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Summary. Consider an M/G/1 queue with unknown service-time distribution and unknown
traffic intensity ρ. Given systematically sampled observations of the workload, we construct
estimators of ρ and of the service-time distribution function, and we study asymptotic properties
of these estimators.

Keywords: Asymptotic normality; Empirical processes; Functional central limit theorem; Infinite
dimensional delta method; M/G/1-queue; Regenerative processes; Workload

1. Introduction

Throughout the paper we consider an M/G/1-queue, i.e. the inter-arrival times are indepen-
dently and exponentially distributed with mean 1/λ, the service times are independently,
non-negative, not concentrated at 0 and otherwise generally distributed with distribution
function F and finite mean f1, there is 1 server, and infinite waiting room. We will assume
starting in an empty queue.

For later purposes let {(Tn, Sn), n ≥ 1}, denote the sequence of arrival times and service
times of the customers. Let S be a generic random variable with the same distribution as
S1.

Let the workload in the system at time t be denoted by Vt, i.e. Vt is the sum of the
residual service times of the customer being presently served and the customers awaiting
service and is zero if there are no customers in the system. By convention, a workload
process {Vt, t ≥ 0} will be taken right-continuous with left-hand limits. For the M/G/1
queue, the evolution of Vt between two arrivals is described by Lindley’s equation

Vt = 0, t ∈ [0, T1)

Vt = (VTn− + Sn − (t− Tn)) ∧ 0, t ∈ [Tn, Tn+1), n ≥ 1. (1)

In what follows a cumulative distribution function (cdf) of a non-negative random vari-
able is denoted by a capital letter, A, say. The k’th moment is denoted by ak, the com-
plementary cdf by Ā(x) = 1 − A(x), x ≥ 0, the stationary excess distribution by Ae(x) =
a−1
1

∫
[0,x]

Ā(y)dy, x ≥ 0, and the Laplace-Stieltjes transform by Ã(θ) =
∫
[0,∞)

e−θxA(dx), θ ∈
R.

If we let F denote the cdf of the service time distribution and assume the stability
condition ρ < 1, then a limiting distribution (in weak convergence as well as total variation)
of Vt exists (Asmussen, 2003, Corollary X.3.3). Moreover, if we let G be the cdf of the
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limiting distribution then Pollaczeck-Khintchine’s formula holds (Asmussen, 2003, Theorem
X.5.2)

G = Ψ(ρ, F ) (2)

where

Ψ(ρ, F ) = (1− ρ)

∞∑

k=0

ρkF ?k
e ,

and ?k denotes k-fold convolution.
We now assume that it is possible to test the performance of the queue by sampling the

workload, without loss of generality, at every positive integer time point, as other sampling
intervals can be obtained by proper rescaling. This process is denoted by {Vi, i ≥ 1}. The
main objective of this paper is to infer Fe and F from the sampled workloads. We suggest
the empirical cumulative distribution function (ecdf) as an estimator for G

Gn(x) = n−1
n∑

i=1

1(Vi ≤ x), 0 ≤ x < ∞. (3)

Its n’th empirical process counterpart is defined as

Gn(x) = n1/2(Gn(x)−G(x)), 0 ≤ x < ∞. (4)

In the following we will provide sufficient conditions for the empirical process to converge
weakly to a Gaussian process.

Assume we want to make make statistical inference about the workload distribution
function, then we notice that G has a 1− ρ atom at zero. This leads to a plug-in estimator
ρ̂n for ρ given by

ρ̂n = 1− n−1
n∑

i=1

1(Vi = 0).

Later on (see (6)) we need to divide by ρ̂n and 1 − ρ̂n, so we notice that with probability
one ρ̂n will be in (0, 1) eventually. For a discussion of the potential danger in heavy and
light traffic, see Section 7.

Formula (2) can via Laplace transformation be inverted under conditions in the following
way

Fe(x) =
1

ρ

∞∑

k=1

(−1)k+1

(
1

1− ρ

)k

(Go)?k(x), (5)

where for any function h we write ho for the function x 7→ h(x)− h(0) and convergence is
in a suitable weighted Banach space, see Proposition 3 below. This leads to the following
plug-in estimator of Fe

Fn,e(x) =
1

ρ̂n

∞∑

k=1

(−1)k+1

(
1

1− ρ̂n

)k

(Go
n)?k(x). (6)

Turning to the estimation of F from Fn,e one notices, from the definition of the stationary
excess distribution, that this involves some sort of numerical differentiation of a concave
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distribution function. One popular method for this is to take the left derivative of the
concave majorant of the empirical determined distribution function, normally termed the
Grenander estimator.

One motivation for the set-up presented above arises when a call admission controller
(CAC) in an ATM network decides, whether there are sufficiently resources to allow a new
connection to be established. This problem was considered by Sharma and Mazumdar
(1998) and Sharma (1999). They consider an M/G/1 which is probed by Poisson traffic
from which moments of the service time distribution are inferred by the well-known moment
relations which can be derived from the Pollaczeck-Khintchine formula (Asmussen, 2003,
Theorem VIII.5.7 (5.6) and (5.7)). In the present paper we attack the even harder problem
of inferring the whole distribution function of the service time.

Another motivation arises in an infinite-capacity storage model, where inputs S1, S2, . . .
to the storage facility arrive in a Poisson process rate λ, where S1, S2, . . . are independent
identically distributed random variables, with distribution function F . The total amount in
the storage facility at time t has the same distribution as Vt in the M/G/1 queueing model
above. Suppose that observations on the sampled total amounts at times t = 1, 2, . . . are
available, and that interest lies in inference for the distribution F of the inputs to the facility.
This inference problem is exactly analogous to that described above for the queueing model
and the methods of this paper apply.

