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Summary: The immune system has evolved sophisticated mechanisms
composed of several checkpoints and fail-safe processes that enable it to
orchestrate innate and adaptive immunity, while at the same time
limiting aberrant or unfaithful T-cell function. These multiple regulatory
pathways take place during the entire life-span of T cells including T-cell
development, homing, activation, and differentiation. Galectin-1, an
endogenous glycan-binding protein widely expressed at sites of inflam-
mation and tumor growth, controls a diversity of immune cell processes,
acting either extracellularly through specific binding to cell surface glycan
structures or intracellularly through modulation of pathways that remain
largely unexplored. In this review, we highlight the discoveries that have
led to our current understanding of the role of galectin-1 in distinct
immune cell process, particularly those associated with T-cell homeostasis.
Also, we emphasize findings emerging from the study of experimental
models of autoimmunity, chronic inflammation, fetomaternal tolerance,
and tumor growth, which have provided fundamental insights into
the critical role of galectin-1 and its specific saccharide ligands in
immunoregulation. Challenges for the future will embrace the rational
manipulation of galectin-1-glycan interactions both towards attenuating
immune responses in autoimmune diseases, graft rejection, and recurrent
fetal loss, while at the same overcoming immune tolerance in chronic
infections and cancer.

Keywords: galectin-1, glycosylation, autoimmunity, tumor-immune escape, tolerance,
inflammation

Galectin–glycan interactions as novel regulatory

checkpoints in immune-cell homeostasis

Complex strategies have evolved in mammals that serve to

orchestrate immune responses to respond to pathogenic

infections and to prevent tumor growth. A failure to mount a

protective response can result in increased susceptibility to

microbial invasion or neoplastic transformation, while the

inability to shutdown exuberant inflammatory responses can

lead to devastating pathological conditions (1–3). Several

interwoven mechanisms have been proposed to control the

magnitude of immune responses, to limit the extent of tissue

damage, and to restore peripheral tolerance. These include a



number of receptors, cytokines, and inhibitory pathways,

which may act in concert during the lifespan of immune cells

to achieve homeostasis (1–3). Remarkably, dysfunction of

these regulatory pathways may result in a diversity of inflam-

matory and autoimmune conditions. Conversely, aberrant

activation of these counter-regulatory mechanisms may

represent a significant hurdle for the generation of specific

immunity to malignant tumors and chronic infectious

pathogens (3).

Galectins, a conserved family of glycan-binding proteins,

have emerged as pleiotropic regulators of innate and adaptive

immune responses (4, 5). Members of this family share a con-

sensus amino acid sequence and a carbohydrate-recognition

domain (CRD) that is responsible for their b-galactoside-

binding activity (4, 6). To date, 15 galectins have been

identified in mammals, which have been classified on a

structural basis into three different subfamilies: (i) the

‘proto-type’ galectins (galectin-1, -2, -5, -7, -10, -11, -13, -14,

and -15) that have one CRD and can dimerize; (ii) ‘tandem

repeat-type’ galectins (galectin-4, -6, -8, -9, and -12) that

contain two different CRDs separated by a linker of up to 70

amino acids, and (iii) the ‘chimera-type’ galectin-3 that

contains a CRD connected to a non-lectin N-terminal region

(4, 7). While some members of the galectin family such as

galectins-1 and -3 are distributed in a wide variety of tissues,

others such as galectins-10 and -12 have a more restricted

localization (4). Some members of the galectin family,

particularly those secreted in a soluble form, can signal

immune cells through multivalent recognition of cell surface

carbohydrate structures, either by forming ordered arrays

termed ‘lattices’ or through direct ligand–receptor interactions

(7–10). A typical galectin CRD commonly recognizes poly-N-

acetyllactosamine [-3Galb1-4GlcNAcb1-]n (polyLacNAc)

sequences on cell surface glycoconjugates, although consider-

able variations have recently been described among the glycan

specificities of different members of the galectin family

(9, 11, 12). These critical differences, which are chiefly

associated with the multiplicity of LacNAc residues, the extent

of N-glycan branching, and ⁄or the modification of terminal

saccharides (i.e. sialylation or fucosylation) (9, 11, 12), might

offer a possible explanation for the different and some times

contrasting functions of these glycan-binding proteins during

an inflammatory response.

Galectins do not have the signal sequence required for the

classical secretion pathway involving transport through the

endoplasmic reticulum and Golgi apparatus; yet these proteins

are released in high quantities into the extracellular milieu

(6, 13). Although the mechanisms underlying this secretory

pathway are still uncertain, mutant cell lines which are defi-

cient in the biosynthesis of galectin-1 saccharide ligands have

impaired secretion of galectin-1 (14). Interestingly, it has

been speculated that galectin-1 counter receptors may act

either at the intracellular level by recruiting cytoplasmic galec-

tins to the non-classical export pathway or at the extracellular

level by exerting a pulling force to promote directional trans-

port of galectins across the plasma membrane (15). Despite

this complex scenario, it is still uncertain why galectins are

preferentially found in the extracellular compartment, in spite

of the fact that their structure suggests that they were designed

to be intracellular proteins. From an evolutionary standpoint,

it was speculated that galectins were designed to play intracel-

lular roles but then acquired extracellular activity with the

appearance of multicellular organisms (16, 17).

While other endogenous lectins, including C-type lectins

and Siglecs control immune cell homeostasis through cell–cell

contact-dependent interactions (18–21), some members of

the galectin family, including galectin-1, function as soluble

mediators which act in an autocrine or paracrine fashion to

convey glycan-containing information into distinct transmem-

brane signaling events (22, 23). By triggering multivalent

interactions with cell surface glycoconjugates, galectins can

regulate immune cell trafficking, activation, cytokine secre-

tion, and apoptosis. However, galectins can also regulate

intracellular processes including pre-messenger RNA (mRNA)

splicing, cell-cycle progression, and survival through still

poorly understood mechanisms involving either protein–

protein or protein–saccharide interactions (4). The capacity of

galectins to modulate such a broad range of biological

processes is supported by their considerable plasticity within

intracellular and extracellular microenvironments, as well as

their capacity to establish multivalent interactions with a

repertoire of glycan structures displayed on an assortment of

cell surface glycoconjugates (7, 24). In this regard, the galec-

tin family appears to be much more conservative than other

families of glycan-binding proteins (e.g. C-type lectins), as

they exhibit a more restricted glycan specificity, with multiple

tasks handled by a limited number of family members (16).

