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This work shows that all first- and second-order nongeometric effects on propagation, total or partial reflection,
and transmission can be understood and evaluated considering the superposition of two plane waves. It also
shows that this description yields results that are qualitatively and quantitatively compatible with those obtained
by Fourier analysis of beams with Gaussian intensity distribution in any type of interface. In order to show this
equivalence, we start by describing the first- and second-order nongeometric effects, and we calculate them ana-
lytically by superposing two plane waves. Finally, these results are compared with those obtained for the non-
geometric effects of Gaussian beams in isotropic interfaces and are applied to different types of interfaces. A simple
analytical expression for the angular shift is obtained considering the transmission of an extraordinary beam in a
uniaxial–isotropic interface. © 2011 Optical Society of America

OCIS codes: 260.3160, 120.5700.

1. INTRODUCTION
When a finite beam impinges on the surface of separation
between two media of any type (linear or nonlinear, isotropic
or anisotropic, right- or left-handed), the reflected and trans-
mitted beams may present some peculiarities from the point
of view of geometric optics. These peculiarities, known as
nongeometric effects, depend on the media involved and
the characteristics of the incident beam (shape, angle of inci-
dence, polarization, and frequency). In the sixteenth century,
Newton [1] had anticipated that the total reflection could not
occur at the interface. He suspected that light beams followed
parabolic trajectories whose vertices were located in the least
dense medium.

The laws of reflection and refraction and the amplitudes of
the reflected and refracted waves in the isotropic interfaces
(Fresnel formulas) were determined in the early nineteenth
century. By the end of that century, it was possible to use
Maxwell’s equations to show that, when the angle of incidence
of a plane wave is larger than the angle of total reflection, the
continuity of the electromagnetic field along an isotropic in-
terface requires an evanescent wave in the second medium,
which is optically less dense. It was then that a new idea
emerged: in order to formally demonstrate the penetration of
the wave in the least dense medium, the finiteness of the beam
needed to be considered. Finally, between 1925 and 1929, the
problem of total reflection was formally solved by considering
a transversely limited beam (or bidimensional beam). How-
ever, these papers by Picht [2,3], which are based on energetic

considerations, are not clear as to what the physical process
involved is. Numerous experiences were performed in order
to determine the characteristics of the evanescent wave, but
all attempts failed until 1941. Between 1947 and 1949, Goos
and Hänchen [4,5] performed the first experiments in condi-
tions of total reflection where the energy flux the least dense
medium was not perturbed. Goos and Hänchen’s idea con-
sisted of measuring the longitudinal displacement of the
reflected beam instead of measuring the penetration in the
least dense medium. This is why the longitudinal lateral dis-
placement was named “Goos–Hänchen effect.” This effect
was satisfactorily explained for the first time by Artmann
[6] in 1948. Artmann applied theories of physical optics to very
simple bidimensional beams (in addition to monochromatic
and linearly s- or p-polarized beams) in linear, isotropic,
and homogeneous interfaces. He obtained expressions for
the lateral displacement based on the phase difference be-
tween the incident beam (consisting of two plane waves of
the same amplitude) and the reflected beam. The method ap-
plied is called the stationary phase method. In 1977, McGuirk
and Carniglia [7] extended Artmann’s method by considering
the incident beam as a superposition of infinite propagating
plane waves (i.e., with an angular spectrum such that the eva-
nescent components were excluded) which constituted a
bidimensional, monochromatic, and linearly s- or p-polarized
beam. This procedure, when applied to total internal reflec-
tion, anticipated the existence of a second-order effect called
longitudinal focal shift of the reflected beam. They obtained,
from the first and second derivatives of the phase of the
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reflection coefficient with respect to the angle of incidence,
the magnitudes of the lateral displacement (which coincided
with the ones obtained by Artmann) and the longitudinal focal
shift for both polarization modes and in conditions of total re-
flection. That same year, Carniglia and Brownstein showed
that the focal shift of the reflected beam in conditions of total
reflection could be regarded as a consequence of the Goos–
Hänchen effect if a geometric model was used [8]. That is, we
can describe, in conditions of total reflection, the first-order
nongeometric effect (longitudinal lateral displacement) based
on the phase difference (which is obtained by methods used in
physical optics). In turn, we can describe the second-order
effect (focal shift) based on the first-order effect and geo-
metric optics considerations (ray model).