In (5), Fe is given in terms of ρ and G. We observe that ρ = 1 − G(0), so that Fe is
determined by G, and we can write Fe as a functional of G. The proposed estimator Fn,e

is then the result of applying the same functional to the estimator Gn of G respectively.
Given an appropriate asymptotic normality result for Gn, the infinite-dimensional delta
method can be used to derive asymptotic normality of Fn,e, provided that the functional
in question satisfies a particular differentiability result. For general descriptions of the
infinite-dimensional delta method, see Gill (1989) and van der Vaart (1998).

From (2), we see that G is a compound geometric distribution function, based on ρ and
Fe, and so the inverse functional that takes G onto Fe is a decompounding functional that
“decompounds” the compound geometric distribution. As such, this functional is closely
related to that in Buchmann and Grübel (2003), where the notion of decompounding is
introduced in the context of decompounding for a compound Poisson distribution. The
set-up and proofs for the definition and differentiability of our functional follow those in
Buchmann and Grübel (2003), making adaptations for the geometric case as necessary.
However, our data do not consist of independent identically distributed observations, but
rather exhibit regenerative structure, so that the asymptotic normality result for our input
estimator is obtained using an empirical central limit theorem for regenerative data, see
Tsai (1998) and Levental (1988).

The infinite-dimensional delta method has been used for stochastic models in previous
work, and this paper follows the set-up and approach developed in, for example, Grübel
and Pitts (1993) and other papers, and also in Bingham and Pitts (1999b) and Bingham
and Pitts (1999a). These last two papers study inference for service-time distributions given
data on busy and idle periods for the M/G/1 and the M/G/∞ queues respectively, and can
be regarded as tackling inverse problems, in the same way that inference for decompounding
can be regarded as an inverse problem. Hall and Park (2004) gives a different approach to
estimation of the density of F from busy period data.

The paper is organised as follows. In Section 2, the regenerative structure of the data
is discussed in detail, together with related measurability issues. The asymptotic normal-
ity result for Gn is then stated in Section 3, and our main result, giving the asymptotic
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normality of the proposed estimator Fn,e of Fe, is stated in Theorem 2. Section 4 contains
discussion of two pragmatic approaches for dealing with the step from Fe to the service-time
distribution function F . Examples of the estimators in action are given in Section 5, and
proofs related to the regenerative structure and also proofs of the asymptotic normality
results are given in Section 6. Section 7 contains discussion and conclusions.

2. Preliminaries

2.1. Measurability considerations
Let T̃n = Tn − Tn−1, n ≥ 1, where T0 = 0. Then the input to the M/G/1-queue can be

described as {(T̃n, Sn), n ≥ 1} and viewed as the coordinate projection on the probability
space (Ω,F , P), where Ω = ([0,∞)× [0,∞))N, F = (B[0,∞)×B[0,∞))N and P is the N-fold
product of the product of the exponential distribution with mean 1/λ and the distribution
with cdf F .

Furthermore, by Lindley’s equation (1) it is straightforward to prove that the workload
process {Vt, t ≥ 0} : Ω → [0,∞)[0,∞) is (F ,B[0,∞)[0,∞))-measurable, where B[0,∞)[0,∞) is
the Baire σ-field (Hoffmann-Jørgensen, 1994a, (9.2.4)).

Now, {Vi, i ≥ 1} : [0,∞)[0,∞) → [0,∞)N is the process {Vt, t ≥ 0} sampled at all integer
points. Hence {Vi, i ≥ 1} is (B[0,∞)[0,∞),B[0,∞)N)-measurable.

Finally, let (D[0,∞), ‖ · ‖∞) be the Banach space of cadlag functions f on [0,∞) such
that limx→∞ f(x) is in R, with supremum norm. We will equip this space with the open
ball (with respect to ‖ · ‖∞) σ-field P , see Pollard (1984), page 199. We can then consider
Gn : [0,∞)N → D[0,∞) as a ([0,∞)N,P)-measurable map.

Altogether, the measurable mappings can now be summarized as

(Ω,F , P)
{Vt}−→ ([0,∞)[0,∞),B[0,∞)[0,∞), PVt

)

{Vi}−→ ([0,∞)N,B[0,∞)N, PVi
)

Gn−→ (D[0,∞),P , PG)

where PVt
, PVi

and PGn
are image probability measures of the underlying measure P

(Hoffmann-Jørgensen, 1994b, (1.44.1)).

2.2. Regenerative structure of the subsampled workload
A stochastic process is regenerative if there are random times where it starts “stochastically”
anew. More formally we follow the approach of Levental (1988).

Definition 1. Let {Xi, i ≥ 0} be a discrete parameter stochastic process with state
space R equipped with the Borel σ-algebra B(R) and {Ni, i ≥ 1} a sequence of integer-
valued random variables satisfying 0 ≤ N1 < N2 < · · · < ∞ and limi→∞ Ni = ∞ a.s. Both
processes are assumed to be supported on the probability space (Ω,F , P). The stochastic
process {Xi, i ≥ 0} will be called a regenerative process with regeneration times {Ni, i ≥ 1}
if

E[f(XNi
, XNi+1, . . . )|FNi

] = E[f(XN1
, XN1+1, . . . )],

for all functions f : [0,∞)N → R, which are bounded and (B[0,∞)N,B(R))-measurable and
FNi

= σ({Xk∧Ni
: k = 1, 2, . . . }).
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First, we shall notice that the subsampled workload is an (within the workload process)
embedded Markov chain.