Galectin-1 as a new player on the scene of

immunoregulation: from biochemistry to physiology and

back again

Galectin-1, a prototypical member of the galectin family, was

discovered more than 20 years ago as a b-galactoside-binding

lectin of 14.5 kDa with hemagglutinating activity (25). Since

then, several studies have identified and characterized galec-

tin-1 in many different tissues of several species, demonstrat-
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ing its widespread distribution in the animal kingdom. How-

ever, it was only in the last decade that this endogenous lectin

appeared in the center of the scene as a fine-tuner of innate

and adaptive immune responses (24).

Within the immune system, galectin-1 is synthesized and

secreted by activated but not resting T and B cells (26–29),

and it is significantly upregulated in activated macrophages,

CD4+CD25+ regulatory T cells (Tregs) and decidual natural

killer (NK) cells (30–34). This regulated secretion and prefer-

ential localization suggests a candidate function for galectin-1

in negative regulation of effector T-cell responses. Remark-

ably, expression of galectin-1 is abundant in immune privi-

leged sites such as placenta (34–37), testis (38, 39), and

retina (40, 41) and is significantly altered (up or downregu-

lated) during several pathological conditions including cancer,

infections, and autoimmunity (42–47).

Understanding the biochemical and biophysical features of

galectin-1 is of critical importance for the further dissection of

its immunoregulatory functions. Galectin-1 can be found as a

monomer as well as a non-covalent homodimer composed of

subunits of 14.5 kDa, each containing an identical CRD which

is characterized by its specificity for poly-LacNAc structures

displayed on both N- and O-glycans (48, 49). The presence of

more than one CRD in a galectin-1 homodimer makes it well-

suited for mediating cell–cell and cell–matrix interactions,

triggering intracellular signaling, and forming lattices (7, 8).

Yet, galectin-1 exhibits unique biochemical properties which

make its functional analysis even more complex. This protein

contains unpaired cysteine residues in the CRD that, in the

absence of carbohydrate binding activity, can form intramo-

lecular disulfide bonds and thereby diminish its known

biological functions (48). This is probably one of the most

challenging obstacles to overcome before considering galec-

tin-1 as a potential therapeutic target. In this regard, a recent

study has provided a connection linking these biochemical

features, demonstrating that glycan recognition partially pro-

tects galectin-1 from oxidative inactivation and enhances

galectin-1 dimerization (10). However, if optimal galectin-1

activities are imposed by a reducing microenvironment, a still

unanswered question is why galectin-1 is preferentially local-

ized to the extracellular milieu where the risk of oxidative

inactivation is extremely high. In addition, another particular

feature of galectin-1, which also characterizes other members

of the galectin family, relates to the divergent functions of this

protein, as galectin-1 may act either as a pro-survival signal or

pro-apoptotic factor in different cell types and likewise may

display either pro- or anti-inflammatory effects in different

microenvironments. Hence, challenges for the future will

include a thorough analysis of the interplay between

biochemical and biophysical features of galectin-1 and its

immunological effects in different tissues, as well as the

relevance of different physicochemical parameters in regulat-

ing galectin-1 functions in physiological and pathological

settings. These include but are not limited to (i) the influence

of oxidative versus reducing microenvironments in regulating

galectin-1 activity (10), (ii) the contextual regulation of

galectin-1–glycan interactions (e.g. prevalence of cytokines,

temperature, pH at sites of inflammation, etc) (50–53), (iii) a

careful analysis of the specificity of galectin-1 toward complex

glycans at physiological concentrations and re-examination of

its avidity for common glycoconjugates (9, 54, 55), (iv) the

levels of galectin-1 attained in vivo in physiological and patho-

logical settings (56), and (v) the independent and often con-

trasting functions exerted by monomeric or dimeric forms of

this protein (57–59). In addition, it is of critical importance

to discriminate between the prevailing extracellular or intra-

cellular activities of galectin-1 in vivo. Thus, a multidisciplinary

approach connecting the expertise of biochemists, glycobiolo-

gists, and immunologists is essential to establish a definitive

role of endogenous galectin-1 during the development and

resolution of immune responses.

In the present review we dissect the functional significance

of galectin-1–glycan interactions in key regulatory processes

involved in T-cell physiology, including T-cell survival,

signaling, cytokine secretion, and migration. In addition, we

underscore the emerging role of galectin-1 as a critical media-

tor of the immunosuppressive activity of Tregs (Fig. 1). Lastly,

we highlight the landmarks which set the basis for postulating

galectin-1 as a novel therapeutic target, particularly the role of

this glycan-binding protein in delineating an immunosup-

pressive microenvironment at the maternal-fetal interface, its

ability to restore T-cell tolerance in inflammatory and autoim-

mune disorders, and the pitfalls of its role in hampering

T-cell-dependent immunity in neoplastic settings.

Regulatory checkpoints targeted by galectin-1 during

the lifespan of T cells

Regulatory checkpoint 1: control of T-cell survival

Apoptotic mechanisms are critical to regulate the development

and shaping of the T-cell repertoire in the thymus (60). More-

over, they are at the heart of peripheral tolerance, serving to

control self-reactive T cells, restore T-cell number following

execution of effector functions, and prevent immune-mediated

pathology. Several regulatory pathways may act in concert

to regulate T-cell death programs including endogenous
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glucocorticoids and T-cell receptor (TCR) signals within the

thymic microenvironment, as well as members of the tumor

necrosis factor receptor (TNFR) family within the peripheral

compartment (60). Genetic disruption of these pathways

leading to the occurrence of autoimmune pathology has

provided critical insights into the role of apoptosis in

peripheral T-cell homeostasis (61).

Considerable evidence has been accumulating regarding the

role of galectin-1 in the control of T-cell viability along the

whole lifespan of T cells from developing thymocytes to

activated and fully-differentiated effector T cells (28, 31, 34,

62–79) (Fig. 1). T-cell susceptibility to galectin-1-induced cell

death may be regulated at least at three distinct levels. First,

galectin-1 sensitivity may be influenced by the presence of

specific glycoprotein receptors. Interestingly, while many cell

surface glycoproteins contain substantial amounts of LacNAc

glycans, galectin-1 binds to a restricted set of T-cell surface

glycoproteins (i.e. CD45, CD43, CD2, CD3 and CD7) (64, 73,

80). Of these, CD7 appears to be essential for galectin-1-

induced cell death (81) and Sezary cells, the malignant T cells

in mycosis fungoides that lack CD7 expression are resistant to

the pro-apoptotic effects of this protein (82, 83). Of note,

galectin-1 binding to T cells induces redistribution of specific

glycoproteins into membrane microdomains, thus allowing

signaling and activation of specific downstream effectors mol-

ecules (64). On the other hand, galectin-1 binding is limited

to those cells that are able to generate specific saccharide

ligands by expressing a set of particular glycosyltransferases

responsible of creating or modifying cell surface glycoconju-

gates. In this regard, cell death triggered by galectin-1–glycan

Fig. 1. Regulatory effects of galectin-1 at different checkpoints during the lifespan of T cells. Galectin-1–glycan interactions may influence T-cell
physiology through modulation of a variety of regulatory checkpoints including T-cell survival, TCR-mediated signaling, T-cell trafficking, and
cytokine secretion. These cellular processes take place along the entire lifespan of T cells including T-cell development in the thymic compartment,
activation and differentiation into effector or regulatory T cell subsets in secondary lymphoid organs, and execution or regulation of effector T-cell
functions in peripheral tissues. ERK, extracellular signal regulated kinase; TCR, T-cell receptor; Th, T-helper; Treg, regulatory T cells.

