relevant observables of the spin system in liquid
crystals (LC), providing new relaxation parameters useful to
disentangle the complex molecular motions in these mesophases
[1]. For instance, Larmor frequency and temperature dependent
experiments showed that the relaxation times of the dipolar
quasi-invariants are very sensitive to slow cooperative molecular
motions over a wide range of magnetic field strengths, allowing to

reliably estimate the spectral densities of the nematic director
[2,3]. However, nowadays, difficulties associated with the theore-
tical description still remain, which hamper taking full advantage
of the useful relaxation properties of the dipolar-ordered states [4].

A comprehensive theoretical description of the spin dynamics
in the relaxation or the decoherence regime in highly correlated
molecular systems must include both the quantum correlation
between spins and environment in the microscopic timescale
together with a description of the physical processes which drive
the spin system to the quasi-equilibrium [3–6]. However, any
further theoretical progress depends on a suitable representation
of the dipolar quasi-invariants. This requirement also applies to
manipulation of quantum states starting from dipolar-ordered
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states in LC, as in multiple quantum NMR experiments [7–9]. In
this work, we attempt to provide physical insight on the origin of
different thermodynamic quasi-invariants and their multiple-spin
nature by comparing the output of different NMR experiments
with the corresponding signals calculated from first principles.

The feasibility of preparing nuclear spin dipolar-ordered states
in solids has been established in the past [10–12]. One of the best
known methods for generating dipolar order from Zeeman order
is the Jeener–Broekaert (JB) phase-shifted radiofrequency (rf)
pulse pair [12]. In ordinary solids, as CaF2, where the nuclear spins
are regularly distributed, the assembly of fluorines presents two
independent quasi-invariants at high magnetic field: the Zeeman
and secular dipolar energies [12]. The occurrence of these
constants of motion relies on the fact that, at high magnetic field,
the non-secular terms of the dipolar energy have negligible
influence on the time evolution of the quantum coherences in the
timescale of the build up of the quasi-equilibrium state. Recently,
the tensor structure of the density matrix after the JB pulse pair
during the transient towards the quasi-equilibrium has been
studied by encoding its coherence numbers in a basis orthogonal
to the Zeeman basis [7]. The only dipolar quasi-constant observed
was the high-field secular dipolar Hamiltonian.

The proton-spin distribution in hydrated crystals presents a
higher degree of complexity than ordinary solids, since protons
are paired in water molecules throughout the crystal lattice
[13–15]. Under an adequate orientation respect to the external
magnetic field, all spin pairs are equivalent and the NMR spectrum
shows a resolved doublet due to the ‘‘intrapair’’ interactions while
the ‘‘interpair’’ contribution provides the crystalline broadening
[15]. The spin system can be then assumed as an arrangement
of weakly coupled equivalent pairs. Accordingly, the dipolar
Hamiltonian is written in a perturbative way as a sum of two
commuting contributions: an intrapair term and a smaller
crystalline interpair contribution, the latter truncated with
respect to the intrapair and Zeeman energies. Again in this case,
it is assumed that the elimination of the non-secular terms of the
interpair dipolar energy has no significant effect on the coherence
time evolution during the build up of the thermal equilibrium. A
Hamiltonian of this form is compatible with the occurrence of
four quasi-invariants, three of them (Zeeman, dipolar intrapair,
and singlet orders) associated with the unequally spaced energy
levels of a proton pair, and the crystalline dipolar interpair. This
assumption was experimentally corroborated in gypsum [15–17]
and potassium oxalate monohydrate [14].

Liquid crystals provide another example of spin system where
two kinds of independent proton-spin dipolar-ordered states can
be prepared and observed at high magnetic fields. Dipolar signals
similar to those of the hydrated crystals were observed in fully
protonated and partially deuterated nematics at 300 MHz as well
as 16 and 27 MHz [18,1]. It is accepted that the fast liquid-like
molecular motion averages out the intermolecular dipolar inter-
actions, however, there is a strong residual intramolecular dipolar
spin energy due to the orientational order typical of these
mesophases [19]. In this work we assume that, except for spin
relaxation, a picture of magnetically isolated clusters of dipole
coupled spins is adequate for representing the spin system in LC
[20,21]. This characteristic enables studying the transfer of the
high-field Zeeman order to dipolar order in small spin systems.
The NMR lineshape of nematics is broad and often shows a
resolved doublet (independent of the external field) which
indicates that the interaction of a spin with its nearest neighbours
is strong enough to establish a coherent response in spite of the
broadening effects due to more distant spins [22,23].

