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Abstract—Previous results from our laboratory showed that

angiotensin II AT1 receptors (AT1-R) are involved in the neu-

roadaptative changes induced by amphetamine. The aim of

the present work was to study functional and neurochemical

responses to angiotensin II (ANG II) mediated by AT1-R acti-

vation in animals previously exposed to amphetamine. For

this purpose male Wistar rats (250–320 g) were treated with

amphetamine (2.5 mg/kg/day intraperitoneal) or saline for

5 days and implanted with intracerebroventricular (i.c.v.)

cannulae. Seven days after the last amphetamine adminis-

tration the animals received ANG II (400 pmol) i.c.v. One

group was tested in a free choice paradigm for sodium

(2% NaCl) and water intake and sacrificed for Fos immunore-

activity (Fos-IR) determinations. In a second group of rats,

urine and plasma samples were collected for electrolytes

and plasma renin activity determination and then they were

sacrificed for Fos-IR determination in Oxytocinergic neu-

rons (Fos-OT-IR). Results: Repeated amphetamine exposure

(a) prevented the increase in sodium intake and Fos-IR cells

in caudate-putamen and accumbens nucleus induced by

ANG II i.c.v. (b) potentiated urinary sodium excretion and

Fos-OT-IR in hypothalamus and (c) increased the inhibitory

response in plasma renin activity, in response to ANG II i.c.v.

Our results indicate a possible functional desensitisation of
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AT1-R in response to ANG II, induced by repeated ampheta-

mine exposure. This functional AT1-R desensitisation allows

to unmask the effects of ANG II i.c.v. mediated by oxytocin.

We conclude that the long lasting changes in brain

AT1-R functionality should be considered among the

psychostimulant-induced neuroadaptations. Published by

Elsevier Ltd. on behalf of IBRO.

Key words: AT1 receptors, angiotensin II, amphetamine,

sodium intake, natriuresis, oxytocin.

INTRODUCTION

The renin angiotensin system (RAS) in the brain is

involved in systemic blood pressure control, regulation

of cerebral blood flow, body fluids and mineral balance,

osmoregulatory homeostasis-associated behaviors such

as thirst and sodium intake (Blair-West et al., 1997;

Fitzsimons, 1998; Alova et al., 1999; de Gasparo et al.,

2000). Angiotensin II (ANG II) is a pleiotropic neuropep-

tide that activates AT1 receptors (AT1-R) and plays a

key role in mediating stress-induced responses including

regulation of sympathetic and neuroendocrine systems

(Saavedra et al., 2005). Moreover, there is a large body

of evidence to support the concept of a relationship

between brain ANG II and catecholamine systems

(Georgiev et al., 1985; Paz et al., 2013). ANG II AT1-R

are located in dopamine (DA)-rich brain areas

(Tchekalarova and Georgiev, 1998; Daubert et al.,

1999), such as the nucleus accumbens (NAc) and cau-

date putamen (CPu), which are strongly related to self-

administration and sensitisation to drugs of abuse

(White and Kalivas, 1998). Within dopaminergic neurons,

ANG II receptors are found on the soma and it has been

shown that AT1-R activation by ANG II facilitates the

release of DA in the rat striatum in vitro as well as

in vivo (Brown et al., 1996). In addition, intracerebroven-

tricular (i.c.v.) ANG II administration increases extracellu-

lar DA in the NAc which is related to ANG II-induced

drinking (Hoebel et al., 1994). Furthermore, studies in

mammals have demonstrated that i.c.v. ANG II adminis-

tration enhanced renal sodium excretion, water and

sodium intake (Fluharty and Manaker, 1983; Unger

et al., 1989; Ferguson et al., 2001), increased vaso-

pressin and oxytocin secretion and decreased plasma

renin activity (Weekley, 1992; Ferguson et al., 2001).

Psychostimulants produce persistent changes in cells

and neural circuits of reward, leading to long-term
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hypersensitivity of those systems which can be revealed

by the re-exposure to the same substance or to others,

as well as to stress (Robinson and Kolb, 2004; Kalivas,

2007). Moreover, repeated sodium depletion in rats, stim-

ulates cerebral and peripheral RAS, induces cross-

sensitisation to amphetamine, promotes sodium intake

and increases the dendritic branches and spines of med-

ium spiny neurons within the shell of the NAc (Roitman

et al., 2002; Clark and Bernstein, 2004). Previous results

from our laboratory showed that AT1-R are involved in the

neuroadaptative changes induced by a single exposure to

amphetamine; such changes are related to the develop-

ment of behavioral and neurochemical sensitisation

(Paz et al., 2011, 2013).

The induction of immediately early gene c-fos plays an
important role in transducing extracellular stimuli into

altered patterns of cellular gene expression and,

therefore, into long-term changes in cellular functioning.