Lemma 1. Let s̄k = (s1, . . . , sk), t̄k = (t1, . . . , tk)

un,k(s̄k, t̄k) =

k∑

i=1

((n− ti) ∧ si)− 1, and

vn,k(s̄k, t̄k) =
k∑

i=1

(si − (n− ti) ∧ si).

Then the subsampled workload process {Vn, n ≥ 0} is a Markov chain embedded within the
workload process with transition kernel

P(Vn+1 ∈ B|Vn) = e−λ1((Vn − 1)+ ∈ B)

+
∞∑

k=1

e−λ λk

k!

∫

[n,n+1]k

∫

[0,∞)k

1
([

(Vn + un+1,k(s̄k, t̄k))
+

+ vn+1,k(s̄k, t̄k)
]
∈ B

)

dF⊗k(s̄k)dt̄k a.s.

for any B ∈ B(R+) and n ∈ N0.

Secondly, the subsampled workload process is regenerative in the following sense.

Proposition 1. Let N1 = inf{n ≥ 1|Vn = 0} and Ni = inf{n > Ni−1|Vn = 0} for
i ≥ 2. Then, {Vn, n ≥ 1} is a regenerative process with regeneration times {Ni, i ≥ 1}.
Moreover, Ni is a stopping time with respect to the increasing sequence of σ-algebras Fn =
σ({V1, . . . , Vn}) and if E(S2) < ∞ then E((N2 −N1)

2) < ∞.

Proposition 2. If E(N2 −N1) < ∞, then

π(A) = E

(
N2−1∑

i=N1

1(Vi ∈ A)

)
/E(N2 −N1) (7)

is a probability measure on ([0,∞),B[0,∞)) and its distribution function Fπ(t) = π([0, t])
equals G as given in (2).

3. Estimation of the stationary excess distribution Fe

In this section, we state our main asymptotic normality results for the various estimators
introduced above. The estimator Gn is constructed directly from the observations V1, . . . , Vn

of the regenerative process {Vi, i ≥ 1}, and we first give an asymptotic normality result
for Gn, based on regenerative data. This is a regenerative empirical central limit theorem
for Gn in D[0,∞). For this space, and throughout the paper, weak convergence in Banach
spaces refers to σ-algebras generated by the open balls in the respective norms.

Theorem 1. If E(S2) < ∞, then

Gn →D Z as n →∞
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in (D[0,∞), ‖ · ‖∞) where Z is a centered Gaussian process with covariance structure

D(s, t) = EZ(s)Z(t)

=
1

E(N)
Cov (Us −G(s)N, Ut −G(t)N) ,

for all s, t ≥ 0, Us =
∑N2−1

i=N1
1(Vi ≤ s) and N = N2 −N1.

We follow the approach and methodology of Buchmann and Grübel (2003), and in
particular we use the weighted spaces defined there as follows. For τ in R, let Dτ [0,∞)
be the space of all functions f : [0,∞) → R, such that the function x 7→ e−τxf(x), is in
D[0,∞). For f in Dτ [0,∞), let ‖f‖∞,τ = supx≥0 e−τx|f(x)|, so that (Dτ [0,∞), ‖ · ‖∞,τ ) is
a Banach space. We later show that, under conditions on G, the right-hand side of (5) is
in Dτ [0,∞).

In order to state our next result, let Z be the limiting process in Theorem 1, and let

πk(ρ) =
1

ρ(1− ρ)k
, k ≥ 1.

With these notations, we can now formulate the main result on weak convergence of the
inverse estimator of the stationary excess distribution function.

Theorem 2. Assume E(S2) < ∞ and that τ > 0 is such that F̃e(τ) < 1/(2ρ). Then
√

n(Fn,e − Fe) →D A as n →∞,

in (Dτ [0,∞), ‖ · ‖∞,τ ), where A is a centered Gaussian process given by A =D −Z(0)Γ +
Zo ? H, and where

Γ =
∞∑

k=1

(−1)k+1π′k(ρ) (Go)?k ,

and

H =
∞∑

k=1

(−1)k+1kπk(ρ) (Go)?(k−1) .

4. Estimation of service time distribution function F

Assume the objective is to estimate the service time distribution function F based on
an estimate of the stationary excess distribution function. First we notice the following
relations

F (x) = 1− f1F
′
e(x)

f1 = 1/F ′
e(0)

which are easily derived from the definition of the stationary excess distribution function.
Consequently, the estimation problem is reformulated as a problem of estimating derivatives
of Fe.

In the present paper we will suggest two pragmatic approaches to this problem, and
pinpoint possible difficulties in obtaining rigorous convergence results. Performance of one
of the suggestions is illustrated in the following section.
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4.1. Kernel smoothing
One possibility that springs in mind is to smooth out the probability mass around a given
point x. More precisely, let K be a probability density with mean 0 and variance 1, for
instance the standard normal density. A kernel estimate with kernel K is defined as

F ′
n,e(x) =

∫
K

(
x− y

h

)
dFe,n(y).

Here h > 0 is a number to be chosen, called the bandwidth of the estimator. If this method
is pursued one has to find a way of tackling that the density of Fn,e has a discontinuity at
zero. Various methods have been proposed for solving this, see e.g. Wand and Jones (1995,
Section 2.11), or the recent and promising boundary adjusted density estimation method
by Chiu (2000).

Carrying on with an asymptotic analysis along the lines of Section 3 seems to be a diffi-
cult matter. It is well known that if Fn,e is formed by iid distributed random variables, the
finite dimensional marginals converges to a multivariate Gaussian with a diagonal covariance
matrix. Such a result is difficult to establish as the marginals of F ′

n,e are asymptotically
dependent as they arise from smoothing a convolution series and it seems hard to get a
handle on the dependency structure. Aiming for a uniform result is not possible in the iid
case because the limiting process is not tight. One could hope that the convolution series
imposes tightness, but it is not at all clear how the results should be established. This is
left as an open problem.