In 1977, White et al. [9] explained the existence of a third
effect (of the first order) in conditions of partial reflection.
This effect was called longitudinal angular shift and had been
identified by Ra et al. in 1973 [10]. From a bidimensional
incident beamwith Gaussian intensity distribution and by con-
sidering Fresnel’s coefficients for each polarization mode,
they showed that partial reflection alters the intensity distri-
bution of the reflected beam. In 1986, while studying the non-
specular effects in bidimensional Gaussian beams reflected in
multilayers, Tamir [11] found another second-order effect,
which consisted in widening or narrowing of the beam waist
in conditions of partial reflection. These papers consider the
particular situation in which the waves constituting the beam
do not undergo a phase shift upon reflection.

From that moment on, several authors have written about
the nongeometric effects of Gaussian beams. Their papers
extend the method introduced by Tamir in 1986, not only
to polarized and nonpolarized tridimensional Gaussian beams,
but also to the reflection and transmission in different types of
isotropic and anisotropic interfaces in conditions of total or
partial reflection [12–28]. These and other papers showed that
transmitted or reflected tridimensional Gaussian beams can
not only undergo the four nongeometric effects simulta-
neously, but also that four other effects are possible when
considering limited beams in two directions (that is, tridimen-
sional Gaussian beams): transversal lateral displacement, fo-
cal shift, angular shift, and modification of the beam waist
(even if considering isotropic interfaces when the incident
beam is polarized). Although measurements may be not sig-
nificantly affected by these nongeometrical effects when
the beams are spatially very wide, they can be technologically
important when considering very precise angular metrology,
ellipsometry, or phase shifts measurements. They can also be
significant when some characteristics of beams in waveguides
and optical fibers must be determined.

This work shows that the four longitudinal nongeometric
effects corresponding to symmetric beams can be simply anal-
yzed by using arguments which are analogous to those of
Artmann’s by considering limited beams formed by only
two plane waves. This procedure is so simple that it describes
the effects qualitatively and leads to quantitative results which
coincide with those obtained for Gaussian bidimensional
beams both in reflection and transmission in isotropic and
anisotropic interfaces.

2. LONGITUDINAL GOOS–HÄNCHEN
EFFECT IN TOTAL REFLECTION:
ARTMANN’S BEAM
The simplest bidimensional beam consists in the superposi-
tion of two plane waves of the same amplitude and frequency
(referred to as Artmann’s beam). As it is known, if an
Artmann’s beam impinges an isotropic dielectric surface in
conditions of total reflection (reflection coefficient of unit
magnitude), the phase difference between both reflected
waves causes the lateral displacement of the interference
maximum or Goos–Hänchen effect (first-order effect) of the
reflected beam. The longitudinal lateral displacement of the
reflected beam obtained by Artmann’s method [6] is

L ¼ −
1

k cos �α
dφ
dα

����
�α
; ð1Þ

where k is the magnitude of the wavenumber vector in the
medium from which the light is incident, �α is the mean angle
of reflection [and of incidence, i.e., �α ¼ ðα1 þ α2Þ=2] and φ is
the phase shift between the reflected and the incident electric
field (Fig. 1). Its value is independent of the beam aperture,
and the expression is identical to the one obtained in the total
reflection of beams with Gaussian intensity distribution [11]
which are not excessively narrow. On the other hand, the
longitudinal focal shift (second-order effect) can be geo-
metrically deduced from the expression for lateral
displacement [8,11],

F ¼ −
1
k
dðL cos αÞ

dα

����
�α

ð2Þ

which also coincides with the one obtained by Tamir for the
reflection of Gaussian beams in dielectric interfaces. Next, we
will show that the four first- and second-order nongeometric
effects can be easily obtained by the superposition of two
interfering plane waves. Then, we will apply the results to
reflection and transmission.