The occurrence of two dipolar quasi-invariants in LC suggests
that a perturbative approximation of the spin–spin Hamiltonian
should hold, in which the high-field Zeeman-secular dipolar

energy Ho
D is split in two commuting terms [1] associated with

two subsets, strong ðSÞ and weak ðWÞ, of dipolar couplings.
However, the existence of an appropriate energy scale which
justifies truncation of the weaker term to generate two constants
of motion associated with the dipolar energy is not clearly
suggested in LC as in hydrated solids, because of the very different
nature of the dipolar network and the limited number of degrees
of freedom of the LC molecule. By encoding the spin states after
the JB pulse pair on the X-basis, it was recently shown [24] that S
in 5CB (40-pentyl-4-biphenyl-carbonitrile) has a bilinear pairwise
tensor structure like Ho

D, while W has a much more complex,
multiple-spin correlated nature, in consistency with the longer
timescale associated with this quasi-invariant [1]. However, this
method does not allow finding the appropriate energy scale which
justifies truncation of the weaker term to generate a second
constant of motion associated with the dipolar energy.

In this work we explore the validity of representing the quasi-
equilibrium spin states after the JB preparation pulse pair in LC by
a density operator with two dipolar quasi-invariants originated in
the intra-molecular Zeeman-secular dipolar energy, and propose a
method for identifying a partition of the dipolar energy into two
dipolar constants of motion. We study the experimental single-
(SQC) and double quantum coherence (DQC) signals of 5CB,
obtained from the initial S dipolar-ordered state, and compare
them with the corresponding signals calculated through the exact
quantum dynamics of a cluster of ten spins 1

2 at the proton sites of
a 5CB molecule.

The dipolar quantum operators are built by partitioning the
secular dipolar energy and truncating the weak term with respect
to the strong one. As the criterion for selecting an appropriate
partition, we require the time evolution of the quantum coherence
to be consistent with the occurrence of the S and W quasi-
invariants, namely the NMR signals calculated under a satisfactory
partition of the dipolar energy must be unaffected by neglecting
the non-secular part of the weak dipolar energy in the common
eigen-basis of the Zeeman and strong dipolar energy.

2. 5CB molecule and dipolar couplings

The 5CB molecule has 19 protons: eight at the benzene rings
(core) and the others at the alkyl chain. In the numerical
calculations carried out in this work, the spin system consists of
the 10 labelled protons at the 5CB molecule sketched in Fig. 1. This
is a thermotropic LC, extensively used in NMR investigations. Its
nematic range is near room temperature which turns this
compound suitable from a practical point of view. The
molecular structure of 5CB, which is characteristic of many LC,
allows examining the idea of a quasi-equilibrium state
characterized by a single spin temperature, even in presence of
protons having different environment and dynamics.

Fig. 1. Sketch of the 5CB (40-pentyl-4-biphenyl-carbonitrile) molecule. Protons are

numbered as used in the calculations.
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The numerical calculations of this work demand the use of
dipolar couplings between the interacting protons of our models,
but only some of them are reported in the literature. In order
to estimate the remaining couplings we use an average
5CB molecule with geometrical parameters obtained from
Refs. [25,26]. Table 1 contains the dipolar couplings Dij between
protons i and j, as defined by Eq. (3). The dipolar couplings yielded
by the average molecule agree, within experimental error, with
those of the molecular core measured in Refs. [25,27] in 5CBd11

[28], except for D47 and D69 which are affected by internal
molecular motions. In such case, we adopted the experimental
values. For the same reason, we used the couplings calculated
from the molecular dynamics trajectory in Ref. [26] for D15, D23,
D16 and D24. One can expect that internal molecular motion is not
a strong perturbation to the dipolar couplings of distant protons
like the ones we estimated from the average molecule. Then, the
set of Dij values of Table 1 stand for a 10-spin model for a
representative 5CB molecule suitable for NMR calculations.

3. Theoretical approach

3.1. Background

The relevant Hamiltonian of a system of dipole-coupled like
spins 1

2 in a strong external magnetic field Bo, in units of _, is

H ¼HZ þHo
D; ð1Þ

where the Zeeman energy HZ ¼ �ooIz, with oo the Larmor
frequency, and

Ho
D ¼

ffiffiffi
6
p X

ioj

DijT
ij
20 ð2Þ

is the secular part of the dipole–dipole interaction (high-field
approximation) and Tij

20 ¼ ð1=
ffiffiffi
6
p
Þ½2Ii

zIj
z �

1
2ðI

i
þIj
� þ Ii

�Ij
þÞ�. In LC

Dij �
mog2_

4p
1� 3cos2yij

2r3
ij

 !* +
ð3Þ

is the dipolar coupling constant of nuclei i and j averaged over the
molecular motion, rij is the distance between spins, yij is the angle
between the internuclear vector and the magnetic field and the
sums run over protons within a molecule. Since we are interested
in a time scale much shorter than any relaxation time, the

dynamics of the spin system is represented by the Liouville–Von
Neumann equation [29].