4.2. The Grenander estimator
Another possibility, is to notice that Fe has a monotone density and is thereby concave. One
could then use the Grenander estimator, F̂n,e, (i.e. the least concave majorant of Fn,e) of

the concave distribution Fe. Taking the left derivatives F̂ ′
n,e(x) of the Grenander estimator

yields the following nonparametric estimator of F

Fn(x) = 1− F̂ ′
n,e(0)F̂

′
n,e(x).

This procedure is rather pragmatic in nature, as theoretical results seems hard to obtain.
One could be motivated by the iid case where the pointwise limit distribution was proved
by Prakasa Rao, see Rao (1983), to be proportional to the distribution of the argmax of the
standard Brownian motion process with parabolic drift or Groeneboom (1989) where the
limit distribution is fully characterized. This is also left as an open problem.

5. Examples

To check performance of the proposed procedure, we applied it to various simulated data
sets. Results from two typical cases are summarized in this section.

All programming and simulation have been carried out in the freely available computa-
tional statistical software package R, see http://www.r-project.org for more details.

Numerical estimates are obtained by discretizing the data and applying Panjer recursion
(Panjer, 1981, Section 4). Let F be a service time distribution function. First, choose a
discretization level h > 0. Secondly, let fk denote the mass given by Fe to the interval
((k − 0.5)h, (k + 0.5)h], in the following way

fk = Fe((k + 0.5)h)− Fe((k − 0.5)h),
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Fig. 1. Two estimates for service time distribution for exponentially distributed service times (n =

1000, λ = 1/2, f1=1 and ρ = 0.5)

and let the discrete distribution that gives mass fk to the point kh, k = 0, 1, 2, . . ., be an
approximation to the distribution Fe. Finally, consider the following recursively defined
approximation of the density of the workload distribution function.

g0 =
1− ρ

1− ρf0
, gk =

ρ

1− ρf0

k∑

j=1

fjgk−j .

It is straightforward to invert the Panjer recursion

f0 =
g0 − 1 + ρ

ρg0
, fk =

(1− ρ)gk

g2
0ρ

− 1

g0

k−1∑

j=1

fjgk−j ,

so that, given a discrete approximation (gk) to G, we can calculate recursively a discrete
approximation (fk) to Fe.
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Fig. 2. Two estimates for the service time distribution for Pareto distributed service times (n = 1000,
λ = 3/10, α = 2.5 and ρ = 0.5

The Grenander estimator F̂n,e is found by forming the convex hull of the following set

S = {(x, y) ∈ R2 : x ≥ 0, 0 ≤ y ≤ Fe,n(x))}

and letting

F̂n,e = sup{y : (x, y) ∈ chull(S)}.
This is easily implemented by the chull routine in R. Taking left derivatives yields the
nonparametric estimator of F , as described above.

Suppose one is inclined to check whether the service time distribution has heavy tails
(i.e. 1 − F (x) = x−αL(x), as x → ∞, where L is slowly varying, see e.g. Resnick (1997,
(2.2))) it is desirable to develop a Hill type estimator for the tail index α. This, is indeed not
a simple task for the problem at hand, as we are not facing an estimate of the distribution
function based on an iid sample, see e.g. the comprehensive review by Resnick (1997) for
the iid case.
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Fig. 3. Two estimates for the service time distribution for Pareto distributed service times (n = 10000,
λ = 3/10, α = 2.5 and ρ = 0.5

Instead we take a simpler and exploratory approach and plot log(1−Fn(x)) against x and
log(x) to check for exponentially or polynomially (heavy tails) decaying tails, respectively.

5.1. Exponentially distributed service times
Figure 1 displays the estimates obtained for two independent samples of size 1000 from a
discretely sampled M/G/1 queue with traffic intensity ρ = 0.5 and exponentially distributed
service times with mean 1 (i.e. the arrival intensity of the Poisson distribution is 1/2). In
what follows the dashed line shows the underlying theoretical properties of the distribution
function. The fulldrawn black and grey lines are two independent realizations of the exper-
iment. The upper left panel shows the ecdfs of the subsampled workloads, the upper right
panel shows the estimated stationary excess distributions and the lower left panel shows
left derivatives of the Grenander estimator. Finally, the lower right panel shows a log-plot
of the estimated tail probabilities.
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Fig. 4. Two estimates for the service time distribution for Pareto distributed service times (n = 1000,
λ = 1/7, α = 1.4 and ρ = 0.5

5.2. Pareto distributed service times
In this example we consider service times with cdf

F (x) = 1− x−α

for x ≥ 1 and α > 1. This is actually a Pareto distribution with with parameter α.
Figure 2 displays the estimates obtained for two independent samples of size 1000 from

a discretely sampled M/G/1 queue with traffic intensity ρ = 0.5 and Pareto distributed ser-
vice times with mean 5/3 (i.e. the arrival intensity of the Poisson distribution is 3/10 and
the parameter of the Pareto distribution is α = 2.5). As above the dashed line shows the
underlying theoretical properties of the distribution function. The upper left panel shows
the ecdfs of the subsampled workloads, the upper right panel shows the estimated station-
ary excess distributions and the lower left panel shows left derivatives of the Grenander
estimator. Finally, the lower right panel shows a log-plot of the estimated tail probabilities.

Figure 3 shows that increasing the sample size improves the estimate but Figure 4 shows
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that decreasing the rate of the Pareto distribution (into a region where the functional CLT
is not guaranteed) leads to a deterioration.