Fig. 1. Incident and reflected waves in total reflection. The dashed
lines indicate the geometric reflected waves, and the solid lines
indicate the nongeometric ones. L corresponds to the lateral
displacement (Goos–Hänchen effect).
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3. SUPERPOSITION OF TWO PLANE
WAVES: GENERALIZATION OF
ARTMANN’S METHOD
We will calculate the field resulting from two waves with dif-
ferent direction of propagation, amplitude, and phase. We will
consider, in general terms for isotropic media, that the waves
are perpendicularly polarized to the plane of incidence and
they have the same phase velocity.

Figure 2 represents two plane waves with mean direction
corresponding to the xm axis. These make angles ϒ=2 and
−ϒ=2. ϒ denotes Artmann’s beam aperture. The electric field
corresponding to each wave (they have a geometric mean
direction given by the straight line m in Fig. 2) is

~E1ðxm; zm; tÞ ¼ A1eikðcosϒ=2xmþsinϒ=2zmÞe−iωteiξ1�y

~E2ðxm; zm; tÞ ¼ A2eikðcosϒ=2xm−sinϒ=2zmÞe−iωteiξ2�y; ð3Þ

where ξ1 and ξ2 represent the initial phases, respectively.
By applying the principle of superposition [29], the tempor-

al average of the Poynting vector associated with Artmann’s
beam is

h~Si ¼ 1
2
kð�xm cosϒ=2½ðA2

1 þ A2
2Þ

þ 2A1A2 cosð2kzm sinϒ=2þ ξ1 − ξ2Þ�
þ �zm sinϒ=2ðA2

1 − A2
2ÞÞ: ð4Þ

As expected, the first maximum does not coincide with the
origin of coordinates when there is an initial phase shift
between the waves. It is located in a point that does not
depend on their amplitudes, where

zm ¼ −
ξ1 − ξ2

2k sinϒ=2
: ð5Þ

On the other hand, the quotient between the components zm
and xm in the maximums allows us to obtain the direction of

the ray, that is, the angle formed by the Poynting vector and
the xm axis, which is independent of the phase shift of the
waves constituting the beam. The quotient is

tan βS ¼ tanϒ=2
ðA1 − A2Þ
ðA1 þ A2Þ

: ð6Þ

If we consider that the amplitudes of the waves constituting
Artmann’s beam are not very different and that it is valid to
make a second-order approximation,

A1 ¼ Aðϒ=2Þ ≈ Ajβ¼0 þ
dA
dβ

����
β¼0

ϒ=2þ 1
2
d2A
dβ2

����
β¼0

ðϒ=2Þ2

A2 ¼ Að−ϒ=2Þ ≈ Ajβ¼0 −
dA
dβ

����
β¼0

ϒ=2þ 1
2
d2A

dβ2
����
β¼0

ðϒ=2Þ2: ð7Þ

Then, by replacing in Eq. (6),

tan βS ≈ tanϒ=2

dA
dβ

����
β¼0

ϒ=2

Ajβ¼0 þ 1
2
d2A
dβ2

����
β¼0

ðϒ=2Þ2
: ð8Þ

If we also consider that the beam aperture is not excessively
large, we can write to the second order the angular shift from
the geometric mean direction:

βS ≈ ðϒ=2Þ2
1

Ajβ¼0

dA
dβ

����
β¼0

1þ 1
2Ajβ¼0

d2A
dβ2

����
β¼0

ðϒ=2Þ2
: ð9Þ

Equation (9) clearly shows that both the first- and second-
order expressions strongly depend on the aperture of the
beam.