The pulse method for creating and detecting dipolar order in
dipole-coupled spin systems at high magnetic fields, introduced
by Jeener and Broekaert [12] consists of the phase-shifted
radiofrequency pulses 90x � t1 � 45y � t2 � 45y � t sketched in
Fig. 2(a). The single-quantum coherences created by the first pulse
evolve during t1 mainly under the dipole spin–spin Hamiltonian
(in the rotating frame). Along this period, multi-spin single-
quantum coherences develop, and the second 45y pulse
transforms part of the coherences just created into multi-spin
order [24,30–32]. Within a period of a few T�2 (the characteristic
decay time of the NMR signal), the subsystems attain states of
internal quasi-equilibrium, which can be characterized by a spin
temperature [33]. Over a much larger time scale, spin–lattice
relaxation makes the dipolar and Zeeman temperatures to depend
on time, until each subsystem reaches a state of thermal
equilibrium with the lattice [4]. Finally, the third pulse converts
the created order into observable single-quantum coherence.

3.2. Time evolution operator and the dipolar constants of motion

As pointed out in Section 1, there is experimental evidence that
in LC two dipolar quasi-invariants can be prepared and observed
independently at high magnetic fields [1,34]. It is convenient for
later purposes to split the dipolar Hamiltonian of Eq. (2) into two
parts, in order to account for the occurrence of two categories of
dipolar couplings: strong and weak. Accordingly, we start by
writing the dipolar Hamiltonian as

Ho
D ¼HoðSÞ

D þHoðWÞ
D ; ð4Þ

where both terms have the tensor structure of Eq. (2). HoðSÞ
D

involves the subset of the strong dipolar pairwise interactions
within the molecule, namely

HoðSÞ
D ¼

ffiffiffi
6
p X

ioj2S

DijT
ij
20; ð5Þ

while

HoðWÞ
D ¼

ffiffiffi
6
p X

ioj2W

DijT
ij
20 ¼HoðW;dÞ

D þHoðW;ndÞ
D ð6Þ

Table 1
Dipolar couplings of the core and a�CH2 protons of the average 5CB molecule with

Szz ¼ 0:54 corresponding to 27 3C.

i j Dij (Hz) i j Dij (Hz) i j Dij (Hz)

1 2 5482.1 4 6 395.5 4 10 �120.2

5 6 �4477.9 7 9 395 5 7 �119.3

3 4 �4418.3 1 6 �383a 6 8 �119.3

7 8 �4396.8 2 4 �383a 2 5 100.5

9 10 �4391.5 2 7 �228.9 2 8 �90.6

4 7 �1741b 1 4 �212 5 8 �89.5

6 9 �1741b 2 6 �192.1 3 10 �89.4

1 5 �1121a 6 7 173 1 8 �76.9

2 3 �1121a 1 7 �170.7 4 5 74.7

3 7 �414.5 4 9 170.1 1 10 �74.6

6 10 �409.7 1 9 �161.3 8 9 72.4

4 8 �407.7 3 8 �156.8 3 6 71

5 9 �406.6 5 10 �156.3 7 10 70.8

3 5 401.9 2 9 �125.2 2 10 �65.4

8 10 399.8 3 9 �120.5 1 3 42

a Data from Ref. [26] (scaled with a factor of 1.15).
b From Refs. [25,27].

t1

t1

t2

t2 t3

t

(π/2)x

(π/2)x (π/2)x,y

(π/4)y

(π/4)y (π/4)y

(π/4)y

τ

Fig. 2. (a) Jeener–Broekaert pulse sequence to generate dipolar order. The spin

state after the second pulse evolves towards a quasi-equilibrium state over a time

period of a few T�2. The single-quantum signal produced by the read pulse is a

measure of the order created. (b) Sketch of the 4-pulse sequence used for selective

excitation and detection of the DQC starting from the dipolar-ordered state. The

first two pulses are the Jeener–Broekaert preparation pulses. The waiting time was

set t2 ¼ 2 ms to allow the quasi-equilibrium to establish.
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is the part of the dipolar energy which involves the weaker
pairwise interactions. Superscripts ‘‘d’’ and ‘‘nd’’ mean diagonal
and non-diagonal (in blocks) parts of the W dipolar energy with
regard to HZ and HoðSÞ

D . The occurrence of two dipolar constants
of motion demands the norm of the operators to satisfy
JHZJbJHoðSÞ

D JbJHoðWÞ
D J, which justifies retaining only the

truncated HoðW;dÞ
D in the second equality of Eq. (6), in a

perturbative view [14]. It is worth to notice that due to the
truncation inherent in its definition, HoðW;dÞ

D (and also HoðW;ndÞ
D )

does not preserve the bilinear form of Eq. (2), and may have a
much more complex structure [24].