6. Proofs

6.1. Proofs of the regenerative structure
Proof (of Lemma 1). As the number of arrivals in (n, n + 1] is Poisson distributed

and given the number of arrivals in this interval, the arrival times are uniformly distributed
over (n, n + 1], the transition kernel is obtained by conditioning. The terms un+1,k and
vn+1,k are obtained by splitting the arrived workload in the part contained in (n, n+1] and
the part contained in (n + 1,∞). 2

Proof (of Proposition 1). The sequence {Ni, i ≥ 1} is integer-valued, strictly in-
creasing and satisfies limi→∞ Ni = ∞ a.s. by construction. For finiteness of the Ni’s consider
N2−N1. Let B1, B2, . . . be the lengths of the busy periods after N1 and I1, I2, . . . the lengths
of the idle periods after N1. If τ = inf{n ≥ 1|In ≥ 1}, then N2 − N1 ≤

∑τ
i=1(Bi + Ii).

Consequently,

P(N2 −N1 < ∞) ≥ P

(
τ∑

i=1

(Bi + Ii) < ∞
)

≥ 1.

As N1 is stochastically dominated by N2 −N1, we get for i ≥ 2

Ni = N1 +
i∑

k=2

(Nk −Nk−1) < ∞, a.s.

First notice by standard arguments (see e.g. Hoffmann-Jørgensen (1994b, Section 7.2)) that
Ni is a stopping time with respect to the increasing sequence of σ-algebras Fn. Then by
the strong Markov property (Asmussen, 2003, Theorem I.1.1)

E[f(VNi
, VNi+1, . . . )|FNi

] = EVNi
f(V0, V1, . . . )

= E0f(V0, V1, . . . )

= Ef(VN1
, VN1+1, . . . )

By Wald’s second moment identity (Asmussen, 2003, Proposition A.10.2)

E(N2 −N1)
2 ≤ E

(
τ∑

i=1

(Bi + Ii)

)2

= Var(I1 + B1)E(τ) + 3µ2E(τ2),

which is finite if and only if E(B2
1) < ∞, which again is finite if and only if E(S2) < ∞. The

last equivalence follows directly from Kendall’s functional equation, see e.g. Feller (1971,
(4.1)). 2
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Proof (of Proposition 2). . It is straightforward to prove that π is a probability
measure. It is also obvious that Vt and Vn have the same limiting distribution (both in
weak convergence and total variation). As Vn is regenerative it follows that its limiting dis-
tribution exists (in weak convergence and total variation) and equals π (Asmussen (2003),
Theorem VI.1.2 and Corollary 1.5). As the limiting distribution of Vn and Vt coincide the
stated result follows. 2

6.2. Proof of Theorem 1
A standard method for proving empirical central limit theorems is first to prove that the
fidis converge to a multivariate normal distribution with the stated covariance structure
and secondly to prove a tightness condition (Pollard, 1984, Section VII.5). Henceforth, we
notice that {Vn, n ≥ 0} is a regenerative process taking values in R+, with regeneration
times {Ni, i ≥ 1} (as defined in Proposition 1). Convergence of the fidis is now proved by
noticing that any linear combination

aGn(s) + bGn(t) =
√

n

(
1

n

n∑

i=1

(a1(Vi ≤ s) + b1(Vi ≤ t))− (aG(s) + bG(t))

)

is asymptotic normal with mean 0 and variance

σ2 =
1

E(N)
Var

(
N2−1∑

i=N1

(a1(Vi ≤ s) + b1(Vi ≤ t))− (aG(s) + bG(t))N

)

=
1

E(N)

(
a2 Var (Us −G(s)N) + b2 Var (Ut −G(t)N)

+ 2ab Cov (Us −G(s)N, Ut −G(t)N)) .

by the central limit theorem for renewal-reward processes, see e.g. Asmussen (2003, Theorem
VI.3.2). Hence, (G(s), G(t)) has a zero-mean Gaussian distribution with the stated covari-
ance by the Cramér-Wold device (Billingsley, 1968, Theorem 7.7). The above argument
clearly extends to linear combinations of any finite number of fidis.

Secondly, tightness is handled by considering the measure space (R+,B(R+)) and define
the following family of functions H = {1(· ≥ t)|t ∈ R}. We notice that H is indexed by
a Borel set of a metric space and thereby permissible (Pollard, 1984, p. 16). As H is a
Vapnik-Chervonenkis class (Pollard, 1984, p. 16) the combinatorial condition

∫ ∞

0

[log N2(u,H)]1/2du < ∞

is satisfied. Finally, from Proposition 1 we notice that E(N2 −N1)
2 < ∞. Hence the result

is a direct application of Tsai (1998, Theorem 4.3). See also Levental (1988, Theorem 4.9)
for a slightly weaker result.

6.3. Proof of Theorem 2
We essentially follow Buchmann and Grübel (2003). In (5), our quantity of interest Fe is
given in terms of ρ and G, and this inverse representation is made precise in Proposition 3
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below. Thus the equilibrium distribution can be regarded as the output that arises when a
particular functional, Λ say, is applied to (ρ, G), so that

Fe = Λ(ρ, G)
(

= Λ
(
1−G(0), G

))
.

The plug-in estimator given in Section 1 is then

Fn,e = Λ(ρ̂n, Gn)
(

= Λ
(
1−Gn(0), Gn

))
.

Proposition 4 is a suitable differentiability result for Λ, and this leads to the asymptotic
normality of Fn,e as stated in Theorem 2. In adapting the proofs of Buchmann and Grübel
(2003) to the case in hand, we deal with the obvious technical changes necessary for a
compound geometric rather than a compound Poisson, and in addition we incorporate
estimation of the parameter ρ defining the geometric distribution. We give sufficient details
here to make the present paper reasonably self-contained.