An analogous analysis can be performed if the phase shifts
between the waves are not excessively large (which can be
guaranteed if the aperture is not excessively large and if there
are no phase jumps). In such a case, the phases can be ex-
panded around the mean direction of incidence xm, obtaining
from Eq. (5):

ξ1 ≈ ξjβ¼0 þ
dξ
dβ

����
β¼0

ϒ=2þ 1
2
d2ξ
dβ2

����
β¼0

ðϒ=2Þ2

ξ2 ≈ ξjβ¼0 −
dξ
dβ

����
β¼0

ϒ=2þ 1
2
d2ξ
dβ2

����
β¼0

ðϒ=2Þ2: ð10Þ

By replacing Eq. (10) into Eq. (5), we obtain that the displace-
ment of the first interference maximum from the origin of
coordinates can be written as

zmjmax ¼ −
1
k
dξ
dβ

����
β¼0

: ð11Þ

Thus, both first- and second-order longitudinal lateral dis-
placements are identical and independent of the aperture
of the beam.

We will apply the results obtained in this section to deter-
mine the angular shift in two different situations. First, we will
consider the reflection of a beam in an isotropic dielectric

Fig. 2. Artmann’s beam. ~k1 and ~k2 are the normals to the wave-
fronts of each component. ϒ is the aperture of the beam, and m
its mean direction. The purpose of the zm axis is to set the origin
of coordinates.
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interface. Since the nonspecular effects for beams with
Gaussian distribution in isotropic interfaces were calculated
by Tamir and are well known, we will show the equivalence
between their results and the ones obtained by the generaliza-
tion of Artmann’s method. Then, we will apply this method to
determine the nongeometric effects in the transmission of a
limited beam in a uniaxial medium–isotropic medium inter-
face for the case in which the incident beam is constituted
by extraordinary waves.

4. NONSPECULAR EFFECTS IN ISOTROPIC
DIELECTRIC INTERFACES
By determining the first-order nongeometric effects in the re-
flection of a bidimensional Gaussian beam (Fig. 3) incident on
an isotropic interface, we obtain a complex expression which
is only valid for beams that are not excessively narrow. The
real part determines the longitudinal lateral displacement, and
the imaginary part determines the angular shift [11]. This com-
plex lateral displacement is different for each polarization
state. Therefore, a nonpolarized beam gives rise to two re-
flected beams (s- and p-polarized). The expression for the
complex lateral displacement obtained for Gaussian beams is

L ¼ i
dðlnRÞ
dk�zr

����
k�zr¼0

≡Ĺ þ iL00; ð12Þ

whereas the complex lateral displacement corresponds to

F ¼ −2i
ffiffiffiffiffiffiffiffiffiffiffiffi
μω2ε1

q
∂2 lnR
∂k�2zr

�
k�zr¼0

; ð13Þ

where R corresponds to the reflection coefficient for the po-
larization mode considered and k�zr is the component of the
wavenumber vector reflected in the direction that is perpen-
dicular to the specular mean direction.

From Eq. (12), we can easily obtain that, if two isotropic
and dielectric interfaces are considered and the mean angle
of incidence is larger than the angle of total reflection, the
lateral displacement L is real

L ́ ¼ −
1

k cos �α
dφ
dα

����
�α
; ð14Þ

where φ is the phase shift between the reflected and the in-
cident waves. This expression is independent of the beam
width and coincides with the one obtained by Artmann, con-
sidering a reflected bidimensional beam constituted by two
waves with a mean direction of specular reflection �α.

When the mean angle of incidence is smaller than the angle
of total reflection, the reflection coefficient is real and the
lateral displacement is pure imaginary, i.e.,

L00 ¼ 1
k cos �α

1
R
dR
dα

����
�α
: ð15Þ

This imaginary lateral displacement allows us to obtain the
angular shift of the center of the reflected beam from the
geometric mean direction of reflection. At the first order,
the angular shift is

ΔαjTamir ≈ 2
1

k2w2

dðlnRÞ
dα

����
�α
: ð16Þ

When there is an isotropic interface and the conditions are
those of partial reflection, it follows from Eq. (16) that
ΔαjTamir is positive. That is, the angle between the direction
of the Poynting vector and the normal to the interface is larger
than the geometric mean value of the angle of reflection.