An expression for HoðW;dÞ
D in operator form is not available at

present, except for the case of weakly coupled equivalent pairs
[14]. The matrix representation of HoðW;dÞ

D , used in this work, is
obtained by writing HoðWÞ

D in the common eigen-basis of HZ and
HoðSÞ

D (since ½HZ ;H
oðSÞ
D � ¼ 0), retaining only the diagonal blocks

(diagonal blocks occur when degenerate eigen-values exist [35]).
The remaining elements constitute HoðW;ndÞ

D . The Hamiltonians so
defined satisfy the commutation relations

½HZ ;H
oðW;dÞ
D � ¼ 0; ½HZ ;H

oðW;ndÞ
D � ¼ 0;½HoðSÞ

D ;HoðW;dÞ
D �

¼ 0; ½HoðSÞ
D ;HoðW;ndÞ

D �a0;½Ho
D;H

oðSÞ
D �a0; ð7Þ

and the orthogonality relations

TrfHZH
oðW;dÞ
D g ¼ 0; TrfHZH

oðSÞ
D g ¼ 0;

TrfHoðSÞ
D HoðW;dÞ

D g ¼ 0: ð8Þ

The dipolar Hamiltonian can be written in a condensed way as

Ho
D ¼Hqe þHoðW;ndÞ

D ; ð9Þ

where

Hqe �HoðSÞ
D þHoðW;dÞ

D ð10Þ

is the part of the Hamiltonian spanned in quasi-invariants.
In the following we aim to classify the dipolar energy terms

into strong and weak in consistency with the perturbation scheme
in order to define the relevant observables. The choice of the
interactions, which compose the subsets S and W of Eqs. (5) and
(6), is not evident in LC due to the dispersion of the dipolar
couplings within the molecule. We adopt the criterion that the
two quasi-invariants are properly defined only if the time
evolution of the spin state calculated with the whole Hamiltonian
Ho

D is indistinguishable from that calculated with the truncated
one, Hqe. In this way we ensure that the diagonal part of the
density operator of a quantum state, namely the part spanned in
constants of motion, does not evolve in time while spin dynamics
develops [see Eq. (15)]. In order to illustrate the validity of this
criterion we first analyse the transient towards the quasi-
equilibrium of the state ensuing the preparation pulses of the JB
sequence.

The time evolution of the density operator under Ho
D, at time

t2 after the second JB pulse is

rðt1; t2Þ ¼ e�iðHqeþH
oðW;ndÞ
D

Þt2rðt1;0Þe
iðHqeþH

oðW;ndÞ
D

Þt2

¼ Undðt2Þe
�iHqet2rðt1;0Þe

iHqet2 Uyndðt2Þ; ð11Þ

where rðt1;0Þ � rðt1; t2 ¼ 0Þ is the density operator immediately
after the second pulse, UndðtÞ ¼ T�expf�i

R t
0 H

oðW;ndÞ
D ðsÞdsg is a

time-ordered exponential operator where operators are ordered
from right to left as time decreases [36] and HoðW;ndÞ

D ðsÞ ¼

e�iHqesHoðW;ndÞ
D eiHqes.

The proton-spin cluster will be adequately characterized by
two dipolar constants of motion whenever a partition of the
dipolar interactions can be found which allows a perturbative
approximation of the time evolution operator. In other words, two
dipolar quasi-invariants can be defined provided a suitable choice

of the interactions involved in HoðSÞ
D and HoðWÞ

D can be done
which enables us to define HoðW;ndÞ

D so that Undðt2ÞC1 for t2otqe,
being tqe a characteristic time for the establishment of the quasi-
equilibrium state. Under these conditions the time dependence of
the spin density operator of Eq. (11) can be approximated by

rðt1; t2ÞCUqeðt2Þrðt1;0ÞU
y
qeðt2Þ; ð12Þ

where we defined the truncated time evolution operator

UqeðtÞ � e�iHqet : ð13Þ

The initial density operator can be written as the sum of a
diagonal (in blocks) and a non-diagonal term in the eigen-basis of
Hqe

rðt1;0Þ ¼ rqeðt1Þ þ rndðt1Þ; ð14Þ

where the quasi-equilibrium term rqe does not evolve under Hqe,
and rnd represents the multiple quantum coherences excited by
the JB pulse pair [37,38,7,24]. Therefore Eq. (12) is

rðt1; t2ÞCrqeðt1Þ þ rndðt1; t2Þ; ð15Þ

with rndðt1; t2Þ ¼ Uqeðt2Þrndðt1; t2 ¼ 0ÞUyqeðt2Þ. In Eq. (15), rqe can be
spanned in the quasi-invariants HZ , HoðSÞ

D , HoðW;dÞ
D and, in

principle, other constants of motion [31], and thus ½rqe;Hqe� ¼ 0.
For times t24tqe the coherences will have decayed and, in the
absence of rf pulses and neglecting spin–lattice relaxation, the
state of the spin system becomes time independent. Finally,
for times t2btqe, spin–lattice relaxation causes a time dependence
of rqe which can be neglected within the timescale treated
in this work. Based on previous experimental results [1], we
assume that after a waiting time t24tqe and much smaller than
the spin–lattice relaxation times, the spin density operator can be
written as

rqeðt1Þ ¼ 1� bSðt1ÞH
oðSÞ
D � bWðt1ÞH

oðW;dÞ
D ; ð16Þ

where the inverse temperatures bS and bW depend only on the
preparation time and are defined as

bAðt1Þ ¼
TrfrAg
TrfA2

g
; ð17Þ

with A ¼HoðSÞ
D ;HoðW;dÞ

D . By properly setting t1 it is possible to
prepare the spin system in each of the dipolar-ordered states [1];
let us call a state of S order to one which corresponds to bWC0
and W order to the one with bS ¼ 0 [24].