First, we note (5) involves convolutions, and so we use the convolution framework of
Buchmann and Grübel (2003). Define D(∞) = ∪τ>0Dτ [0,∞), and let Dm(∞) (⊆ D(∞))
be the space of functions in D(∞) that have finite variation on [0, x] for all x > 0. Then any
function H in Dm(∞) can be identified with a (not necessarily finite) signed measure µH

on
(
[0,∞),B[0,∞)

)
, where B[0,∞) denotes the Borel sets of [0,∞), and this identification

is given by H(x) = µH

(
[0, x]

)
. Elements of Dm(∞) can act as integrators in convolution

integrals, and for g in D(∞) and H in Dm(∞), define

g ? H(x) =

∫
g(x− y)H(dy), x ≥ 0.

We note further that elements of Dm(∞) are identified via their Laplace transforms, given
by

H̃(θ) =

∫
e−θxH(dx).

If H ∈ Dm(∞) is in Dτ [0,∞), τ > 0, then the Laplace transform is defined for θ > τ .
Lemma 6(b) of Buchmann and Grübel (2003) provides a useful result linking convolution
and the norms ‖ · ‖∞,τ and ‖ · ‖∞, and we quote this result without proof. Let D+

m(∞)
be the subset of Dm(∞) consisting of functions H such that the associated measure is
non-negative. If H is in D+

m(∞), then

‖g ? H‖∞,τ ≤ ‖g‖∞,τ H̃(τ) for all τ > 0. (8)

We are now ready to state and prove the following result which can be regarded as
specifying the inverse of the compound geometric functional.

Proposition 3. Let 0 < ρ < 1 and τ > 0. If G is a distribution function on [0,∞)

with G̃o(τ) < (1− ρ), then the series

Λ(ρ, G) =

∞∑

k=1

(−1)k+1πk(ρ)(G0)?k

converges in Dτ [0,∞). Furthermore, if G = Ψ
(
ρ, F ) then Fe = Λ(ρ, G).
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Proof. Observe that Go and
(
Go
)?k

are in Dτ [0,∞) for τ > 0, and so the partial sums
of the series are in Dτ [0,∞). Applying (8) repeatedly, we obtain

‖
(
Go
)?k‖∞,τ ≤ ‖Go‖∞,τ G̃o(τ)k−1,

≤ G̃o(τ)k−1, (9)

where the last inequality holds because Go is the distribution function of a (possibly sub-)

probability measure, and τ > 0. By assumption we have G̃o(τ) < 1− ρ, so there exists η,

0 < η < 1, such that G̃o(τ) < η(1− ρ). Then

∞∑

k=1

πk(ρ)
(
G̃o(τ)

)k−1 ≤ 1

ρ(1− ρ)

∞∑

k=1

ηk−1,

and this is finite. Thus the given series converges in Dτ [0,∞), and so Λ(ρ, G) is in Dτ [0,∞).
This series Λ(ρ, G) is the difference of two non-decreasing functions, and so it is Dm(∞),

and hence it is identified by its Laplace transform. For θ > τ we have

Λ̃(ρ, G)(θ) =
∞∑

k=1

(−1)k+1πk(ρ)G̃o(θ)k

=
G̃o(θ)

ρ(1− ρ)

(
1 +

G̃o(θ)

1− ρ

)−1

. (10)

On the other hand, using G = Ψ(ρ, F ) from (2), we obtain

G̃(θ) =
1− ρ

1− ρF̃e(θ)
,

so that

G̃o(θ) = G̃(θ)− (1− ρ) =
(1− ρ)ρF̃e(θ)

1− ρF̃e(θ)
, for all θ > 0.

Rearranging this, we find that

F̃e(θ) =
G̃o(θ)

ρ(1− ρ)

(
1 +

G̃o(θ)

1− ρ

)−1

,

and this gives Λ(ρ, G) = Fe by comparison with (10). 2

The main part of the proof of Theorem 2 is to establish the differentiability of the
functional that maps G onto Fe, and this entails differentiability of the functional Λ as a
map from a subset of (0, 1)×D[0,∞) to Dτ [0,∞).

Proposition 4. Let ρ and ρn (n ∈ N) be in (0, 1), and suppose that

|
√

n(ρn − ρ)− γ| → 0 as n →∞, (11)
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for some γ in R. Let G and Gn (n ∈ N) be elements of D+
m(∞) ∩D[0,∞) with G(0) = 0

and Gn(0) = 0 for all n ∈ N. Suppose that τ > 0 is such that G̃(τ) < (1− ρ), and that

‖
√

n(Gn −G)− h ‖∞ → 0 as n →∞ (12)

for some h ∈ D[0,∞). Then, as n →∞,

‖
√

n(Λ(ρn, Gn)− Λ(ρ, G))− γΓ− h ? H ‖∞,τ → 0,

where Γ =
∑∞

k=1(−1)k+1π′k(ρ)G?k and H =
∑∞

k=1(−1)k+1kπk(ρ)G?(k−1).

Proof. Similar methods to those used in Proposition 3 show that Γ and H are in
Dτ [0,∞) and also that H is in Dm(∞) (and hence is an appropriate quantity for the right-
hand factor in a convolution).