The second-order correction to the angular shift only
affects the effective width of the reflected beam. That is, to
the second order

ΔαjTamir ≈ 2
1

k2w2
m

dðlnRÞ
dα

����
�α
; ð17Þ

wherewm corresponds to the half-width of the Gaussian beam
modified in the reflection [11]:

w2
m ¼ w2 þ 2

1
k2

d2 lnR
dα2

����
α¼�α

: ð18Þ

Next, we will show that the results obtained by Tamir’s meth-
od are equivalent to those obtained by generalizing Artmann’s
method. In order to apply the latter to dielectric partial reflec-
tion, we must slightly modify the results for two plane waves
with different amplitudes from the former section, since the
mean angle of incidence is not null. By calculating the com-
ponents of the Poynting vector associated to Artmann’s
reflected beam (Fig. 1),

�~S ¼ 1
2
½�exðR1 þ R2ÞðR1 cosα1 þ R2 cos α2Þ

− �ezðR1 þ R2ÞðR1 sin α1 þ R2 sin α2Þ�; ð19Þ

where R1 and R2 are the reflection coefficients associated to
the angles of incidence α1 and α2, respectively. We obtain that
the direction of

�~S with respect to the normal is given by

tan αS ¼ ðR1 sin α1 þ R2 sin α2Þ
ðR1 cos α1 þ R2 cos α2Þ

: ð20Þ
Fig. 3. Incident and geometrical reflected Gaussian beam on an iso-
tropic dielectric interface (x ¼ 0 corresponds to the interface); ðxi; ziÞ
and ðxr; zrÞ indicate the incident and reflected coordinate systems; ~k
and ~k� correspond to the mean wave directions.
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Therefore, we can calculate to the second order the difference
between the geometric mean angle of reflection �α and the
mean angle corresponding to the propagation of the energy
reflected αR. From Eqs. (19) and (20), we obtain without
approximations

tanðαS − �αÞ ¼ sin

�α2 − α1
2

�
R2 − R1

R1 þ R2
: ð21Þ

By approximating the reflection coefficients of the waves
constituting the beam to the second order,

R1 ≈ Rj�α −
dR
dα

����
�α

�α2 − α1
2

�
þ 1
2
d2R
dα2

�α2 − α1
2

�
2
; ð22Þ

R2 ≈ Rj�α þ
dR
dα

����
�α

�α2 − α1
2

�
þ 1
2
d2R
dα2

�α2 − α1
2

�
2
: ð23Þ

DefiningΔαjArtmann ¼ αS − �α and by replacing in (21)–(23), we
obtain to the second order

ΔαjArtmann ≈

�ϒ
2

�
2 d lnR

dα

1þ 1
2R

d2R
dα2

�
ϒ
2

�
2 : ð24Þ

This is the expression that corresponds to Eq. (9). The deri-
vatives are evaluated in the geometric mean angle of
reflection �α, and the aperture of the incident beam is
α2 − α1 ≡ϒ.

The difference between the angular shift ΔαjArtmann ob-
tained to the first and second order can be interpreted as a
modification of the angular aperture of the reflected beam,
even though the law of reflection is valid for each wave.
By considering the second-order correction, the semiaperture
of the reflected beam is

�ϒm

2

�
2
¼

�
ϒ
2

�
2

1þ 1
2R

d2R
dα2

�
ϒ
2

�
2 : ð25Þ

In addition to the explicit results obtained by replacing in
Eqs. (24) and (25) for the angular shift and the aperture of
Artmann’s reflected beam in the partial reflection, we can
clearly see the equivalence between the values obtained by
using two waves (Artmann) or infinite waves (Tamir).