Furthermore, it is a well-accepted marker of neuronal

activation, and this approach has been used to define

areas involved in the actions induced by amphetamine

since enhanced Fos expression in the CPu and NAc

was found after amphetamine administration (Rotllant

et al., 2010; Paz et al., 2013). In addition, Fos immunore-

activity (Fos-IR) data suggest that there might be a

shared neural circuitry among response systems impli-

cated in feeding, drugs of abuse and sodium appetite

(Clark and Bernstein, 2004). Since, i.c.v. ANG II induced

early gene-encoded protein synthesis, such as Fos in the

median preoptic area and in the paraventricular nucleus

(PVN), and supraoptic nucleus (SON) of the hypothala-

mus (Lebrun et al., 1995). Furthermore, the AT1-R antag-

onist, losartan i.c.v. prevented the ANG II-induced

immediately early gene protein expression in PVN and

SON (Lebrun et al., 1995).These regions are known to

be involved in the central osmoregulatory and neuroen-

docrine actions of ANG II.

Considering the described effects associated with

central administered ANG II, the aim of the present

study was to evaluate the possible alterations induced

by repeated amphetamine exposure in the responses to

i.c.v. ANG II mediated by AT1-R activation. The

parameters analyzed were: water and sodium intake,

plasma renin activity, sodium excretion, Fos-IR in CPu,

NAc, subfornical nucleus (SFO) and Fos and oxytocin

immunoreactivity in oxytocinergic neurons (Fos-OT-IR)

in SON and PVN.
EXPERIMENTAL PROCEDURES

Animals

Adult male Wistar rats (250–320 g) from our own colony

(Facultad de Ciencias Quı́micas, Universidad Católica

de Córdoba, Argentina) were employed. The rats were

maintained under controlled temperature (21 ± 1 �C)
and under 12-h light–dark cycle conditions (lights from

8:00 a.m. to 8:00 p.m.) with free access to tap water

and standard laboratory rodent chow (GEPSA rat chow:

Na+ content: 0.35%; K+ content: 0.96%). Rats were

housed in groups of five per cage. Seven days before

experimental tests, they were housed in individual cages
until the day of the test. All procedures were approved

by the Animal Care and Use Committee of the Facultad

de Ciencias Quı́micas, Universidad Católica de

Córdoba, Argentina, in accordance with the National

Institute of Health Guide for the Care and Use of

Laboratory Animals, 1996.

Drugs

D-amphetamine sulfate (Amphetamine, Sigma Chemical

Co., Saint Louis, MO, USA) and angiotensin II (ANG II,

Sigma Chemical Co.) were dissolved in 0.9% saline

(NaCl) immediately before use.

Experimental design

All experiments were performed 7 days after the last

amphetamine administration because the neuroadaptative

responses induced by the psychostimulant became

evident after this drug free period. A total of 77 animals

were randomly assigned to saline or amphetamine

treatments. Rats received D-amphetamine 2.5 mg/

kg/day or saline intraperitoneal (i.p.) for 5 days. On the

last day of amphetamine administration, all animals

were implanted with cannulae i.c.v. by stereotaxic

surgery and they were left undisturbed (drug free

period) in their home cages for 7 days. On the day after

(day 13 Scheme A) animals received ANG II (400 pmol)

i.c.v. and were randomly divided into two groups for: (a)

Drinking test and (b) Urine collection (Scheme A).

Stereotaxic surgery

The animals were anesthetized with an i.p. injection of

ketamine/xylazine (75/5 mg/kg body weight) and after

loss of corneal and pedal reflexes; they were positioned

on a stereotaxic apparatus. The guide cannulae (made

from BD Precision Glide Needles, 23 gauge, 11 mm in

length), were stereotaxically implanted bilaterally into

the cerebral ventricles according to the Paxinos and

Watson Atlas (Paxinos and Watson, 2009). Coordinates

for cannulae implantation were anteroposterior: 1.0 mm

from the bregma, lateral: 1.7 mm from the bregma and

vertical: 3.5 mm from the bregma (Paxinos and Watson,

2009) and they were fixed to the skull with acrylic cement

and stainless screws. Stainless steel stylets (made from

Dental Cartridge Needles, 30 gauge, 11 mm in length)

were inserted into the guide cannulae to prevent obstruc-

tion. After surgery, the rats were housed individually and

maintained undisturbed for recovery for 7 days. Upon

completion of each experiment all rats were sacrificed

and the sites of injections were verified microscopically.

Only the animals with right cannula position were consid-

ered for analysis.

Cerebral microinjection of ANG II

The rats were placed in the testing room, for habituation,

1 h before the beginning of the behavioral test. They were

gently wrapped in a cloth and manually restrained and

injected bilaterally into the lateral cerebral ventricles

using a 30-gauge stainless steel injection needle

attached to a 25-ll microsyringe (Hamilton Company,



Scheme A. Experimental design. Amph: amphetamine, Sal: saline, ANG II: angiotensin II, i.p.: intraperitoneal, i.c.v.: intracerebroventricular, Fos-

IR: Fos immunoreactivity, Fos-OT-IR: Fos-Oxytocin immunoreactivity.
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Reno, Nev, USA) by polyethylene tubing P20, inserted into

the guide cannulae (1.1 mm below the tip of the guide

cannulae). The animals received ANG II (400 pmol) i.c.v.

and immediately after they were tested for

sodium intake – Drinking test – (a) or placed in metabolic

cages for urine collection (b). The microinjections

were administered in a total volume of 4 ll/rat (2 ll in
each side were gradually injected for a period of 1 min)

into the lateral cerebral ventricles. The injection needles

were left in place for additional 20s to allow diffusion. The

dose was selected on the basis of preliminary reports

(Vento and Daniels, 2010; Zapparoli et al., 2011).
(a) Drinking test

The basal water and sodium intake were determined in all

animals after an i.c.v. injection of saline solution 1 day

before the test. Twenty-four hours later, the animals

received a microinjection of 4-ll ANG II i.c.v. Access to

two burets, one filled with water and the other filled with

2% NaCl solution were left available on the test cages.