We have

‖
√

n(Λ(ρn, Gn)− Λ(ρ, G))− γΓ− h ? H ‖∞,τ

≤ ‖
√

n(Λ(ρ, Gn)− Λ(ρ, G))− h ? H ‖∞,τ

+ ‖
√

n(Λ(ρn, Gn)− Λ(ρ, Gn))− γΓ ‖∞,τ . (13)

By assumption G(0) = 0 and Gn(0) = 0, and so we have Go = G, and Gn = Go
n. For

the second term on the right-hand side of (13), we notice that

‖
√

n(Λ(ρn, Gn)− Λ(ρ, Gn))− γΓ ‖∞,τ

=

∥∥∥∥∥
√

n

(
∞∑

k=1

(−1)k+1πk(ρn)G?k
n −

∞∑

k=1

(−1)k+1πk(ρ)G?k
n

)
− γ

∞∑

k=1

(−1)k+1π′k(ρ)G?k

∥∥∥∥∥
∞,τ

≤
∥∥∥∥∥

∞∑

k=1

(−1)k+1
(√

n(πk(ρn)− πk(ρ))− γπ′k(ρ)
)
G?k

n

∥∥∥∥∥
∞,τ

+

∥∥∥∥∥γ
∞∑

k=1

(−1)k+1π′k(ρ)
(
G?k

n −G?k
)
∥∥∥∥∥
∞,τ

. (14)

We have G?k
n −G?k = (Gn−G)?Hn,k, with Hn,k =

∑k−1
j=0 G?j

n ?G?(k−1−j) for k ≥ 1. Using

(8), we find that ‖
(
Gn − G

)
? Hn,k‖∞,τ ≤ ‖Gn − G‖∞,τ H̃n,k(τ). This yields an upper

bound for the second term of (14),

∥∥∥∥∥γ
∞∑

k=1

(−1)k+1π′k(ρ)
(
G?k

n −G?k
)
∥∥∥∥∥
∞,τ

≤ |γ|
∞∑

k=1

∣∣π′k(ρ)
∣∣∥∥G?k

n −G?k
∥∥
∞,τ

= |γ|
∞∑

k=1

∣∣π′k(ρ)
∣∣∥∥(Gn −G

)
? Hn,k

∥∥
∞,τ

≤ |γ|
∞∑

k=1

∣∣π′k(ρ)
∣∣‖Gn −G‖∞,τ H̃n,k(τ)

≤ |γ|‖Gn −G‖∞
∞∑

k=1

∣∣π′k(ρ)
∣∣H̃n,k(τ), (15)
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on noting in the final step that ‖Gn − G‖∞,τ ≤ ‖Gn − G‖∞ for τ > 0. We now aim

to bound H̃n,k(τ), and this means we must bound G̃(τ) and G̃n(τ). As in the proof of

Proposition 3, the assumption G̃(τ) < 1 − ρ implies that we can find η, 0 < η < 1, such

that G̃(τ) < η(1− ρ). Integration by parts gives

∣∣G̃n(τ)− G̃(τ)
∣∣ ≤ τ

∫ ∞

0

e−τx
∣∣Gn(x)−G(x)

∣∣dx

≤ τ‖Gn −G‖∞
∫ ∞

0

e−τxdx,

and this converges to zero as n tends to infinity, since from (12) we know that ‖Gn−G‖∞ →
0. This means that there exists n1 such that n ≥ n1 implies that G̃n(τ) < η(1− ρ). This
in turn implies that for n ≥ n1, we have

H̃n,k(τ) ≤ kηk−1(1− ρ)k−1.

Plugging this into (15), we obtain
∥∥∥∥∥γ

∞∑

k=1

(−1)k+1π′k(ρ)
(
G?k

n −G?k
)
∥∥∥∥∥
∞,τ

≤ |γ|
∥∥Gn −G

∥∥
∞

∞∑

k=1

|π′k(ρ)|kηk−1(1− ρ)k−1

≤ |γ|
∥∥Gn −G

∥∥
∞

(
1

ρ(1− ρ)2

∞∑

k=1

k(k + 1)ηk−1

+
1

ρ2(1− ρ)2

∞∑

k=1

kηk−1

)
.

Since 0 < η < 1, the two series above converge to finite limits, and the fact that ‖Gn −
G‖∞ → 0 shows that the second term of (14) converges to zero.

For the first term, note that by (9), and with n1 as above, for all n ≥ n1, we have
‖G?k

n ‖∞,τ ≤ ηk−1(1− ρ)k−1. Then the first term in (14) is bounded as follows:
∥∥∥∥∥

∞∑

k=1

(−1)k+1(
√

n(πk(ρn)− πk(ρ))− γπ′k(ρ))G?k
n

∥∥∥∥∥
∞,τ

≤
∞∑

k=1

|
√

n(πk(ρn)− πk(ρ))− γπ′k(ρ)|(η(1− ρ))k−1. (16)

By the mean value theorem, we have
∣∣√n

(
πk(ρn)− πk(ρ)

)
− γπ′k(ρ)

∣∣
≤

∣∣√n
(
ρn − ρ

)
− γ
∣∣∣∣π′k(ξn,k)

∣∣ + |γ|
∣∣π′k(ξn,k)− π′k(ρ)

∣∣
≤

∣∣√n
(
ρn − ρ

)
− γ
∣∣∣∣π′k(ξn,k)

∣∣ + |γ|
∣∣π′′k(ζn,k)

∣∣|ξn,k − ρ
∣∣,

for some ξn,k and ζn,k in (ρL,n, ρU,n) (⊆ (0, 1)), where ρL,n = ρ ∧ ρn and ρU,n = ρ ∨ ρn.
Then we have

∣∣π′k(ξn,k)
∣∣ ≤ k + 2

ρ2
L,n(1− ρU,n)k+1

∣∣π′′k(ζn,k)
∣∣ ≤ k2 + 4k + 5

ρ3
L,n(1− ρU,n)k+2

.
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Let η, 0 < η < 1, be as above, and let α be such that η < α < 1. Since ρn converges
to ρ, we have that 0 < η(1 − ρ)/(1 − ρn) < α < 1 for all n large enough, and so
0 < η(1− ρ)/(1− ρU,n) < α for all n large enough. We also have