In fact, the angular aperture ϒ of Artmann’s beam can be
related to the aperture Θ of a Gaussian beam (far from the
beam waist) and half-width w [30]. From Eqs. (17) and
(18), we obtain that the angular shift of a reflected Gaussian
beam can be expressed in terms of the aperture of the beam as

ΔαjTamir ≈
1
2

�Θ
2

�
2

dðlnRÞ
dα

����
�α

1þ 1
2
d2 lnR
dα2

����
α¼�α

�
Θ
2

�
2
; ð26Þ

whereas from Eq. (18) we obtain that the modified aperture in
the reflection is

Fig. 4. FG factor: correction to the mean angle of refraction as a
function of the geometric angle of refraction for an extraordinary
transmitted beam in a NeYag–air interface when the optical axis is
in the plane of incidence and makes an angle of 70° with the interface.
no ¼ 1:96, ne ¼ 2:17, λ ¼ 1064 nm.

Fig. 5. (Color online) Interference of plane waves and formation of
limited beams. The beams are obtained as the superposition of (a)
two, (b) four, and (c) six plane waves.
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�Θm

2

�
2
¼

�
Θ
2

�
2

1þ 1
2
d2 lnR
dα2

�
Θ
2

�
2 : ð27Þ

From expression (27), which was obtained by using Tamir’s
method, we can see that the beam waist of a Gaussian beam
obtained to the second order is modified by the logarithmic
derivative d2 lnR

dα2 , whereas the beam obtained by Artmann’s
method is modified by 1

R
d2R
dα2 . This is to be expected, since

the amplitudes of the waves constituting the beam have a
quadratic distribution, whereas the amplitudes of the waves
constituting Gaussian beams have an exponential distribution.
Moreover, comparing Eqs. (24) and (25), we can observe that
there is a difference between them (a factor of 1=2). This fac-
tor also appears when using the method of superposition
considering intensities instead of amplitudes [28].

5. ANGULAR SHIFT IN TRANSMISSION OF
AN EXTRAORDINARY BEAM
We will calculate the angular shift corresponding to an extra-
ordinary beam which is transmitted from a uniaxial anisotro-
pic medium to an isotropic one. We will consider that the
optical axis �z3 is contained in the plane of incidence but form-
ing an arbitrary angle with the interface. With the method here
suggested, the calculation is simple; considering that if the

direction of the transmitted wave is given by α (in the isotropic
medium), the transmission coefficient for the parallel mode
(corresponding to the extraordinary waves in this geometry)
can be obtained from [31]

Tp ¼ 2
none cos ρe

none cos αþ nðhx − n2sin2αÞ1=2 ; ð28Þ

where ρe and α are the angles that the extraordinary incident
and the transmitted rays formwith the normal to the interface,
no and ne are the main refractive indices of the crystal, n is the
index of the isotropic medium, and hx is a characteristic
parameter of uniaxial crystals,

hx ¼ n2
oð�z⋅�z3Þ2 þ n2

eð�x⋅�z3Þ2; ð29Þ

where ð�z⋅�z3Þ and ð�x⋅�z3Þ are the projections of the optical axis
on the interface and on the normal to it, respectively. The ρe
angle can be obtained through the relationship between the
extraordinary ray and wave normal

tan ρe ¼
nnone sin α

ðhx − n2 sin2 αÞ1=2 þ
hxz
hx

; ð30Þ

where

hxz ¼ ðn2
e − n2

oÞð�z⋅�z3Þð�x⋅�z3Þ: ð31Þ

The shift can be calculated from Eq. (9):

Δα ≈ ðϒ=2Þ2
1

Tpj�α
dTp

dα

����
�α

1þ 1
2Tpj�α

d2Tp

dα2

����
�α
ðϒ=2Þ2

: ð32Þ

Here ϒ is given by the effect of the refraction in the uniaxial–
isotropic interface and must be calculated from the direction
of the two extraordinary waves in the crystal that cause the
two refracted waves. The angular shift is, to first order,
Δα ¼ ðϒ2Þ2FG, where

FG ≡

�
sin αG

ðhx − n2 sin2 αGÞ1=2
n3 cosαG þ noneðhx − n2 sin2 αGÞ1=2
none cos αG þ nðhx − n2 sin2 αGÞ1=2