Rabinovich & Ilarregui Æ Control of T-cell homeostasis by galectin-1

� 2009 John Wiley & Sons A/S • Immunological Reviews 230/2009 147



interactions involves the expression and activity of the core 2

b-1,6 N-acetylglucosaminyltransferase (GCNT1) (66), an

enzyme responsible of creating the core 2 branch on O-gly-

cans, thus allowing the exposure of poly-N-acetyl-lactosamine

sequences, which are the preferred saccharide ligands of

galectin-1. In this regard, lymphoma T cells lacking core-2-O-

glycans are resistant to galectin-1-induced cell death (84).

Moreover, T-cell susceptibility to galectin-1-induced death

may be also determined by the expression of the a2,6-sialyl-

transferase (ST6Gal1), which is responsible for the addition of

sialic acid in a2,6 position of terminal galactose. Increased

ST6Gal1 activity results in masked galactose residues on T-cell

surface glycoproteins which are no longer able to bind

galectin-1, thus rendering T cells resistant to cell death (85).

However, a given glycosylation profile is not always permis-

sive or restrictive for galectin-1 as CD45+ T cells lacking

GCNT1, which are not able to generate core 2-O-glycans, are

resistant to galectin-1-induced cell death (66), while galectin-1

binds to CD43 modified with either unbranched core 1 or

branched core 2 O-glycans (86). In this regard, previous work

claimed that GCNT1 activity may not account for galectin-1-

mediated contraction of the CD8 T-cell compartment, as

neither galectin-1 binding nor cell death was altered in CD8+

T cells lacking GCNT1 (87). Thus, a given glycosylation

profile may impact differently on galectin-1-mediated effects

depending on the cell type and the target glycoprotein impli-

cated. These apparent discrepancies and experimental differ-

ences remain to be reconciled in future work.

Interestingly, N- and O-glycosylation can dramatically

change all the way through the lifespan of T cells (18, 19),

thus allowing or restricting binding of galectin-1. This effect

is clearly evident during T-cell development (63), activation

(88) and T-helper cell differentiation (76). In addition, galec-

tin-1-induced death may be controlled by upstream or down-

stream intracellular events, which may amplify or prevent the

apoptotic signal triggered by this protein. In this regard, a

functional cross-talk has been reported between different

members of the galectin family, as expression of intracellular

galectin-3 rendered T cells resistant to galectin-1-induced cell

death (69, 89). Hence, the susceptibility to galectin-1 is

tightly controlled by the selective expression of a preferred set

of glycoreceptors, the spatiotemporal expression, and activity

of different glycosyltransferases creating or masking specific

galectin-1 ligands, and the activation or silencing of intracel-

lular pathways.

The signal transduction events that lead to apoptosis

induced by galectin-1 involve several intracellular mediators

of apoptosis, including in some cases induction of specific

transcription factors [i.e. activator protein 1 (AP-1)] and

modulation of B-cell leukemia ⁄ lymphoma 2 (Bcl2) protein

expression (28, 65, 72, 90), sphingomyelinase-mediated

release of ceramide (70, 72), and the involvement of proximal

signals such as lymphocyte protein tyrosine kinase (p56lck)

and f-chain-associated protein kinase of 70 kDa (ZAP70) (91).

In addition, galectin-1 triggers a cell death program which

involves mitochondrial morphogenetic changes including

mitochondrial coalescence, budding, and fission (70). Yet, a

still unresolved issue is whether galectin-1-induced death

involves activation of a caspase-dependent or independent

pathways. While some studies found induction of apoptosis

through Fas (TNFR superfamily member 6)-, cytochrome

c-, and caspase-independent mechanisms (69), others

demonstrated the ability of galectin-1 to trigger activation of

caspases-9 and -3 (72) and sensitize T cells to a Fas ⁄ caspase-

8-mediated apoptotic pathway (28, 70, 78).

In spite of considerable efforts toward elucidating the

intricate mechanisms involved in galectin-1-mediated death,

the physiological relevance of this biological effect is less

understood. While galectin-3 selectively kills CD4)CD8)

thymocytes, galectin-1 deletes double negative and double

positive thymocytes with equal efficiency (73), suggesting the

potential involvement of this protein as a pro-apoptotic signal

in thymocytes who fail to survive positive selection and those

undergoing negative selection. In addition, the preferential

expression of galectin-1 in activated but not resting T cells

(26, 27), suggests a potential autocrine inhibitory mechanism

by which galectin-1 may blunt T-cell responses after the

completion of an immune response. These interesting func-

tions of galectin-1 during T-cell development and activation

still remain to be fully elucidated in in vivo settings.

In this regard, we have provided a proof-of-concept of the

critical role of endogenous galectin-1 in the control of

T-helper cells in antigen-specific and inflammatory settings.

Using in vitro and in vivo experiments, we found a link between

differential glycosylation of T-helper cells, susceptibility to

galectin-1-induced cell death, and termination of the inflam-

matory response (76). While T-helper type 1 (Th1)- and

Th17-differentiated cells expressed the repertoire of cell

surface glycans that are critical for galectin-1 binding and cell

death, Th2 cells were protected from galectin-1 through

differential a2,6 sialylation of cell surface glycoproteins (76).

Remarkably, in vivo-differentiated antigen-specific T-helper

cells (i.e. Th1 cells generated in vivo by dendritic cells pulsed

by the bacteria Propionibacterium acnes and Th2 cells driven by

dendritic cells pulsed with Schistosoma mansoni egg antigen)

displayed comparable glycophenotypes and susceptibility to
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galectin-1 as in vitro human polarized T-helper cells (76).