1

ρ2
L,n(1− ρU,n)2

≤ 2

ρ2(1− ρ)2
,

1

ρ3
L,n(1− ρU,n)3

≤ 2

ρ3(1− ρ)3

for all n large enough, because ρL,n and ρU,n both converge to ρ. Thus, for all n large
enough, (16) is bounded above by

∣∣√n(ρn − ρ)− γ
∣∣ 2

ρ2(1− ρ)2

∞∑

k=1

(k + 2)αk−1

+ |γ||ρn − ρ| 2

ρ3(1− ρ)3

∞∑

k=1

(k2 + 4k + 5)αk−1,

which converges to zero as n tends to infinity. Hence we have shown that the right-hand
side of (14) converges to zero, i.e. the second term on the right-hand side of (13) converges
to zero.

The first term on the right-hand side of (13) is similar to that in Proposition 8 in Buch-
mann and Grübel (2003). Using similar methods to those used there, with η there replaced
by η above, and with easy minor resulting technical modifications in the details of the argu-
ment there, we obtain convergence of the first term on the right-hand side of (13) to zero,
and the proposition is proved. 2

Proof (of Theorem 2). We follow the proof of Theorem 2 in Buchmann and Grübel
(2003). Theorem 1 implies that

√
n(Gn − G) →D Z as n → ∞, where Z is a zero-mean

Gaussian process in (D[0,∞), ‖ · ‖∞).
The sample paths of Z are bounded and uniformly continuous with respect to L2(π)

(Levental (1988), Theorem 4.9), where π is the steady state distribution for the regenerative
process as given in (7). From Proposition 2 we can replace the corresponding distribution
function Fπ with G. Then, given ε > 0, there exists δ > 0 such that |G(s) − G(t)| < δ
implies that |Z(s)− Z(t)| < ε. Hence the sample paths of Z can only have discontinuities
at the jump points of G, and so the process Z is concentrated on the separable subspace of
D[0,∞) consisting of those functions that can only jump at those points where G jumps.

Let S be the linear continuous map that takes f in D[0,∞) onto (−f(0), f o)T in R ×
D[0,∞), where (x, f)T denotes the transpose of (x, f). The Continuous Mapping Theorem
(Pollard, 1984, IV.12) implies that

√
n

((
ρ̂n

Go
n

)
−
(

ρ
Go

))
→D

(
−Z(0)

Zo

)
, as n →∞,

with the limiting distribution being concentrated on a separable subset of R×D[0,∞).
The Skorohod representation theorem (Pollard, 1984, Section IV.3) then allows us to con-

struct a probability space (Ω†,F†, P †) carrying random quantities (ρ†n, G†
n)T and (W †, Z†)T
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such that (ρ†n, G†
n)T =D (ρ̂n, Go

n)T , (W †, Z†)T =D (−Z(0), Z0)T , and such that

√
n

((
ρ†n
G†

n

)
−
(

ρ
Go

))
→
(

W †

Z†

)
, as n →∞, (17)

in R×D[0,∞) with P †-probability one.
From (17) we have √

n
((

G†
n

)
−Go

)
→ Z† as n →∞, (18)

in
(
D[0,∞), ‖ · ‖∞

)
, and √

n
(
ρ†n − ρ

)
→ W † as n →∞,

with P †-probability one.
It is assumed in the statement of Theorem 2 that F̃e(τ) < 1/(2ρ), and so we have

G̃o(τ) < 1 − ρ. Further, ρ†n is in (0, 1) for all n large enough P †-almost surely. Thus the
conditions of Proposition 4 are satisfied eventually with P †-probability one, and so we have
P †-almost surely,

√
n
(
Λ(ρ†n, G†

n)− Λ(ρ, Go)
)

→ −W †Γ + Z† ? H, (19)

where

Γ =
∞∑

k=1

(−1)k+1π′k(ρ)
(
Go
)?k

, H =
∞∑

k=1

(−1)k+1kπk(ρ)
(
Go
)?(k−1)

.

Then we have convergence in distribution of the original sequences,
√

n
(
Λ(ρ̂n, Go

n)− Λ(ρ, Go)
)

→D A,

where A is a zero-mean Gaussian process, obtained by applying the linear bounded map
that takes f in D[0,∞) onto −f(0)Γ+f o ?H to the sample paths of Z. Using Proposition 3
for the definition of Λ, this gives

√
n
(
Fn,e − Fe

)
→D A,

where the process A is as given in the statement of the theorem. 2

7. Discussion

Buchmann and Grübel (2003) noted that their basic set-up could be generalized in several
ways. In the previous sections we have provided such a generalization towards sampled
regenerative processes. In particular we provide a method for decompounding geometric
sums. It is our belief that this brings the basic ideas of Buchmann and Grübel (2003) even
closer to real-life applications in e.g. control of queueing systems, infinite capacity models
and insurance mathematics.

When this is said, we have to acknowledge that in heavy and thin traffic we easily run
into danger in practice, as ρ̂n might be 1 or 0, respectively. This causes problems in (6).

A similar discussion arises with respect to the requirement that G̃0
n(τ) < 1 − ρ for the

convolution sum to be identifiable. Technically this is solved by noticing that things are
eventually satisfied for large n with probability one.

Besides the open problems stated in Section 4.1 and 4.2 regarding proving weak con-
vergence results for the proposed estimators of F one could consider ways of assessing the
quality of the proposed estimators. The authors will in a separate paper present methods
for obtaining confidence bands by bootstrap methods.
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