Finally, it is convenient to consider the action of the truncated
time evolution operator in more detail. For instance, the evolution
of any operator O under Hqe can be expressed as

OðtÞ ¼ e�iHoðW;dÞ
D

t O� it½HoðSÞ
D ;O��

t2

2
½HoðSÞ

D ; ½HoðSÞ
D ;O�� þ � � �

�
eiHoðW;dÞ

D
t ;

�
ð18Þ

according with Eqs. (10) and (13). This expression makes evident
that the influence of the S quasi-invariant on the time evolution
depends on the norm of the commutator J½HoðSÞ

D ;O�J rather than
on the relation between the norms of HoðSÞ

D and HoðW;dÞ
D which

are directly determined by the intensity of the dipolar couplings.
This implies that a mere comparison of dipolar couplings is not a
robust recipe for generating the S and W constants of motion in
general cases.

3.3. Evolution of the coherences

In order to study the nature of the quasi-equilibrium states rqe

after the JB pulse pair in LC, we analyse the signals from the usual
JB experiment of Fig. 2 (a) and the DQC spectra generated with the
pulse sequence by Emid et al. [39], depicted in Fig. 2(b).

H.H. Segnorile et al. / Solid State Nuclear Magnetic Resonance 36 (2009) 77–8580
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The signal after the read pulse of the JB sequence is

Mðt1; tÞpTrfIyU0ðtÞe
iðp=4ÞIyrqeðt1Þe

�iðp=4ÞIy Uy0ðtÞg; ð19Þ

where

U0ðtÞ ¼ e�iHo
Dt : ð20Þ

The hypothesis that the spin state can be represented by a quasi-
equilibrium density matrix as Eq. (16) can be tested by studying
the signal Mðt1; tÞ as a function of the preparation time t1. To
further find a suitable partition of the dipolar energy we use the
2D-DQC diagram generated through the experiment of Fig. 2(b)
starting from S order. Then, the state after the second pulse of
this sequence is

rqe ¼ 1� bSHoðSÞ
D : ð21Þ

The third pulse, represented by R3 � eiðp=2ÞIx;y , transforms HoðSÞ
D

into zero and double quantum coherences [39]:

R3H
oðSÞ
D Ry3 ¼HðSÞ

0 7HðSÞ
2 ; ð22Þ

with

HðSÞ
0 � �1

2 H
oðSÞ
D HðSÞ

2 �
3

2

X
kol2S

DklðT
kl
2;þ2 þ Tkl

2 ,- 2Þ;

where indices k; l run over the spin sites involved in HoðSÞ
D , and

Tkl
2;72 ¼

1
2Ik

7Il
7. The sign before H2 in Eq. (22) depends on the

phase (x or y) of the third pulse, which is used to select the term
containing the DQC through a proper phase cycling.

Following the same reasoning that took us from Eqs. (11) to
(12), a suitable election of the interactions involved in HoðSÞ

D , in
consistency with the occurrence of two dipolar quasi-constants,
allows approximating U0ðtÞ�!UqeðtÞ instead of Eq. (20). Then, the
state after the third pulse is given by rðt3ÞC1�
bSe�iHqet3 ðHðSÞ

0 7HðSÞ
2 Þe

iHqet3 . The fourth pulse, R4 ¼ eiðp=4ÞIy ,
transforms the double quantum coherences HðSÞ

2 and the dipolar
order (zero quantum) back into single-quantum coherence, and
the observed 2D signal, after the phase cycling that selects the
DQC contribution, becomes

Sðt3; tÞ � /Iyðt3; tÞSpbSTrfIye�iHqetR4e�iHqet3HðSÞ
2 eiHqet3 Ry4eiHqetg:

ð23Þ

Thus, the invariance of the dipolar signals using the complete
evolution operator of Eq. (20) or the truncated one of Eq. (13) may
serve as a criterion for probing the suitability of the model used to
define HoðSÞ

D and HoðW;dÞ
D . It is worth to remark that operators

HðSÞ
2 and Hqe in Eq. (23) are completely determined by the

particular election of the interactions involved in HoðSÞ
D . In this

way, the frequency content of the calculated signals and therefore,
their agreement with the experiment depends on the suitability of
such election. In Section 6 we calculate the NMR signals of Eq. (23)
yielded by different models adopted for the spin system.

4. Experiment

The experiments were carried out at 7 T in a Bruker Avance II
spectrometer at 27 3C. The sample (Sigma-Aldrich) used is the
liquid crystal 5CB in nematic phase with a Zeeman spin–lattice
relaxation time, T1Z ¼ 630 ms and a dipolar S relaxation time
TS ¼ 310 ms. The p=2 pulse width is 2:7ms, t1 ¼ 26ms was used to
prepare the maximum S dipolar order in 5CB [1]. The amount of
W order is negligible for this setting (t1 ¼ 7171ms corresponds
to the pure W order condition); a time t2 ¼ 2 ms was chosen to
allow the quasi-equilibrium to establish [24]. Since t25T1Z there
is no Zeeman order, as assumed in Eq. (16).