The volume of water or 2% NaCl solution consumed was

measured at 10, 20, 30, 40, 50 and 60 min after i.c.v.

injections. Ninety minutes after the ANG II microinjection,

the animals were prepared for brain fixation for Fos

immunohistochemical detection (Scheme A).
(b) Urine collection

The rats received i.c.v. 4 ll ANG II (400 pmol) and they

were housed individually in metabolic cages with free

access to tap water without food. The urine was

collected in centrifuge tubes 2 h after the ANG II i.c.v. At

the end of the test, plasma samples were collected for

analysis and then animals were prepared for brain

fixation for Fos and oxytocin (OT) immunohistochemical

detection (Fos-OT-IR) (Scheme A).
Biochemical determinations in urine and plasma

Electrolytes were measured by selective ion method,

albumin by the bromocresol green colorimetric method,

total proteins by kinetic assay, creatinine by the Jaffé

method, urea by kinetic-UV assay and glucose levels by

using the enzymatic method with a hexokinase. All

these parameters were determined using an Automatic

Analizator Roche-Hitachi, Cobas c311. Plasma renin

activity was measured by Radioimmunoassay, using a

Gamma Coat Plasma Renin Activity 125I RIA Kit,

DiaSorin.
Staining procedure for Fos and Fos and oxytocin
immunohistochemistry

Ninety minutes after the ANG II microinjection

(immediately after the test), animals were anesthetized

with an i.p. injection of pentobarbital (50 mg/kg body

weight) and after loss of corneal and pedal reflexes they

were prepared for brain fixation for Fos or Fos-OT

immunohistochemical detection.

Fos-IR assay was performed in CPu, NAc core and

SFO, and Fos-IR-OT in PVN and SON. This approach

was selected because the increased Fos protein

synthesis, 1–2 h post-stimulation, is correlated with

increased neural activity in a wide range of neural

systems (Morgan and Curran, 1989; Nordquist et al.,

2008). The animals were anesthetized with pentobarbital

and perfused transcardially with 250 ml of normal saline

and heparin (200 ll/L) followed by 400 ml of 4%

paraformaldehyde in 0.1 M phosphate buffer (PB, pH

7.4). The brains were removed, fixed in the same solution

overnight and then stored at 4 �C in PB containing 30%

sucrose. Coronal sections of 40 lm were obtained using

a freezing microtome (Leica CM15105) and collected in

PB 0.01 M. They were placed in a mixture of 10% H2O2

and 10% methanol for 2 h. The free-floating sections were

incubated in 10% normal horse serum (NHS) (GIBCO,

Auckland, NZ, USA) in PB for 2 h to block non specific

binding sites. In all animals, free-floating sections were

first processed for Fos-IR using an avidin biotin-

peroxidase procedure. The staining procedures following

the double-labeling procedures were previously described

in Franchini and Vivas (1999), Franchini et al. (2002)). In

brief, the free-floating sections were incubated overnight

at room temperature in a rabbit anti-Fos antibody (pro-

duced in rabbits against a synthetic 14-amino acid

sequence, corresponding to residues 4–17 of human

Fos) (Ab-5; Oncogene Science, Manhasset, NY, USA),

diluted 1:10,000 in PB containing 2%NHS and 0.3% Triton

X-100 (Flucka, BioChemika, Sigma–Aldrich, Steinheim,

Switzerland). The sections were then rinsed with PB

0.01 M and incubated with biotin-labeled universal sec-

ondary antibody (diluted 1:500 in 2% NHS-PB), and

avidin–biotin-peroxidase complex (Vector Laboratories,

Burlingame, CA, USA; diluted 1:200 in 2% NHS-PB) for

2 h each at room temperature. The peroxidase label was

detected with diaminobenzidine hydrochloride (Sigma

Chemical Co.); the solution was intensified with 1% cobalt

chloride and 1% nickel ammonium sulfate. This method

produces a violet nuclear reaction product. The series of

Fos-labeled sections, also processed for OT immunohis-

tochemical localization, were incubated for 72 h at 4 �C
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with polyclonal rabbit anti-OT antibody (Peninsula Labora-

tories, San Carlos, CA, USA; 1:1000). After incubation, the

sections were rinsed and incubated with biotin-labeled

anti-rabbit immunoglobulin and the avidin–biotinperoxi-

dase complex for 1 h at room temperature. Cytoplasmic

oxytocin immunoreactivity (OT-IR) was detected with

unintensified diaminobenzidine hydrochloride which pro-

duces a brown reaction product. Finally, the free-floating

sections were mounted on gelatinized slides, air dried

overnight, dehydrated, cleared in xylene and placed under

a coverslip with DPX mountant for histology (Flucka, Bio-

Chemika, Sigma–Aldrich, Steinheim, Switzerland).