Accordingly, galectin-1-deficient mice showed greater Th1

and Th-17 responses and enhanced susceptibility to autoim-

mune brain inflammation than their wildtype counterpart

(76), demonstrating the critical role of endogenous galectin-1

in controlling T-cell homeostasis. Collectively, these data indi-

cate that differential glycosylation of cell surface glycoproteins

can selectively control the survival of T-helper cells by modu-

lating their susceptibility to galectin-1. In line with this

evidence, Motran et al. (89) showed that Th2 cells can promote

Th1 cell apoptosis through secretion of galectin-1, suggesting

a lectin-dependent mechanism of cross-regulation between

distinct T-helper subsets. Furthermore, recent studies, using

in vivo injections of recombinant galectin-1 in NOD diabetic

mice, confirmed the ability of galectin-1 to eliminate

selectively Th1 and Th17 effector cells, while sparing Th2 cells

(92). Likewise, CD8+ T cells also appeared to be sensitive to

galectin-1-induced immunoregulation as shown in autoim-

mune and cancer settings (92, 93).

In contrast to the pro-apoptotic effects of galectin-1 on acti-

vated T cells, Endharti et al. (71) demonstrated that secretion

of this protein by lymph-node stromal cells supports the sur-

vival of naive T cells without promoting their proliferation.

Hence, in addition to the unique biochemical features of

galectin-1 and its regulated expression, the immunoregulatory

effects of galectin-1 may be also controlled by extrinsic factors

including the nature of target T cells (i.e. whether they are

naive, activated, or effector T cells). In addition, Stowell et al.

(94, 95) claimed that in the absence of a reducing agent such

as dithiotreitol (DTT), galectin-1 does not alter the viability of

T cells. To eliminate the potential confounding effects of DTT

on cell viability, the authors stabilized the protein using the

alkylating agent iodoacetamide, and verified that, under these

conditions, galectin-1 did not affect T-cell apoptosis, but still

retained biological activity toward T cells to favor the synthe-

sis of interleukin-10 (IL-10) (95). These results suggested

caution in the assignment of intrinsic pro-apoptotic activities

to galectin-1 independent of extrinsic factors, including the

surrounding microenvironment. In this regard, the demon-

stration of galectin-1 effects in vivo at sites of inflammation,

where the risk of oxidative inactivation is high, is of critical

importance to understand the mechanisms used by galectin-1

to overcome oxidative inactivation, while keeping its biologi-

cal activities. Specifically, it is worth mentioning that the

thiol-redox state of lymphoid organs or peripheral tissues is

dramatically altered during ongoing T-cell responses (96)

suggesting that endogenous galectin-1 might trigger T-cell

death depending on the fluctuations of the redox state in

inflammatory or tolerogenic microenvironments. Thus, while

putting forward galectin-1 as a potential candidate for thera-

peutic manipulation (see below), efforts are being made to

overcome these drawbacks, including the design of leucine-

zipper based or covalently linked stable galectin-1 homodi-

mers (67, 97) as well as the generation of cysteine-free

mutants of galectin-1, obtained by substituting all cysteines

with serine residues (98). Of interest these variants can signal

T cells, suppress T-cell proliferation, induce T-cell apoptosis,

or modulate cytokine production with equal or even more

potency than wildtype recombinant galectin-1. However,

despite considerable advances, more work is still necessary to

address the role of endogenous galectin-1 in the regulation of

apoptosis in vivo and to determine the effects of different

microenvironments in controlling the immunoregulatory

activities of this glycan-binding protein.

Regulatory checkpoint 2: control of TCR-mediated

signaling and activation

Negative regulation of T-cell signaling delivered by the anti-

gen receptors and co-receptors plays an important role in

T-cell development and activation. Cell surface inhibitory

receptors including cytotoxic T lymphocyte antigen-4 (CTLA-

4), programmed death-1 (PD-1), and other molecules associ-

ated to immunoreceptor tyrosine-based inhibition motifs

(ITIMs) play a crucial role in delivering negative signals that

regulate the balance between T-cell activation, tolerance, and

immunopathology (2). Although limited information is avail-

able on the role of galectin-1 in TCR-mediated T-cell activa-

tion, this protein has been reported to modulate T-cell

signaling at sites of immunological synapse (Fig. 1). Liu et al.

(99) found that galectin-1 favors TCR-mediated negative

selection in the thymus by promoting a rapid and transient

extracellular signal-regulated kinase (ERK) activation, while

antagonizing ERK activity in thymocytes undergoing positive

selection. In this way, galectin-1, which is synthesized by

cortical and medullary thymic epithelial cells (100, 101), can

differentially regulate the fate of TCR signaling during nega-

tive or positive selection and contribute to shape the nature of

the selected T-cell repertoire. Furthermore, galectin-1 can

antagonize TCR signals that require costimulation such as pro-

liferation and IL-2 production, while allowing TCR responses

that only require partial TCR signals such as apoptosis (102),

thereby providing an alternative explanation for the pro-apo-

ptotic effects of this glycan-binding protein. Thus, galectin-1

may regulate T-cell fate at sites of the immunological synapse

by modulating TCR ⁄ costimulator-dependent clustering and

signaling. Similar to galectin-3-N-glycan lattices which have
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been shown to restrict spontaneous TCR clustering and down-

modulate TCR responses (103, 104), galectin-1 might also

contribute to this phenoptype by interacting with N-glycans

modified by the enzyme N-acetylglucosaminyltransferase 5

(Mgat5). In this regard, galectin-3 N-glycan lattices suppress

Lck activity and TCR signaling (105). These effects might have

potential implications in the regulation of T-cell physiology at

the cross roads of T-cell activation, tolerance, and immunopa-

thology.

Regulatory checkpoint 3: fine-tuning T-cell adhesion and

trafficking

T-cell homeostasis largely depends on a selective combinato-

rial process involving sequential engagement of specific recep-

tors which can positively or negatively regulate T-cell

adhesion and trafficking. This multistep process is responsible

for targeting effector and regulatory T cells to sites of inflam-

mation, microbial invasion, or tumor growth (106). Cell sur-

face carbohydrates and their specific glycan-binding proteins

(e.g. selectins) play a determinant role in the control of lym-

phocyte homing and the recruitment of leukocytes to second-

ary lymphoid organs and inflamed tissues (107). In keeping

with its anti-inflammatory activities, a critical inhibitory role

has been described for galectin-1 in T-cell adhesion and tran-

sendothelial migration (108–110) (Fig. 1). Exposure of T cells

to galectin-1 blocked adhesion of activated T cells to extracel-

lular matrix glycoproteins such as fibronectin and laminin

(108). In addition, endothelial cell expression of galectin-1

inhibited T-cell transendothelial migration through mecha-

nisms involving clustering of CD43 (109). Furthermore,

using small interfering RNA (siRNA)-mediated silencing strat-

egies, Norling et al. (110) found that galectin-1 limits T-cell

capture, rolling, and adhesion to activated endothelial cells

under flow. These anti-inflammatory effects were confirmed

in vivo in galectin-1-deficient mice, where trafficking to mesen-

teric lymphoid organs and inflamed tissues was significantly

augmented compared with their wildtype counterpart. These

results entail a different regulatory checkpoint by which

galectin-1 may contribute to T-cell homeostasis during

inflammatory reactions.

