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Bradykinin and electrical stimulation
increase prostaglandin production
in the rat vas deferens

H.A.Peredo,S.M.Celuch

Instituto de Investigaciones Farmacolo¤ gicas,CONICET,Buenos Aires,Argentina

Summary The epididymalportionof the rat vas deferensproducedprostaglandins (PG) E2,F2a and 6-keto F1a.Electrical
stimulation (ES,0.1Hz,1ms) increased such production by100%, and similar resultswere obtained in the presence of1.0 mM
bradykinin (Bk).Whenboth stimuliwere applied simultaneously, the increases in PG productionwere1100% for PGE2,800% for
PGF2a and 400% for PG6-keto F1a.Prazosin abolished the effect of ES on PG production.A selective Bk B2-receptorantagonist
abolished the increase in PG production inducedby Bk, both innon-stimulated and in ES tissues.Bk (1.0 mM) elicited contractile
responses innon-stimulated aswell as in ES tissues, responses that werenotmodified in thepresence of10 mMindomethacin. In
conclusion, the effects of Bkonprostaglandinproductionappears to dependon theactivationof B2 receptors, while the increase
in prostaglandin release inducedby ES, and the effects observedwithboth stimuli simultaneously, should bemediatedby the
release of noradrenalineand the subsequent activationof a1adrenoceptors.& 2001Harcourt Publishers Ltd
INTRODUCTION

Adrenergic stimulation induced either by nerve stimula-
tion1–3 or by the action of exogenous adrenoceptor
agonists2–6 enhances the synthesis and outflow of
prostaglandins in a variety of sympathetically innervated
tissues. The released prostaglandins in turn could exert
modulatory transynaptic effects on the overflow of
the sympathetic neurotransmitter4,8,9 or produce
postsynaptic effects such as facilitation of smooth muscle
contractility.6,10,11

Bradykinin (Bk), a locally formed nonapeptide with
multiple biological effects,12 enhances the release of
noradrenaline in several isolated preparations such as
the rat and mouse vas deferens13 and the rat and human
atrium.14,15 At least in the rat and human atrium, the
facilitatory action of Bk on noradrenaline overflow may
be mediated by prostaglandins. Moreover, prostaglandins
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of the E series appear to participate of the inhibitory effect
of Bk on noradrenaline release in the rabbit pulmonary
artery and heart.16 The ability of Bk to induce or increase
the formation of prostaglandins has been documented in
many tissues, namely airways,17 blood vessels,18,19 gall-
bladder20 and uterus.21

Since prostaglandins are involved in the modulation
of sympathetic neurotransmission and also may
mediate the effects of Bk on the release of sympathetic
neurotransmitter, we decided to examine the effect
of Bk on prostaglandin production in the electrically
stimulated epidydimal portion of the rat vas deferens, an
organ with a rich adrenergic innervation22 and high
production of prostaglandins.23 The type of receptors
involved in the effects of Bk and electrical stimulation on
prostaglandin efflux were assessed by use of selective
antagonists.

METHODS

Male Wistar rats of 250–300 g body weight were killed by
cervical dislocation. The vasa deferentia were removed
and cleaned of connective and fat tissues and the lumen
was flushed with 1 ml Krebs solution.
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Fig. 1 PG production in the epididymalportion of the vasdeferens
in resting conditions; (basal):&; duringelectrical stimulation
(0.1Hz,1ms): ; in the presence of1 mMBk: ; andduringelectrical
stimulation in thepresence of Bk: .The tissueswere incubated for
35min.
Shownaremeanvalues+SEMof 5 experimentspergroup.
*P50.05 when compared to basalvalues.
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Isolated vas deferens preparation and experimental design

The epididymal portion of each vas deferens was
suspended in a 5 ml organ bath containing Krebs solu-
tion at 378C, bubbled with 95% O2 plus 5% CO2.
The composition of the Krebs solution (mM) was the
following: NaCl, 118.0; KCl, 4.7; CaCl2, 2.6; MgCl2,
1.2; NaH2PO4, 1.0; NaHCO3, 25.0; glucose, 11.1; EDTA,
0.004; ascorbic acid, 0.11.

The upper end of the vas deferens was connected to a
Grass FT-03 force transducer and the isometric tension
was recorded on a Grass polygraph model 7-B. The resting
tension was adjusted to 1 g and the Krebs solution was
renewed every 10 min during 30 min before the start of
the experiment.