Cytoarchitectural and quantitative analysis

Images containing Fos-IR nuclei and Fos-OT-IR were

obtained using a computerized system that included a

Leica DM 4000B microscope equipped with a DFC

Leica digital camera attached to a contrast

enhancement device. The brain nuclei evidencing Fos-

IR were identified and delimited according to atlas of

Paxinos and Watson (Pelisch et al., 2011). The numbers

of Fos-IR nuclear profiles in the sections were counted at

one level; the distance from the bregma of the corre-

sponding plates is as follows: for dorsomedial region of

CPu = 1.6 mm and for NAc core = 1.6 mm.

The number of Fos-OT-IR-positive neurons were

counted in different PVN subnuclei, i.e., periventricular

magnocellular (PeM), anterior magnocellular (PaAM),

medial magnocellular (PaMM), the dorsomedial cap

(PaDC), lateral magnocellular (PaLM), and parvocellular

posterior (PaPo) (corresponding to plates with a

distance of �0.92 mm to �2.12 mm from bregma) and

for SON= -1.3 mm.

The brain sections were processed concurrently for

subjects across all groups. Images were standardized

using Adobe Photoshop image analysis program

(version 5.5). Counting of Fos-IR and Fos-OT-IR was

accomplished using IMAGE J software from the

National Institutes of Health (NIH). Threshold was fixed

between intervals of 0–150 in black and white

conditions; all higher values were considered

background. Fos-IR neurons were identified by dense

black staining of the nucleus and counted by setting a

size range for cellular nuclei (8 to 12 lm of diameter)

and IR-OT neurons were identified by dense brown

staining of cytoplasm. To count double-immuno labeled

cells Fos-OT-IR we took into account the presence of

both stains simultaneously.

The measurement for each brain area was done

bilaterally in two sections. The value obtained was the

average of the four counts. The counting was made on

a 0.37 mm2 area (corresponding to 200� magnification).

Since the size and section thickness of nuclei did not

change between experimental and control groups, any

systematic error could be identical for all groups. The

counting was made by two operators, on each section

analyzed, to ensure that the number of profiles obtained

was similar, but only one counting was used. Counting

of Fos-IR and Fos-OT-IR cells was performed blinded to

the observer.
Statistical analysis

The results are expressed as mean ± SEM, for groups of

animals measured individually. The t Test analysis was

used to assess the significance of differences, p < 0.05

was considered as statistically significant. All statistics

were performed with the use of Prism 6.0 software

(GraphPad Software for Science, San Diego, CA, USA).
RESULTS

Effect of ANG II i.c.v. on water and sodium intake,
natriuresis, plasma renin activity and Fos pattern in
the NAc core and CPu

The present report confirmed that ANG II (400 pmol)

injected into the lateral ventricle of conscious rats,

induces a significant increase in water and sodium

chloride intake, and natriuresis and decreases plasma

renin activity. These effects were described by many

researchers (Fluharty and Manaker, 1983; Unger et al.,

1989; Weekley, 1992; Fitzsimons, 1998; Ferguson

et al., 2001; Geerling and Loewy, 2008). In addition, in

the present work it was found that ANG II i.c.v. increase

Fos-IR in NAc core: 87.3 ± 10.7 vs. 26.5 ± 4.1 in control

animals (t= 4.43 p < 0.01, n= 6–4) and in CPu: 67.2

± 5.7 vs. 18.1 ± 2.6 in control animals (t= 6.6

p < 0.01, n= 6–4).
Effect of previous amphetamine exposure on ANG II
i.c.v.-induced water and sodium intake, plasma renin
activity and natriuresis
Effect of previous amphetamine exposure on ANG II
i.c.v.-induced water and sodium intake
The ANG II i.c.v. induced a similar increase in water

intake in all studied groups, 7 days after repeated

treatment, since no differences were found between the

amphetamine and saline groups (saline 9.49 ± 1.79

n= 10 vs. amphetamine 10.83 ± 1.92 n= 12; t Test:

t= 0.5041 p> 0.05).

Seven days after repeated amphetamine, the sodium

intake induced by ANG II was significantly lower than in

control group (saline) (Fig. 1A). (t Test: t= 3.006

p < 0.01).
Effect of previous amphetamine exposure on ANG II

i.c.v.-induced plasma renin activity
Repeated amphetamine exposure significantly decreased

plasma renin activity compared to control group when

analyzed 7 days after the last administration (Fig. 1B).

(t Test: t= 4.265 p < 0.001).
Effect of previous amphetamine exposure on ANG II

i.c.v.-induced natriuresis
Seven days after repeated amphetamine administration,

the natriuresis (2 h urine collection) induced by ANG II

i.c.v. was significantly higher in amphetamine than in

control (Fig. 1C). (t Test: t= 2.102 p < 0.05).