Fig. 3(a) shows the experimental JB dipolar signals of 5CB for
different preparation times t1. In order to observe the DQC signal
only, we used the phase cycle ðx;�x; y;�yÞ for the 3rd pulse and
ðx; x;�x;�xÞ for the receiver. A typical signal Sðt3; tÞ of 5CB at t3 ¼

10ms is illustrated in Fig. 2(b). We recorded the evolution of
Sðt3; tÞ for increasing times t3 from 5 to 500ms in steps of 10ms
and t in steps of 4ms. Then for every observation time t, there is a
pseudo-FID Sðt3Þ which attenuates over a time t3 � 100ms. The
amplitude of these pseudo-FIDs oscillate with t. We tested the
sequence in a sample of powdered adamantane and obtained a
pseudo-FID showing the same shape as reported in Ref. [39].

The Fourier transform in t3 gives the spectrum in the DQC
frequency n2, Fðn2; tÞ, as a function of the single-quantum
detection time t. Fig. 4 shows a contour plot of Fðn2; tÞ in 5CB
measured on-resonance (this frequency corresponds to the on-
resonance condition at the isotropic phase). A cut of this plot at
t ¼ 27ms shows unresolved peaks near 15 kHz and also some
structure about 6 kHz. This structure manifests all along the t axis,
as illustrated by the cut at t ¼ 127ms which corresponds to the
second maximum of the single-quantum signal and shows a peak
near 15 kHz. The frequency–time 2D plot clarifies that the
amplitudes of the frequency ðn2Þ components vary appreciably
with t. We verified that in contrast with 5CB, powder adamantane
(which has only one dipolar quasi-invariant [24]) has a featureless
DQC spectra similar to the reported Gaussian shaped one of
potassium oxalate monohydrate [14], where the spin system can
be well represented by a model of weakly coupled pairs. It is
worth mentioning that when irradiated with an offset frequency,
Dn0, the centre of the DQC spectra of both 5CB and adamantane
shift to 2Dn0 as expected [39].

5. Numerical calculations and interaction models

Representing the spin system of 5CB molecule implies
considering all its 19 protons, however, calculation of the FID of
an N spin system entails manipulating a 2N dimensional Hilbert
space. Thus, we restricted our calculations to 10 spins: the 8
aromatic and the two a�CH2 protons, as shown in Fig. 1. The
different models used to represent the interaction Hamiltonians
needed for calculating the output signals through Eqs. (19) and
(23) are shown in Table 2, where the right column shows the
subsets of interactions i, j involved in HoðSÞ

D of Eq. (5), labelled as
in Fig. 1. These models basically differ in the number of
neighbours each spin interacts with. Model (i) only includes the
strongest dipolar interaction of each spin; that is, a model of
weakly interacting strong pairs. Model (ii) incorporates the
interaction of a�CH2 protons with the nearest protons of the
core and between benzene rings; in this way, all spins (except 8
and 10) take part of two interactions.

The operators used to calculate the NMR signals for the 10-spin
system were represented by matrices of dimension 1024� 1024,
operating under rules of conventional matrix algebra. The angular
momentum operators, and therefore all the other operators
needed, were first represented in the Zeeman eigen-basis. By
diagonalizing the dipolar Hamiltonian of Eq. (2) one finds the
matrix which transforms to a convenient basis where the
evolution operator is also diagonal. In order to optimize memory
usage and speed operations we used sparse matrices, using the
criterion that matrix elements akl satisfying jakljo10�6 are
considered as zero. Consistently, operators are defined by round-
ing to 5 significant digits. In order to evaluate the effect of such
procedure, we compared the results obtained with and without
numeric truncation on a 4-spin and 8-spin cluster, and found
them indistinguishable.
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6. Results and discussion

6.1. Dipolar single-quantum signals

We first calculate the dipolar NMR signals after the JB sequence
of Eq. (19) at different preparation times t1, with HoðSÞ

D according
to the models of Table 2. Fig. 3(b) shows that the calculated
signals for the 10-spin cluster, provide a good description of the
experimental signals of 5CB shown in Fig. 3(a). Notice that no
extra attenuation has been added to the calculated signals.
Additionally, we found that all the calculated signals have the
same qualitative characteristics as the experimental ones, which
are, symmetry in the preparation and observation times [1] (not
shown), the first maximum of the S signal occurs around 30ms
and crosses through zero around 70ms [1]. However, we verified
that the signals yielded by different models (i and ii) and different
time evolution operators (U0 or Uqe) are not significantly distinct.
In contrast, the signals calculated with models (i) and (ii) but
using an approximate evolution operator US � e�itHoðSÞ

D instead of
U0, have a definitely different shape than the experiment for every
t1, as can be seen in Fig. 3(c). Indeed, as commented at the end of
Section 3.2, even when JHoðSÞ

D JbJHoðWÞ
D J, which justifies the

neglect of non-diagonal components of HoðWÞ
D , the diagonal part

of the weaker couplings cannot be ignored in the time evolution of
the coherence. This means that the small terms involved in
HoðW;dÞ

D play a decisive role in the transfer from the Zeeman order
to the dipolar order (especially at longer preparation times),
which also determines the complex behaviour of the dipolar
signals as a function of t1 in the JB sequence.