−
cosαG

ðhx − n2 sin2 αGÞ3=2 nnone
tan ρe

1þ tan2 ρe

�
; ð33Þ

and αG corresponds to the geometric mean angle of transmis-
sion. It is very interesting to observe from Eq. (33) that, when
the extraordinary wave impinges normally to the interface
ðα ¼ 0; αG ¼ 0Þ, there is an angular displacement [that corre-
sponds to the second term of FG in Eq. (33)] that can be either
positive or negative according to the characteristics of the
crystal and that is null when the optical axis is normal or par-
allel to the interface:

Δαjα¼0 ¼
�ϒ
2

�
2
nnone

ðn2
e − n2

oÞð�z⋅�z3Þð�x⋅�z3Þ
ðn2

oð�z⋅�z3Þ2 þ n2
eð�x⋅�z3Þ2Þ1=2ðn4

oð�z⋅�z3Þ2 þ n4
eð�x⋅�z3Þ2Þ

: ð34Þ

On the other side, if the extraordinary ray impinges normal to
the interface ðρe ¼ 0; αG ≠ 0Þ, it is the first term of Eq. (33) that
contributes to the angular displacement. From Eqs. (29)–(33),
it follows that this displacement is positive if hxz < 0, or
negative if hxz > 0.

Figure 4 shows the factor FG that gives angular shift (in
1=radians) as a function of the geometric mean angle of refrac-
tion αG for a NeYag–air interface when the optical axis and the
interfacemake an angle of 70°.We can see that the shift is smal-
ler for near-normal incidence and it can be of the order of some
degrees (positive or negative), which corresponds to the fact
that the nongeometric mean angle approaches the normal to
the interface. It is possible to explicitly calculate the angular
shift to the second order. However, the correction of the angu-
lar shift to the first order is negligible.

On the other hand, we can easily calculate which extraor-
dinary beam corresponds to another beam with aperture ϒ
and mean angle αG [30]. It is worth noticing that, in Eq. (30),
we do not take into account the angular shift due to Snell’s
law. We only consider the one caused by the different ampli-
tudes resulting from the dependence of the transmission coef-
ficient on the angle of incidence.

6. DISCUSSION
We have shown that, from the superposition of two plane
waves with different amplitudes and directions of propagation
(generalized Artmann’s beam), we can obtain not only the lat-
eral displacement (Goos–Hänchen effect) and the longitudinal

Perez et al. Vol. 28, No. 3 / March 2011 / J. Opt. Soc. Am. A 361



focal shift in total reflection in isotropic interfaces, but also
the expressions for all the first- and second-order non-
geometric effects in reflection and transmission through
interfaces constituted by linear media. First, they allow us to
calculate the angular shift and the width change of the beam in
dielectric reflection, comparing the results to those obtained
for a beam with Gaussian intensity distribution (Tamir’s meth-
od). The results are qualitatively identical and quantitatively
comparable. This equivalence can be understood by means
of the concept of formation of a limited beam. In effect,
the simplest bidimensional beam consists of the superposition
of two plane waves with the same amplitude and frequency
(Artmann’s beam). The result is an interference figure as
the one shown in Fig. 5(a). By superposing two Artmann’s
beams in such a way that the normals to the wavefronts
are in the same plane and share the same mean normal, we
will obtain another interference figure such that the maxi-
mums are gradually less frequent [Figs. 5(b) and 5(c)]. How-
ever, as more Artmann’s beams are being superposed, the
location of one of the interference maximums is not altered.
This is the basis of symmetric limited beam formation propa-
gating in isotropic dielectric media through Fourier’s integral
or series. Moreover, that interference maximum will deter-
mine the direction of the associated beam, that is, the direc-
tion of propagation of the beam energy.

The generality of the method suggested in this paper al-
lowed us to easily calculate the angular shift and the width
change of an extraordinary beam refracting in a uniaxial–
isotropic interface. This method will simplify the task of
calculating both longitudinal and transversal nongeometric
effects when the analytical resolution of Fourier’s integral be-
comes long and tedious. Moreover, we consider that our ex-
tended analytical treatment helps to clarify and to predict the
existence of multiple nongeometric effects in any kind of
interface and under different incidence conditions.
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