Fig. 1. Sodium intake (A), plasma renin activity (B) and natriuresis

(C) induced by ANG II i.c.v. (400 pmol/4 ll) (n= 11–13), 7 days after

amphetamine administration. The dotted line on the graph represents

the mean of the basal group with saline i.c.v. Values are mean

± SEM: *p < 0.05, **p < 0.01 and ***p < 0.001 significantly different

from saline group.
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Effect of previous amphetamine exposure on ANG II
i.c.v.-induced Fos pattern in the dorsomedial region
of CPu, NAc core and SFO

The ANG II i.c.v. induced a similar increase in Fos-IR cells

in SFO in all groups studied, 7 days after repeated

amphetamine or saline administration, since no

differences were found between groups (saline 63.08

± 11.37 n= 6 vs. amphetamine 65.43 ± 11.09 n= 7,

t Test: t= 0.1471 p> 0.05).

CPu: Repeated amphetamine exposure decreased

the number of Fos-IR cells compared to control group
(saline) in response to ANG II i.c.v. when analyzed

7 days after the last administration, in CPu (Fig. 2)

(t Test: t= 2.830 p < 0.05). Representative micro-

photographs are shown in Fig. 2.

NAc core: Seven days after amphetamine exposure, a

significant decrease was found in the number of Fos-IR

cells compared to control group in NAc core in response

to ANG II i.c.v (Fig. 3) (t Test: t= 2.563 p < 0.05).

Representative microphotographs are shown in Fig. 3.
Effect of previous amphetamine exposure on ANG II
i.c.v.-induced double-immuno labeled cells Fos-OT in
the SON and PVN

SON: Seven days after repeated amphetamine exposure,

a significant increase in the number of Fos-OT-IR-positive

neurons was observed compared to the control group in

response to ANG II i.c.v (Fig. 4) (t Test: t= 3.976

p < 0.01). Representative microphotographs are shown

in Fig. 4.

PVN: Repeated amphetamine exposure increased the

number of Fos-OT-IR-positive neurons compared to the

control group, in response to ANG II i.c.v when

analyzed 7 days after the last amphetamine

administration in the PaMM (Fig. 5) (t Test: t= 4.895

p < 0.001) and other subnuclei of PVN. Representative

microphotographs are shown in Fig. 5.
Urinary and serum parameters

No significant differences among groups (saline or

amphetamine) were found in creatinine, urea, chloride

and potassium in urine and albumin, total proteins,

creatinine, urea, chloride, potassium, sodium and

glucose in serum in response to ANG II i.c.v. 7 days

after amphetamine administration. No differences were

found in urine volume after ANG II i.c.v. or body weight

between groups (Table 1).
DISCUSSION

The main finding of the present work is that a previous

history of repeated amphetamine exposure is able to

modify the brain RAS responses in a long-lasting

manner. These alterations revealed by intracerebral

ANG II administration seem to involve the AT1-R

functionality.

It is known that brain ANG II regulates some

responses induced by drugs of abuse such as cocaine

and amphetamine (Hosseini et al., 2007; Watanabe

et al., 2010; Paz et al., 2011, 2013). It has been described

that ANG II can markedly potentiate DA release in CPu

projecting dopaminergic neurons involving pre- and

post-synaptic mechanisms (Mendelsohn et al., 1993;

Brown et al., 1996) and in NAc (Hoebel et al., 1994).

The AT1-R are located in these DA-innervated brain areas

(Daubert et al., 1999) and mediate the DA release

induced by ANG II (Georgiev et al., 1985; Brown et al.,

1996). The brain areas Cpu and NAc are strongly related

to self-administration, motivation, reward and behavioral

responses to drugs of abuse (White and Kalivas, 1998).



Fig. 2. Average number of Fos-IR neurons in dorsomedial region of CPu, in response to ANG II i.c.v. (n= 5–10), 7 days after amphetamine

exposure. The dotted line on the graph represents the mean of the basal group with saline i.c.v. Values are mean ± SEM: *p < 0.05 significantly

different from saline group. Schematic coronal slices indicating the region where the counting was done in CPu. Photomicrographs 200�
magnification showing the pattern of Fos-IR neurons after ANG II i.c.v. in CPu. Scale bar = 100 lm.

Fig. 3. Average number of Fos-IR neurons in NAc core in response to ANG II i.c.v. (n= 5–10), 7 days after amphetamine exposure. The dotted line

on the graph represents the mean of the basal group with saline i.c.v. Values are mean ± SEM: *p < 0.05 significantly different from saline group.

Schematic coronal slices indicating the region where the counting was done in NAc core. Photomicrographs 200�magnification showing the pattern

of Fos-IR neurons after ANG II i.c.v. in NAc core. Scale bar = 100 lm.