Regulatory checkpoint 4: modulation of the cytokine

balance

An imbalance of pro-inflammatory and anti-inflammatory

cytokines results in the loss of immune tolerance and the

subsequent appearance of inflammatory autoimmune condi-

tions (111). Although the underlying mechanisms are still

poorly understood, different members of the galectin family

can regulate the balance of pro- or anti-inflammatory cyto-

kines. In this regard, one of the most consistent findings in

the literature is the ability of galectin-1 to skew the balance

from a Th1- and Th17- toward a Th2-polarized immune

profile in several experimental models of chronic inflamma-

tion, autoimmunity, and cancer (see next section). Although

this effect may be clearly explained by our findings on the

selective pro-apoptotic effect of galectin-1 on Th1 and Th17

effector cells and the sialylation-dependent resistance of Th2

cell subsets (76), galectin-1 may also suppress Th1-type

cytokines and promote the synthesis of Th2-derived cytokines

through non-apoptotic mechanisms (28, 89, 95, 97, 108)

(Fig. 1). Early studies from our group demonstrated that

treatment of T cells with low concentrations (approximately

0.01–0.10 lM) of recombinant galectin-1 blunts pro-

inflammatory and Th1 cytokine production without affecting

T-cell viability (28, 108). More recently, several reports dem-

onstrated a consistent induction of IL-10 in non-activated and

activated CD4+ and CD8+ T cells upon exposure to recombi-

nant galectin-1 in vitro (95, 97) and following its administra-

tion in vivo (37, 92, 112). As mentioned above, galectin-1

secreted by Th1 cells also contributed to immunoregulation

by sustaining TCR-induced Th2 cytokine production (89).

These results argue for several immunoregulatory mecha-

nisms, including T-helper cytokine regulation, accounting for

the broad anti-inflammatory effects of this glycan-binding

protein in vivo (see below).

Regulatory checkpoint 5: control of Treg cell function

The investigation of suppressor or Tregs has witnessed a

renaissance in the past few years (113). Endowed with the

ability to suppress T-cell responses, Tregs including naturally-

occurring and inducible CD+CD25+forkhead box p3 (Foxp3)+

Tregs, as well as IL-10-producing Tr1 cells, hold the promise

of preventing allograft rejection, restoring tolerance at the

maternal-fetal interface and limiting pathogenic inflammatory

responses (113). In addition, they may represent a significant

hurdle for successful tumor immunity and resolution of

microbial infections (114). The dramatic immunosuppressive

effects of galectin-1 in vivo (5) prompted us to investigate the

ability of this glycan-binding protein to modulate the Treg

compartment. Remarkably, administration of galectin-1 in

experimental models of autoimmune ocular inflammation

(112) and stress-induced pregnancy failure (37) restored

T-cell tolerance and resulted in considerable expansion of

IL-10-producing CD4+CD25high Tregs (Fig. 1). Interestingly,
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these cells showed no significant variations in the levels of

Foxp3 expression but had considerable immunosuppressive

activity in vivo. However, using in vitro differentiation systems,

exposure of T cells to galectin-1 resulted in significant expan-

sion of a population of CD4+CD25high Tregs with high Foxp3

expression (77). Whether galectin-1 stimulates the differenti-

ation and ⁄ or expansion of both Foxp3+ and Foxp3- Tregs still

remain to be ascertained.

Interestingly, analysis of gene expression profiles of regula-

tory versus effector T cells revealed a substantial increase in

Lgals1 mRNA (the transcript encoding galectin-1 protein) in

naturally occurring Treg cells (32, 33). Notably, Lgals1 overex-

pression was found to be Foxp3-independent similar to other

upregulated genes such as granzyme B and Helios (32). Remark-

ably, antibody-mediated blockade of galectin-1 significantly

reduced the suppressive effects of human and mouse

CD4+CD25+ Tregs, indicating that endogenous galectin-1 was

required for maximal Treg function (33). Thus, galectin-1

may influence the Treg compartment by modulating the

expansion and ⁄or survival of these cells or by contributing to

their immunosuppressive activity. Further studies are

warranted that will dissect the molecular pathways leading to

galectin-1 overexpression in Tregs, examining the molecular

mechanisms leading to galectin-1-induced Treg expansion

and evaluating the contribution of this endogenous lectin to

Treg-induced immunosuppression in settings of pathophysio-

logic relevance. How galectin-1 decodes glycan-containing

information to selectively amplify Th2-and Treg-cell homeo-

static programs still remains to be explored.

Galectin-1 in vivo: lessons from experimental models at

the cross roads of health and disease

The cross-talk among different cellular processes and check-

points modulated by galectin-1, including T-cell survival,

signaling, trafficking, cytokine production, and Treg function,

may lead to critical although unexpected immunoregulatory

phenotypes when examined in the context of physiological

and pathological scenarios. In addition, galectin-1 may act in

concert with other regulatory pathways (i.e. PD-1 ⁄ PD-L1,

CTLA-4, indoleamine 2,3-dioxygenase, Fas ligand) to achieve

T-cell homeostasis. In this section we summarize our

knowledge on the tolerogenic effects of galectin-1 in vivo in

different pathophysiologic settings, including maternal-fetal

tolerance, autoimmunity, and cancer. In particular, we

highlight emerging evidence on the functional significance of

galectin-1 or N-glycans deficiencies in vivo, which clearly

illustrate the relevance of galectin-1–glycan interactions in

immune cell homeostasis and their contribution to immuno-

pathology (Fig. 2).