To determine the effects of 1mM Bk on the production
of prostaglandins, the tissues were incubated in the
presence of the drug for periods of 30 min. At the end
of each incubation period, the medium was collected and
frozen at 7208C for subsequent prostaglandin (PG)
extraction. At the end of the experiment, the tissues were
blotted dry and weighed.

In another series of experiments, the tissues were field
stimulated for 35 min (0.1 Hz, 1 msec, supramaximal
voltage) through two parallel platinum electrodes con-
nected to an S44 Grass stimulator. When the electrical
stimulation was performed on tissues exposed to 1.0 mM
Bk, the drug was added to the organ bath 5 min after the
beginning of the stimulation and remained for the next
30 min. At the end of the stimulation, the incubation
medium was collected and the tissue was weighed as
described above.

Adrenoceptor blocking drugs and Bk-receptor antago-
nists were added 20 min prior to the start of the electrical
stimulation or 25 min prior to the addition of Bk. The
prostanoid synthesis inhibitor indomethacin was added
30 min prior to Bk. The drugs remained in the incubation
medium until the end of the experiment.

Prostaglandin assay

As previously described,24 the incubation medium sam-
ples were acidified to pH 3.5 with 1.0 M formic acid and
extracted 3 times with 2 volumes of chloroform. The
chloroform fractions were pooled and evaporated to
dryness. Reversed-phase HPLC was carried out on a C18
column (Hibar, E. Merck, 25064 mm, 5m). The solvent
system was 1.7 mM PO4H3 67.2 : acetonitrile 32.8, v/v. The
flow rate was 1 ml.min71 and UV absorption was
measured at 218 nm. Dried samples were resuspended
in 0.15 ml mobile phase and injected into the HPLC
system. Authentic standards of PGs: 6-keto PG F1a, PGE2

and PGF2a were run along with the samples, and a bracket
assay was performed to determine the amount of PGs in
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the samples. All values were corrected for recovery loss as
determined by parallel standards. Results were expressed
as ng of PG per mg of tissue weight. Statistical analysis
was performed by ANOVA. At significantly different F
values, the differences between the groups were checked
by the Tukey test. P levels 50.05 were regarded as
significant.

Drugs

Prostaglandins E2, F2a tris salt and 6-keto F1a; bradykinin
acetate salt, des-Arg9, (Leu8)-bradykinin, D-Arg-(Hyp3, D-
Phe7)-bradykinin and indomethacin were purchased
from Sigma Chemical Co., USA. The following drugs were
kindly supplied: (-)-propranolol HCI (ICI Ltd, UK);
yohimbine HCI (Schering, Argentina) and prazosin HCl
(Pfizer, Argentina). Indomethacin was dissolved in abso-
lute ethanol; the final concentration of ethanol in the
incubation medium was 0.1% v/v. Other drugs were
dissolved in distilled water.
& 2001Harcourt Publishers Ltd
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RESULTS

The isolated epididymal portion of the rat vas deferens
produced and released PGE2, PGF2a and 6-keto PGF1a

(stable metabolite of PGI2 or prostacyclin) to the incuba-
tion medium. Figure 1 shows that the greatest produc-
tion, expressed as ng.mg tissue71 in 35 min of incubation
(n = 7), was that of PGE2 (92.5+9.5), followed by PGF2a

(36.5+3.1) and 6-keto PGF1a (18.3+1.7). We did not
identify other prostanoids.

As shown in Figure 1, electrical stimulation (0.1 Hz,
1 ms) increased the production of the three PGs by
approximately 100% as compared to basal values. Similar
increases were obtained in tissues exposed to 1.0 mM Bk.
When both stimuli, electrical stimulation and Bk, were
applied simultaneously, the increases in PG release over
the basal values were approximately 1100% for PGE2,
800% for PGF2a and 400% for 6-keto PGF1a.