6 B. S. Casarsa et al. / Neuroscience 307 (2015) 1–13
There is evidence showing a cross-sensitisation

between sodium depletion (manipulation that strongly

activate RAS) and amphetamine or cocaine exposure,

since one treatment enhances the response to the other

(Clark and Bernstein, 2004; Acerbo and Johnson,
2011). This cross-sensitisation suggests that a common

neural substrate is involved in the two experiences. This

neural substrate is the mesolimbic dopaminergic system,

involved in mediating motivation and reward responses to

drug abuse and natural rewards (Stewart and Badiani,



Fig. 4. Average number of Fos-OT-IR neurons in SON in response to ANG II i.c.v. (n= 5–6), 7 days after amphetamine exposure. Values are

mean ± SEM: **p < 0.01 significantly different from saline group. Schematic coronal slices indicating the region where the counting was done in

SON. Photomicrographs 200�magnification showing the pattern of double immunoreactivity cells (Fos-OT) in the SON in response to ANG II i.c.v.,

7 days after amphetamine exposure. The images on the right are higher magnifications (400�) of the areas indicated in the left images (200�) and

images of the upper right boxes are higher magnifications (100�) of cells indicated in images 400�. Scale bar = 100 lm.
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1993; Lucas et al., 2000; Kelley and Berridge, 2002;

Roitman et al., 2002; Wise, 2002). Moreover, the sensiti-

sation of sodium appetite and thirst has been associated

with central actions of ANG II and Aldosterone

(Moellenhoff et al., 2001). In addition, the Spontaneous

Hypertensive Rats (SHR), in which the brain RAS compo-

nents are augmented, have alterations in the dopaminer-

gic neurotransmission (Hollister et al., 1974; McCarty

et al., 1980; Hynes et al., 1985; van den Buuse and de

Jong, 1989; Van den Buuse et al., 1992).

Circulating ANG II induces sodium retention by a

direct renal action as well as through aldosterone

release from the adrenal gland; meanwhile,

intracerebrally administered ANG II enhances natriuresis

(Fluharty and Manaker, 1983; Unger et al., 1989;

Ferguson et al., 2001) together with an increased water

and sodium intake (Fitzsimons, 1998; Geerling and
Loewy, 2008). However, it has been described that

ANG II has a dual effect through its AT1-R: one is direct

and stimulant on sodium intake (Buggy and Jonklaas,

1984; Moe et al., 1984), the other is indirect and inhibitor

on sodium intake, mediated by central activation of oxy-

tocinergic system (Fitts et al., 2005).
Water and sodium intake

In the present work, we first confirmed that ANG II

(400 pmol) injected intracerebrally in conscious rats,

produced a marked increase in water and sodium intake,

as well as and increased natriuresis. All these effects

have been previously described (Fluharty and Manaker,

1983; Unger et al., 1989; Fitzsimons, 1998; Ferguson

et al., 2001; Geerling and Loewy, 2008); however, the

results obtained in the present work show that previous



Fig. 5. Average number of Fos-OT-IR neurons in PaMM of PVN in response to ANG II i.c.v. (n= 5–6), 7 days after amphetamine exposure. Values

are mean ± SEM: ***p < 0.001 significantly different from saline group. Schematic coronal slices indicating the region where the counting was done

in PaMM. Photomicrographs 200� magnification showing the pattern of Fos-OT cells in the PaMM in response to ANG II i.c.v., 7 days after

amphetamine exposure. The images on the right are higher magnifications (400�) of the areas indicated in the left images (200�) and images of the

upper right boxes are higher magnifications (100�) of cells indicated in images 400�. Scale bar = 100 lm.
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exposure to repeated amphetamine administration modi-

fied the effects of ANG II i.c.v. on these parameters in a

long-term manner. A possible explanation for the altered

responses obtained in amphetamine-exposed animals

may involve the desensitisation of AT1-R through internal-

ization of these receptors (Hunyady et al., 2000). This is

based on the evidence showing that ANG II i.c.v. induces

internalization of AT1-R (Sasamura et al., 1994). In this

sense, after a persistent or repetitive stimulation of

AT1-R, a decrease in the response to ANG II (Tang

et al., 1995) was found. Moreover, it was shown that the

early inducible genes, c-fos, c-jun and delta-fos are
involved in the control of expression of transcription fac-

tors that ultimately mediate the desensitisation to the

ANG II signal (Moellenhoff et al., 2001).

In the present study, it was found that repeated

amphetamine exposure markedly decreased the sodium

intake induced by centrally administered ANG II

meanwhile water intake was unaffected. Sodium intake

behavior is likely to reflect the differential regulation of

intracellular signaling pathways. In this sense, it has

been hypothesized that differential AT1-R signaling

pathways play separable roles in water and saline

intake stimulated by ANG II (Daniels et al., 2005, 2007).



Table 1. Urinary and serum parameters, 7 days post-amphetamine. Creatinine, urea, chloride and potassium at urinary level; albumin, totals proteins,

creatinine, urea, chloride, potassium, sodium and glucose at serum; body weight and volume urinary. Parameters measured at 7 days post-

amphetamine, in response at ANG II i.c.v. Groups: Saline and amphetamine (n = 15–21). Values are expressed as mean ± SEM

Groups Body

weight (g)

Samples Vol.