Preserving homeostasis at the maternal-fetal interface

An essential feature of successful mammalian reproduction is

maternal tolerance to the presence of semiallogeneic fetus

(115). Multiple tolerance mechanisms operate at the fetoma-

ternal interface to induce immune tolerance, including modu-

lation of the Th1–Th2 cytokine balance, specific recruitment

of CD4+CD25+ Tregs, expansion of decidual NK cells, induc-

tion of decidual T-cell apoptosis, and activation of negative

regulatory pathways such as those triggered by PD-1 ⁄ PD-L1

(115, 116). Given the ability of galectin-1 to control multiple

regulatory checkpoints, we examined the role of this glycan-

binding protein in immune cell tolerance at the fetomaternal

interface. Galectin-1 is abundant in the human and mouse

female reproductive tracts (117, 118) and is differentially

expressed in normal and pathological placenta (119) and

uterine decidual NK cells (34). Using an established mouse

model of stress-induced pregnancy failure, we found that

recombinant galectin-1 prevents fetal loss and restores toler-

ance in vivo (37). Consistent with those findings, galectin-1-

deficient female mice showed higher rates of fetal loss

compared with their wildtype counterpart in allogeneic but

not syngeneic matings; yet, no changes were observed in

Fig. 2. The dual effects of galectin-1–glycan lattices in the control
of immunopathology: two sides of the same coin? Given thes broad
spectrum of T-cell inhibitory activities of galectin-1, this glycan-binding
protein as well as its specific saccharide ligands have been postulated as
candidate therapeutic targets for attenuating immune responses in auto-
immune diseases, preventing graft rejection and restoring T-cell tolerance
at the fetomaternal interface, thus preventing recurrent fetal loss. On the
other hand, blockade of galectin-1–glycan interactions may contribute to
overcome immune tolerance in tumor microenvironments, thus stimulat-
ing the development of tumor-specific immune responses.
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placentation or decidualization processes (37). Investigation

of the mechanisms involved in these regulatory effects

revealed the ability of galectin-1 to restore the Th1 ⁄ Th2 cyto-

kine balance, promote expansion of IL-10-producing Tregs

and favor the recruitment of uterine dendritic cells with a

regulatory phenotype (37). The differential expansion of

dendritic cells in regional lymph nodes and uterine tissue

suggested the ability of galectin-1 to selectively regulate the

trafficking of these antigen-presenting cells, in line with

previous observations indicating a role for this glycan-binding

protein in promoting dendritic cell migration (120). Remark-

ably, a functional cross-regulation between progesterone and

galectin-1 has been reported at the fetomaternal interface

(37), indicating a novel immune-endocrine mechanism to

regulate fetal tolerance during pregnancy. In line with these

findings, Kopcow et al. (34) found that human decidual NK

cells secrete considerable amounts of galectin-1 which induce

apoptosis of decidual but not peripheral T cells. Similar to Th1

and Th17 subsets (76), decidual T cells expressed the reper-

toire of cell surface glycans compatible with high sensitivity

to galectin-1 (34). Strikingly, the role of galectin-1 in

pregnancy preservation has been further supported by phylo-

genetic analysis showing the acquisition of steroid responsive

elements in the Lgals1 promoter as well as selective gain of

cysteine residues involved in redox regulation early during

the emergence of placental mammals (121). Strikingly, the

most intense selection process in Lgals1 gene was found on

residues localized within the CRD and the dimerization inter-

face (121), suggesting adaptation of these biochemical features

to immune regulatory effects. Collectively, these data under-

score an evolutionarily-conserved function of progesterone-

regulated galectin-1 in establishing maternal-fetal immune

tolerance through modulation of a hierarchy of regulatory

pathways. In addition, these results emphasize a potential

approach for therapeutic intervention aimed at re-establishing

immune cell homeostasis in failing pregnancies (Fig. 2).

Restoring tolerance in chronic inflammation and

autoimmunity

Altered activity of key regulatory checkpoints, including

galectin-1–glycan interactions, may contribute to the patho-

physiology of autoimmune diseases by tipping the balance

toward inflammation (Fig. 2). With the increased availability

of null mutant mice and the emerging strategies for studying

the cell surface ‘glycome’, the investigation of glycan-binding

proteins and glycan structures in tolerance induction and

autoimmunity is becoming more and more exciting (122). In

this context, the immunoregulatory activities of galectin-1

and its specific glycan receptors have been widely acknowl-

edged and extensively studied in several models of chronic

inflammation and autoimmunity (5, 7).

Early in the 1980s, Levi et al. (123) described the protective

effects of electrolectin, a galectin-1 homologue purified from

electric eel, in experimental autoimmune myasthenia gravis in

rabbits. In 1990, Offner et al. (124) showed that galectin-1

can protect Lewis rats from experimental autoimmune

encephalomyelitis (EAE) induction. Although these studies set

the basis for the study of galectin-1 in immunoregulation, the

precise mechanisms of action of this protein were then uncer-

tain.

In 1999, we demonstrated that a single cell injection of

syngeneic fibroblasts engineered to secrete galectin-1 on the

day of the disease onset abrogated clinical manifestations of

collagen-induced arthritis (CIA), an experimental model of

rheumatoid arthritis in DBA ⁄ 1 mice (125). A comparable sup-

pressive effect in CIA was also observed in response to daily

intraperitoneal injections of recombinant galectin-1 (125).

Investigation of the mechanisms involved in this therapeutic

effect revealed a dramatic role of galectin-1 in skewing the

cytokine balance toward Th2-polarized immune responses.

In addition, lymph node cells from mice engaged in the

galectin-1 gene therapy protocol showed enhanced

susceptibility to TCR-induced apoptosis (125). Similarly,

Santucci et al. found inhibition of tissue injury and attenuation

of Th1-mediated inflammation in animal models of concanav-

alin A-induced hepatitis (126) and trinitrobenzenesulfonic

acid (TNBS)-induced colitis (127) following intravenous

administration of galectin-1. In both models, the authors

found consistent reduction in the frequency of antigen-

activated T cells and decreased production of pro-inflamma-

tory and Th1-type cytokines [TNF-a, interferon-c (IFN-c)]

following injection of galectin-1 (126, 127). Similar reduc-

tion of Th1-type responses was found in a mouse model of

graft versus host disease (GVHD), suggesting the potential use

of galectin-1 as an immunosuppressive agent in allogeneic

bone marrow transplantation (128). Interestingly, in this

model, galectin-1 suppressed GVHD without compromising

engraftment or immune reconstitution following allogeneic

hematopoietic stem cell graft (128).