We also verified that there is a good qualitative agreement
between the calculated and the experimental dipolar signals of
alkyl deuterated 5CB [18] ð5CBd11Þ, which has eight protons. In
this case we used only the dipolar interactions of Table 1 which
involve the aromatic protons and again distinguished two ways of
defining HoðSÞ

D by including (or not) the inter-ring couplings.
Similarly to the 10-spin 5CB case, the SQC signals are not sensible
enough to the different models.

The agreement between calculated and experimental signals
shown in Fig. 3 confirms that the two-dipolar-quasi-invariants
view allows a good description of the experiment [40]. Addition-
ally, it supports our starting assumption of considering only the
intramolecular dipolar energy and indicates that there is no need
of additional energy terms like long range intermolecular dipole
couplings or chemical shift effects to explain the main features of
the experimental results. However, the calculation of the outcome
of the JB experiment still does not allow a clear qualification of the
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Fig. 3. Dipolar signals after the JB sequence at preparation times from t1 ¼ 30 to 80ms, (a) experiment, (b) calculated with model (ii) and evolution under Ho
D and (c)

calculated with model (ii) and evolution under HoðSÞ
D .
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different possible ways of partitioning the dipolar energy into
strong and weak. Therefore we applied the same test to the 2D
signals obtained through the DQC experiment described in the
previous section.

6.2. Double quantum spectra

Fig. 5 shows the calculated Fðn2; tÞ from Eq. (23), for the 10-
spin models. The upper row of Fig. 5 corresponds to model (i) and
the lower to model (ii). Plots in the left column were calculated
using the time evolution operator of Eq. (20), while the right
column corresponds to the truncated one defined in Eq. (13). We
represented the additional decoherence due to spins that were not
included in the calculation, and other possible sources through a
Gaussian decay in both time domains t3 and t of frequency width
at half height of approximately 3 kHz.

As seen in Figs. 5(a) and (c), both models yield frequency
components around 15 kHz for to100ms, in agreement with the
experiment of Fig. 4. However, a drastic difference between
models arises when using the truncated time evolution. In
Fig. 5(b) the effect of truncation on model (i) is significant since
the spectra loose the high frequency structure for every time t. On
the contrary, the effect of truncation on model (ii) is unimportant
all along the t axis as seen by comparing Figs. 5(c) and (d). This is
precisely the condition which operators HoðSÞ

D and HoðW;dÞ
D must

fulfil in order to represent satisfactorily a system with two dipolar
constants of motion. The 2D analysis of the DQC spectra
modulated by the time evolution of the SQC allows the
identification of higher frequency components that would other-
wise be screened by the width of the lower frequency lines in a 1D
experiment. This test provides clear evidence of the effect of
truncation, in contrast to the calculations of the single-quantum
dipolar signals which are much less sensitive to the different
models. It also indicates the suitability of introducing two quasi-
invariants associated with different scales of the dipolar energy to
describe the spin dynamics in small spin clusters.

In the particular case of weakly coupled pairs, operators HðSÞ
2

and HoðSÞ
D in Eq. (23) commute. Accordingly, the term HoðSÞ

D

within Hqe in Uqe, has no effect on the time evolution of the DQC,
which is only driven by HoðW;dÞ

D , as can be seen from Eq. (18). The
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amplitude spectra of 5CB as a function of the observation time t at 27 3C, 300 MHz.
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Table 2

Sets of interactions used to define HoðSÞ
D in the calculations of the dipolar signals

and the DQC spectra.

Model Interactions

(i) 7–8, 9–10, 5–6, 3–4 ,1–2

(ii) 7–8, 9–10, 5–6, 3–4, 1–2, 6–9, 4–7, 1–5, 2–3
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Fig. 5. Contour plots of the calculated double quantum spectra amplitude as a function of the observation time for models (i) and (ii) of the spin system as labelled in Table

2. (a), (b): weakly coupled pairs; (c), (d) correlated spins; (a), (c): evolution with the complete Hamiltonian; (b), (d): evolution with the truncated Hamiltonian. Szz ¼ 0:75.
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absence of higher frequency structure in Fig. 5(b) is a consequence
of this peculiarity of model (i). Conversely, the occurrence of such
structure in the DQC spectra is a consequence of the correlated-
pairwise-interaction behaviour of the S quasi-invariant.