urine

mL

Alb

g/dL

Prot

g/dL

Creat mg% Urea mg% Cl� mM K+ mM Na+

mM

Gluc

mg%

Sal 285.7

± 2.7

Plasma – 3.5

± 0.1

6.6

± 0.2

0.40 ± 0.02 47.4 ± 2.8 104.7 ± 1.9 5.47 ± 0.23 159.8

± 4.7

180.8

± 6.2

Urine

2 h

5.6

± 1.4

– – 29.4 ± 6.9 1651 ± 409 105.7 ± 25.6 94,8 ± 21,3 Fig. 1C –

Amph 286.8

± 2.5

Plasma – 3.6

± 0.2

6.7

± 0.3

0.39 ± 0.03 47.8 ± 2.6 105.7 ± 4.8 5.50 ± 0.19 162

± 5.4

174.0

± 20.6

Urine

2 h

5.9

± 1.2

– – 24.3 ± 5.9 1332 ± 319 103.7 ± 36.3 98,10 ± 18,6 Fig. 1C –

Scheme B. Effect of repeated amphetamine (Amph) exposure in the ANG II i.c.v. responses mediated by AT1-R. The described ANG II i.c.v.

responses were not observed and the effects of oxytocin in response to ANG II i.c.v. predominated. Open circles: described actions of Ang II i.c.v.

Closed circles: actions of Ang II i.c.v. after repeated amphetamine exposure. The symbols’ sizes indicate the influence of the condition (control/

Amph) in each response.
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There are results that support this hypothesis demonstrat-

ing that G protein-dependent pathways appear to be more

important for water intake stimulated by ANG II, whereas

G protein-independent pathways may be more relevant

for ANG II-stimulated sodium intake (Daniels et al.,

2009). In accordance to these results, repeated i.c.v.

ANG II administration reduced the dipsogenic effect with-

out affecting sodium intake (Vento and Daniels, 2010).

Based on the above-mentioned findings, a possible expla-

nation for our results could be that amphetamine expo-

sure alters the intracellular signaling pathway involved in

the effects of ANG II on sodium intake.

It has been shown that exogenous i.c.v. ANG II

administration stimulates OT release from the pituitary

gland (Lang et al., 1981; Ferguson and Kasting, 1988).

Several treatments that chronically increase sodium

intake (e.g., sodium deprivation, adrenalectomy, and de

oxycorticosterone-DOCA-injections) decrease basal OT

levels meanwhile treatments that stimulate OT secretion

(e.g., hypertonic saline, lithium chloride, and copper sul-

fate) inhibit sodium intake in sodium-deprived rats

(Stricker and Verbalis, 1987, 1996; Blackburn et al.,

1992). Additionally, blockade of central OT-receptors

before i.c.v. ANG II administration, resulted in a three to

fourfold potentiation of ANG II-induced sodium intake.

However, in the absence of exogenously administered

ANG II, blockade of OT-receptors does not interfere with
the dipsogenic properties of ANG II, nor stimulates

sodium intake (Blackburn et al., 1992). Though, other

researchers found a slight increase in water and sodium

intake in rats induced by intracerebral administration of

OT-receptor antagonist (Fitts et al., 2003). In addition,

losartan, a selective AT1-R antagonist, blunted sodium

intake induced by the OT-receptor antagonist administra-

tion in rats (Fitts et al., 2005). This supports the idea of an

inhibitory oxytocinergic tone involving the activation or

disinhibition of AT1-R (Fitts et al., 2005).

In the present work, the decreased sodium intake

responses to ANG II i.c.v. found 7 days post-repeated

amphetamine, reveals a long-lasting effect of

amphetamine exposure. Based on the response

outlined above, it is possible to suggest that the

decreased response in sodium intake induced by ANG II

i.c.v. in amphetamine-exposed animals could be

attributed to an increased OT response to ANG II as a

consequence of AT1-R altered functionality. This

hypothesis is supported by our results showing

quantification of Fos-OT-positive neurons discussed

below.
Expression of Fos and Fos-OT

Forebrain areas, such as the SFO and the PVN, are

known to be involved in osmoregulation and
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predominately express AT1-R (Saavedra, 1992; Phillips

et al., 1993). The experience with sodium depletion

enhances sodium intake and Fos-IR in SFO, PVN and

NAc (central structures implicated in sodium appetite

and reward signaling) (Voorhies and Bernstein, 2006;

Na et al., 2007). In our laboratory, we found that ANG II

i.c.v. induced an increase of threefold in NAc and CPu

of Fos-IR with respect to the control group. Furthermore,

the AT1-R may mediate the expression of Fos in SFO and

PVN, after a single ANG II i.c.v. injection (Lebrun et al.,

1995; Blume et al., 1997). In contrast, repeated ANG II

i.c.v. administration (for 7 days) induced a decline of

50% in Fos expression in SFO and PVN and increased

AT1-R expression in these brain areas (Moellenhoff

et al., 2001). This phenomenon could be explained by

AT1-R desensitisation caused by the sustained ANG II

binding and the consequent reduction of the cell surface

expression of AT1-R. This specific reduction of AT1-R

expression could not be visualized by these authors,

due to the methods used (immunohistochemistry or Wes-

tern blot) without tracking of receptors’ localization

(Moellenhoff et al., 2001).