Extending the anti-inflammatory effects of galectin-1 to

immune privileged sites, the immunosuppressive activity of

galectin-1 was further explored in experimental autoimmune

uveitis (EAU), a T-cell mediated model of ocular inflamma-

tion induced by interphotoreceptor retinoid-binding protein

(IRBP). Treatment with recombinant galectin-1 either early or
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late during the course of EAU was sufficient to limit ocular

inflammation and counteract pathogenic Th1 responses

(112). This glycan-binding protein ameliorated retinal

inflammation by skewing the uveitogenic response toward a

Th2- or Treg-mediated anti-inflammatory response. Remark-

ably, adoptive transfer of IL-10-producing CD4+ T cells

obtained from galectin-1-treated mice prevented the develop-

ment of active EAU in syngeneic recipients (112). Of note,

we observed apoptosis in this model only in those mice

receiving galectin-1 during efferent phase of the disease

(112), suggesting the activation of distinct but potentially

overlapping mechanisms operating during galectin-1-induced

immunosuppression. Moreover, in an adoptive transfer model

of autoimmune diabetes, Perone et al. (129) found that trans-

genic dendritic cells engineered to overexpress galectin-1

delayed the onset of diabetes and insulitis in non-obese dia-

betic (NOD)-recombination activating gene 1 (Rag1)) ⁄ ) mice

(129). This effect was accompanied by increased percentage

of apoptotic T cells and blunted Th1 responses in pancreatic

lymph nodes (129). More recently, the authors found that

soluble galectin-1 can prevent the onset of hyperglycemia and

revert b-cell-specific autoimmunity in NOD mice (92), indi-

cating the ability of this protein to suppress autoimmune

inflammation not only in experimentally-induced, but also in

spontaneous models of autoimmune pathology. Although

there is still limited clinical data in human tissues, decreased

expression of galectin-1 was found in patients with juvenile

rheumatoid arthritis (47) and increased occurrence of anti-

galectin-1 autoantibodies was found in sera from patients

with distinct inflammatory disorders which correlated with

poor clinical outcome (41, 130). The biological relevance of

these autoantibodies – whether they have blocking or

pathogenic activity – still remains to be explored.

While the aforementioned models broadly support the

concept of anti-inflammatory effects of galectin-1 when deliv-

ered to sites of inflammation, the function of endogenous

galectin-1 in the evolution of autoimmune inflammation

was lacking until recently, when novel findings emerged with

the careful analysis of null mutant mice (76). Remarkably,

galectin-1-deficient mice showed greater antigen-specific Th1

and Th-17 responses and exhibited more severe autoimmune

inflammation and demyelination than their wildtype counter-

part. Hence, together with increased fetal loss in female preg-

nant mice lacking galectin-1 (37), our findings indicate an

essential role of endogenous galectin-1 in limiting pathogenic

T-cell responses. Whether these biological effects are associ-

ated with the intracellular or extracellular functions of the

endogenous lectin still remains to be established. Strikingly,

clinical features observed in Lgals1) ⁄ ) mice, including T-cell

hyperreactivity and accelerated demyelination, phenocopied

those found spontaneously in mice lacking GlcNAc-branched

N-glycan structures responsible of forming lattices with multi-

valent galectins (104). These observations further emphasize

the critical role of galectin-1–glycan interactions in regulating

T-cell homeostasis.

Thwarting T-cell responses in cancer

Similar to immune privileged tissues, cancer cells display

multiple immunosuppressive mechanisms to elude T-cell

responses, either to avoid immune recognition or to disable

effector T cells (114, 131). These include alterations of

components of the antigen processing machinery, defects in

proximal TCR signals, activation of negative regulatory path-

ways (e.g. CTLA-4, PD-1 ⁄ PD-L1, IDO), specific recruitment

of regulatory cell populations and secretion of immunosup-

pressive factors, such as transforming growth factor-b (TGF-b)

and IL-10 (114, 131). These mechanisms cooperate in

advanced stages of cancer to limit the immune system’s ability

to restrain the tumor and the effectiveness of immunotherapy

strategies to successfully eradicate malignant cells (114).

Recent efforts toward deciphering the ‘poor prognosis’

signature of different tumor types had recurrently led in

microarray and proteomic analyses to the identification of

galectin-1 as a ‘typical’ protein, whose expression is altered in

several tumors and metastatic lessions (42, 43). However, in

sharp contrast with the beneficial effects of galectin-1 in auto-

immune pathology, this endogenous lectin contributes to

tumor malignancy by modulating different steps of tumor

progression including homotypic cell aggregation, tumor cell

migration, and angiogenesis (43, 132). We found that human

and mouse melanoma cells secrete high amounts of galectin-

1, which substantially contributes to the immunosuppressive

activity of these cells (93). Remarkably, silencing of galectin-1

expression within the tumor microenvironment rendered

mice resistant to tumor challenge and stimulated the genera-

tion of a melanoma-specific Th1-type response in tumor-

draining lymph nodes (93). Accordingly, Reed Sternberg

cells, the pathognomic cells in classical Hogdkin lymphoma,

selectively overexpressed galectin-1 which favored the

secretion of Th2-type cytokines, induced Treg expansion and

suppressed Epstein–Barr virus specific T-cell immunity

(77, 133). Interestingly, a detailed molecular dissection of

Lgals1 gene revealed a critical role for a cell-type specific AP-1-

dependent enhancer in driving the selective expression of

galectin-1 in classical Hodgkin lymphoma and anaplastic large
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cell lymphoma compared with other types of lymphoma cells

(77, 134). In addition, prostate cancer cells which have low

expression of core-2-O-glycans were resistant to galectin-1

but were capable of killing T cells in co-culture experiments

through expression of this glycan-binding protein (135).

Interestingly, the T-cell inhibitory activities of galectin-1 were

confirmed in human tumor tissue, as Le et al. (136) found a

strong inverse correlation between galectin-1 expression and

the presence of viable T cells in tumor sections from head and

neck squamous carcinoma patients. Remarkably, several

stimuli including a hypoxic microenvironment (136), the

immunosuppressive cytokine TGF-b1 (137), the immuno-

modulatory drug cyclophosphamide (138), and the differen-

tiating agent retinoic acid (139) were capable of upregulating

galectin-1 expression in different tumor types. Thus, galectin-

1–glycan interactions may contribute to create an immuno-

suppressive microenvironment at sites of tumor growth by

tilting the balance of T-helper responses, antagonizing T-cell

signaling, promoting Treg expansion and negatively regulat-

ing T-cell viability (Fig. 2). An increased understanding of the

role of galectin-1 in tumor biology will provide new insights

into how the regulation of galectin-1 expression might be

exploited for therapeutic purposes.