The difference between models (i) and (ii) resides in the degree
of correlation. In model (ii) the whole cluster becomes a
correlated entity. This way of partitioning the dipolar energy
explains the main features of the DQC spectra prepared from an S
state as initial condition. The 10-spin set provides enough
complexity to account for the main aspects of the 2D frequen-
cy–time profile. Nevertheless, the alkyl protons that could not be
included in the calculations, possess rather strong residual dipolar
couplings of the order of those of the ortho pairs of the benzene
rings, and significant intergroup dipolar couplings [41,42]. A
subset of the strongest correlated pairwise interactions of the
alkyl protons should thereby be also included in HoðSÞ

D together
with those of model (ii).

It is worth to mention that only two free parameters: the order
parameter Szz and the linewidth of the calculated signals were
needed to match the characteristic features of the complex
pattern of the 2D diagram of Fig. 4. Szz ¼ 0:75 was used as
the scaling factor in Figs. 3 and 5 in order to agree with the
experiment. This value of Szz is somewhat larger than the
measured by NMR methods for 27 3C [43]. One could anticipate
that considering the 19 protons of the 5CB molecule might correct
this difference.

6.3. Conclusions

Summarizing, we can conclude that 5CB molecules admit a
partition of the dipolar energy into two orthogonal commuting
terms, associated with two energy scales, therefore providing two
different spin reservoirs where the original Zeeman order can be
stored by means of a Jeener–Broekaert experiment. We confirm
that the quasi-equilibrium state after the JB preparation pulse pair
can be expanded in terms of two constants of motion which derive
from the intramolecular dipolar energy. The results are consistent
with the S reservoir involving all protons of the molecule but
only a subset of the dipolar couplings. The fact that HoðSÞ

D is better
described by a model where all spins are correlated (and not by a
weakly interacting-pairs model) is compatible with the multiple-
spin correlated nature of the W reservoir observed in Ref. [24].
Also we find that the small W energy term plays a significant role
in the time evolution of the spin state in spite of the weak
interactions involved in this constant of motion.

Some other nematic liquid crystals (5CBd11 [18], p-azoxyani-
sole [4,34] and others) show single-quantum dipolar signals
shapes which also change with the preparation time of the JB
sequence in similar way. Similitude with 5CB suggests that one
might also ascribe this characteristic feature to the occurrence of
two constants of motion which derive from the intramolecular
dipolar energy to a class of standard thermotropic nematic liquid
crystals. The simple experiment applied in this work allows a deep
analysis of the DQC spectrum since the modulation provided by
the free evolution in the single-quantum time variable enhances
the occurrence of DQC frequencies that are screened in a 1D
experiment. This kind of DQC frequency vs. SQC time evolution
analysis may be applied to study the nature of the different
dipolar quasi-invariants in other LC samples [44] or even in solids.

Formally, the quasi-equilibrium state of an N spin system
should in principle be written as an expansion of at least 2N

orthogonal terms which commute with the total Hamiltonian, so
generalizing Eq. (16) [45]. However, in LC only a small number of
invariants can be observed. A theoretical method for generating a
subset of additional orthogonal constants of motion starting from

the Zeeman and secular dipolar Hamiltonian, which are products
of spin operators, was recently presented [31]. Numerical
calculations on regularly spaced linear chains of spins 1=2 showed
that states of multi-spin order greater than two-spin order would
be unobservable in such many-body spin clusters, of typically
NZ10 spins. This characteristic is also present in ordinary solids,
like CaF2, where the Zeeman and the secular dipolar energy are
the only observed quasi-invariants [12,7]. For a regular disposition
of the spins in the network and N sufficiently large, local field
effects would be able to mask the local spin dynamics governed by
the nearest neighbours, preventing the existence of two different
timescales of the spin dynamics, and therefore of any other
constant of motion of multiple-spin character. On the contrary, in
a spin cluster like the one of a typical LC molecule, the spin
arrangement is far from being regular, thus two scales (at least) of
dipolar couplings remain, even for clusters of considerable
number of spins, like 5CB. The occurrence of a second, multi-
correlated dipolar quasi-invariant, is a consequence of this
feature.

Thus, the evolution of the single-quantum coherence under the
dipolar energy during the preparation of the JB experiment is
characterized by two time scales governed by the S and W
interactions. In the early t1 timescale, evolution under the dipolar
energy generates bilinear correlations which can then give rise to
a two-spin order state represented by HoðSÞ

D . By other hand,
HoðW;dÞ

D represents multi-spin order originated in multiple-spin
correlations which have grown up over a longer t1 time scale. This
ordered state can be observed by setting the preparation time in
the condition bS ¼ 0 [1,24]. The occurrence of such spin dynamics
is dictated by the topology of the spin distribution in the network,
which ultimately determines the characteristics of the multiple-
spin-correlation growth [32].

An expression for HoðW;dÞ
D in operator form is still unknown,

except for the case of an ensemble of dilute pairs like the hydrated
crystals [14]. Full decomposition of the signal into spherical tensor
components [46] might contribute to a complete determination of
this operator for a given LC.
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