On the other hand, it has been described that

amphetamine and cocaine induced an over expression

of Fos-IR cells in CPu and NAc, as well as other

alterations in cellular activity (Graybiel et al., 1990;

Young et al., 1991; Vanderschuren et al., 2002;

Nordquist et al., 2008; Larson et al., 2010; Rotllant

et al., 2010; Paz et al., 2013). A single cocaine injection

increased Fos-IR in NAc, however, a long-term reduction

of the Fos signal was observed with chronic cocaine

administration (Hope et al., 1992). In the present investi-

gation, the neuronal activation, measured as Fos-IR in

CPu and NAc core showed a decreased response to

ANG II i.c.v. after repeated amphetamine exposure. This

decreased response could evidence an AT1-R desensiti-

sation induced by repeated amphetamine administration.

In this sense, a desensitisation reduced Fos expression

has been described as a consequence of repetitive

ANG II i.c.v. administration in different brain areas that

co-expressed AT1-R (Moellenhoff et al., 2001). Interest-

ingly, these results are in agreement with those obtained

with the decreased response in sodium intake to ANG II

i.c.v. This supports the hypothesis that AT1-R are involved

in the long-lasting effects induced by amphetamine.

Contrarily, amphetamine exposure did not affect the

number of Fos-IR neurons in SFO and also reduced

sodium intake without altering water intake induced by

central ANG II administration, suggesting that SFO is

related to water intake rather than sodium intake, as it

was reported by the work of Fitzsimons (Fitzsimons,

1998).

Most SON neurons produce either oxytocin or

vasopressin and project to the neural lobe.

Although vasopressinergic neurons slightly outnumber

oxytocinergic neurons, the large size of the SON

relative to the PVN makes it quantitatively the most

important site for the production of both hormones

(Gimpl and Fahrenholz, 2001). The PVN is cytoarchitec-

tonically complex, but the majority of PVN neurons send-

ing axons to the neural lobe of the pituitary lie in two
contiguous groups: the PaMM contains mostly oxytocin-

ergic neurons, the PaLM contains primarily vasopressin-

ergic neurons (except for a ring of OT neurons that lies

around the densely packed PaLM) (Gimpl and

Fahrenholz, 2001).

It has been shown that ANG II i.c.v. activates OT

neurons in PVN and SON (Lang et al., 1981; Ferguson

and Kasting, 1988; Blackburn et al., 1992). In the present

study, the repeated amphetamine administration potenti-

ated the activation of OT neurons induced by ANG II i.c.v.

in different oxytocinergic subnuclei of PVN and SON, pos-

sibly evidencing an increased OT response to ANG II

as a consequence of the reduced AT1-R functionality

mentioned above.
Natriuresis and plasma renin activity

It has been described that central endogenous ANG II can

activate AT1-R located in brain areas involved in the

regulation of peripheral sympathetic nerve activity. In

this sense, losartan i.c.v. administration decreased

basal renal sympathetic neural activity (RSNA) (DiBona,

2000).

The mechanisms by which ANG II i.c.v. induces

natriuretic effects remains to be elucidated and several

possibilities could be considered. First, the central

nervous system may directly influence renal sodium

excretion through neural routes because a decrease in

RSNA induced by ANG II i.c.v. has been shown to be,

mediated by the AT1-R (Kannan et al., 1991; McKinley

et al., 2001). Second, the natriuresis induced by ANG II

i.c.v. could be mediated through brain oxytocin release

(Verbalis et al., 1991); this increases the atrial natriuretic

peptide (ANP) excretion from the heart (Haanwinckel

et al., 1995; McCann et al., 2003). The ANP via renal-

specific receptor increases urinary GMPc, the hydrostatic

pressure in the glomerulus and promote sodium excretion

(McCann et al., 2003). In the present study, amphetamine

administration potentiated the ANG II i.c.v. natriuretic

effect.

The ANG II i.c.v. activates AT1-R and induces a

decrease in plasma renin activity (Weekley, 1992;

McKinley et al., 1994). In the present work, we observed

that amphetamine-exposed rats presented a higher

decrease in plasma renin activity in response to ANG II

i.c.v. than in controls. Taken together our results suggest

that the decreased response in plasma renin activity

results from alterations in brain areas associated with

RSNA which are controlled by endogenous ANG II. How-

ever, it has been also described that ANP decreases the

plasma renin activity (Antunes-Rodrigues et al., 2004).

Moreover, the increased natriuresis and decreased

sodium intake induced by ANG II i.c.v. in

amphetamine-exposed animals could be due to an

increased OT response to ANG II as a consequence of

altered AT1-R functionality. ANG II i.c.v. is known to

stimulate OT neurons through AT1-R activation. In this

sense, a dual effect has been described: whereas ANG

II i.c.v. via AT1-R stimulates sodium intake and also

inhibits sodium intake and stimulates natriuresis via OT

neurons activation.
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Conclusions

The repeated amphetamine exposure could reduce

AT1-R functionality (desensitisation-like) evidenced as a

potentiated oxytocinergic response to ANG II i.c.v. that

elicits a decrease in sodium intake, increase natriuresis

and decreased plasma renin activity. These results

are also supported by the increased number of

Fos-OT-IR neurons in PVN and SON in response to

ANG II i.c.v. found in the amphetamine-exposed group

(see Scheme B).
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