Resolving acute inflammation: an earlier homeostatic
checkpoint

Resolution of acute inflammation involves the activation of

endogenous biochemical programs and key regulatory compo-

nents that enable inflamed tissues to return to homeostasis

(140). In spite of its essential role in regulating T-cell homeo-

stasis, galectin-1 may also contribute to terminate acute inflam-

mation as a ‘gatekeeper’ at the cross-roads of innate and

adaptive immune responses. We found, using a model of paw

oedema in rats that injection of recombinant galectin-1

suppressed bee venom phospholipase A2-induced inflamma-

tion in a manner independent of its carbohydrate-binding

activity (141). In this model, galectin-1 treatment resulted in

significant reduction of the number of infiltrated polymorpho-

nuclear neutrophils (PMN) and reduced mast cell degranula-

tion, suggesting a role for this protein in limiting acute

inflammation (141). The mechanisms underlying these anti-

inflammatory effects have been further examined. In fact, La

et al. (142) found that PMN exposed to human recombinant

galectin-1 experienced impaired chemotaxis and reduced tran-

sendothelial migration. Accordingly, galectin-1 administration

resulted in reduced IL-1b-induced PMN recruitment into the

mouse peritoneal cavity (142), suggesting an essential role of

galectin-1 in controlling PMN trafficking similar to the effects

observed in T cells. On the other hand, Stowell et al. (94) found

that galectin-1 treatment induces exposure of cell surface phos-

phatidylserine in PMN, thus preparing these cells for phagocytic

removal. Remarkably, this effect did not involve typical altera-

tions of apoptosis such as DNA fragmentation, changes in mito-

chondrial membrane potential or caspase activation (94, 143).

However, induction of phosphatidylserine exposure was cell-

type specific, required calcium (Ca2+) mobilization, involved

galectin-1 interaction with complex-type N-glycans (144) and

was overturned following galectin-1 removal (143). Thus,

galectin-1 may also contribute to the resolution of acute

inflammation by preparing PMN for phagocytic removal, thus

favoring their physiologic turnover independently of apoptosis.

In addition, galectin-1 may also target the function of other

innate immune cells including monocytes and macrophages.

Galectin-1 treatment caused reduction in prostaglandin E2

secretion and nitric oxide production, but tilted the balance to

favor activation of the L-arginase pathway in rat peritoneal

macrophages (141, 145). In keeping with these findings,

galectin-1 significantly inhibited IFN-c-induced major histo-

compatibility complex-II (MHC-II) expression in human

monocytes in vitro and in mouse macrophages recruited in vivo

in response to inflammatory stimuli (59). Furthermore, we

have recently identified a previously unappreciated role for

galectin-1 in the control of platelet physiology (146). Galec-

tin-1 synergized with adenosine diphosphate (ADP) or throm-

bin to induce platelet aggregation and adenosine triphosphate

(ATP) release, promoted shedding of platelet microvesicles

and favored the generation of leukocyte-platelet aggregates

(146), events which have potential implications in the modu-

lation of thrombosis, inflammation and metastasis. Thus,

galectin-1 may also control immune cell homeostasis through

regulation of early events during the inflammatory response.

Concluding remarks and future directions

In the present review we described the consequences of galec-

tin-1 signaling as it relates to T-cell survival, TCR-mediated

clustering and activation, T-cell mobility, cytokine produc-

tion, and Treg function. Similar to what has been observed for

many cytokines and growth factors, it is not surprising that

galectin-1 exhibits a ‘double-edged sword’ effect with oppos-

ing biological outcomes depending on different intrinsic

factors such as the physicochemical properties of the protein

(monomer ⁄ dimer equilibrium), stability of the protein in

oxidative versus reducing microenvironments, as well as

extrinsic factors such as the target cell type and its activation

and ⁄or differentiation status.
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In light of the broad spectrum of immunoregulatory effects,

challenges for the future will embrace a rational manipulation

of galectin-1–glycan interactions towards attenuating immune

responses in autoimmune diseases, graft rejection, and recur-

rent fetal loss (Fig. 2). As illustrated in the present review,

in vivo studies, including those using galectin-1-deficient mice,

have begun to provide relevant information on the selective

function of this endogenous lectin in negative regulation of

the inflammatory response. Moreover, with the diverse range

of glycosyltransferase knock out mice that are available it will

now be feasible to determine the impact of glycosylation in

galectin-1-mediated effects. However, before galectin-1-based

therapeutic agents can be extrapolated to clinical settings, a

more thorough understanding of the mechanisms involved in

galectin-1 functions is essential. In this regard, it will be

critical to evaluate the results of side-by-side studies of the

anti-inflammatory activities of different members of the galec-

tin family, dissect the biological activity of different galectin-1

variants, evaluate the influence of pro-inflammatory and toler-

ogenic microenvironments, and establish the most adequate

routes of administration as well as the underlying toxicity of

this glycan-binding protein in vivo. Also, it would be of partic-

ular interest to examine the cross-talk between galectin-1 and

other established inhibitory pathways including CTLA-4,

PD-1 ⁄ PD-L1, and IDO.

As a reverse side of the same coin, interrupting galectin-1–

glycan interactions may contribute to overcome T-cell

tolerance (Fig. 2). Hence, galectin-1 inhibitors may serve as

adjuvants in preventive or therapeutic vaccines against chronic

infection and cancer. In order to validate this concept, the

design of specific galectin-1 antagonists as well as a compara-

tive study of already established inhibitors (e.g. natural

polysaccharides, synthetic glycoamines, glycodendrimers or

blocking antibodies) is essential (147–154).

One general concern of the use of immune modulators is

that some approaches may cause generalized immuno-

suppression and may leave patients immunocompromised.

For instance, antibody-mediated CD4+ T-cell depletion

targets more efficiently circulating naive T cells than tissue-

infiltrating pathogenic T cells and causes protracted

lymphopenia in treated patients (155). Moreover, TNF-a

blockade as a treatment for organ-specific autoimmune dis-

orders can leave individuals prone to a variety of opportu-

nistic infections (156). As galectin-1 selectively targets Th1

and Th17 cells but spares Th2 or naive T cells (76), it is

less likely that it would compromise protective immunity

when compared with other more generalized immunosup-

pressive therapies. Finally, the definitive proof-of-concept of

the significance of galectin-1–glycan interactions in immu-

nopathology will arise from the identification of individuals

with relevant primary genetic defects or polymorphisms

associated with inflammatory or neoplastic settings similarly

to those found for galectin-2 in myocardial infarction (157)

and for galectin-3 in breast cancer (158). Given the com-

plexity of galectin-1–glycan interactions and the multiple

parameters influencing these molecular contacts, further

work is required, involving multidisciplinary approaches, to

achieve a global comprehensive view of the role of

endogenous galectin-1 and its specific carbohydrate ligands

in immunoregulation.
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