Figure 2 shows the effects of adrenergic antagonists on
the production of prostaglandins induced either by
Fig. 2 Effect ofadrenoceptorantagonists on the PG production
in resting conditions (basal) andduringexposure to electrical
stimulation (ES), to1.0 mMBkorelectricalstimulationplusBk (ES+Bk)
in the epididymalportion of the vasdeferens.The following
adrenoceptorantagonistswere present in the organbath:& none;
prazosin (0.1 mM); propanolol (1.0 mM); yohimbine (1.0 mM).
*P50.05 when compared to respective controlvalues.
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electrical stimulation or by 1.0 mM Bk or by both stimuli
applied simultaneously. The a1 adrenoceptor antagonist
prazosin (0.1mM) abolished the effect of electrical stimu-
lation on the production of the three PGs. Moreover, in
tissues pretreated with prazosin, the release of PGs
induced by the combination of Bk and electrical stimula-
tion did not differ from the PG production observed with
Bk alone. Neither yohimbine (1.0mM), an a2 adrenoceptor
antagonist, nor propranolol (1.0mM), a b adrenoceptor
antagonist, modified the release of PGs induced by
electrical stimulation or by electrical stimulation plus
Bk. The adrenoceptor antagonists did not alter either the
basal or the Bk-induced production of PGs.

Figure 3 shows the effects of Bk-receptor antagonists on
the release of PGs. The selective B2-receptor antagonist D-
Arg-Hyp3 D-Phe7 Bk (1.0 mM) abolished the increase in
PGs production induced by 1.0 mM Bk, both in non-
stimulated and in electrically stimulated tissues. The
effects of Bk on PG production were not modified by
Fig. 3 Effect of Bk receptorantagonists on PG production in resting
conditions (basal) andduring exposure to electrical stimulation
(ES), to Bk (1.0 mM) orelectrical stimulation plus Bk (ES+Bk) in the
epididymalportion of the vasdeferens.The following Bk receptor
antagonistswerepresent in the organ bath:& none; des-Arg9,
(Leu8)-bradykinin (10.0 mM); D-Arg-(Hyp3,D-Phe7) bradykinin
(1.0 mM).
*P50.05 when compared to respective control values.
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d-Arg9 Leu8 Bk (10.0 mM), a selective B1-receptor antago-
nist. These antagonists ‘‘per se’’ did not alter either the
basal PG production or the PG production induced by the
electrical stimulation.

Effects of Bkon the basalmuscle tension andon the twitch
responses induced byelectrical stimulation

Bk (1.0 mM) elicited contractile responses in non-
stimulated as well as in electrically stimulated tissues.
These responses did not differ between the two groups
(Fig. 4A&4C). Moreover, Bk induced a significant increase
in the twitch responses induced by electrical stimula-
tion (Fig. 4C). The PG synthesis inhibitor indo-
methacin (10.0 mM) did not modify either the contractile
response or the increase in the twitches induced by Bk
(Figs. 4B–4D).
Fig. 4 Effects of Bkon thebasalmuscle tensionandon the twitch respo
Theaddition of Bk (1.0 mM) to the organ bath to non-stimulated (Aand B)
deferensis indicatedby thearrowheads. Indomethacin (10.0 mM,Band D)
30minprior to Bkandremaineduntil the endof the experiment.
Shownaremeanvalues+SEM.Numbersin parentheses indicate the nu
*P50.05 when compared to the twitch responsesprior to Bk.
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DISCUSSION

The present study shows that Bk as well as electrical
stimulation enhances the production of PGs in the
epididymal portion of the rat vas deferens. Moreover, it
has been shown that there is a potentiation of the effects
when both stimuli are applied simultaneously.

The effects of electrical stimulation herein observed
confirm and extend previous findings. Hedqvist and Von
Euler25 reported that the electrically stimulated guinea
pig vas deferens releases PGE-like material to the super-
fusion medium. On the other hand, Peredo and Borda
have shown that exposure of rat isolated vasa deferentia
to exogenous noradrenaline increases the synthesis and
release of PGE2 through the activation of a adrenocep-
tors.5 In this study, we observed that electrical stimula-
tion increased the production of PGI2 and PGF2a in
addition to PGE2. Moreover, we observed that prazosin
nses inducedbyelectrical stimulation (0.1Hz,1ms).
andelectrically stimulated (Cand D) epididymalportionsof the vas
or itsvehicle, (0.1% ethanol,Aand C) wereadded to the organbath

mberof experiments.
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Bradykinin and electrical stimulation increase prostaglandin production 13
abolished the PG release induced by electrical stimula-
tion, whereas yohimbine and propranolol had no effect.
These results suggest that the noradrenaline released by
electrical stimulation promotes PG production through
the interaction with adrenoceptors of the a1 subtype and
that neither a2 nor b adrenoceptors are involved.

Bk exerts its effects through the activation of two kinds
of receptors, namely B1 and B2. The present results
suggest that the increase in PGE2, PGI2 and PGF2a

production induced by Bk in the epidydimal portion of
the rat vas deferens is related to the activation of B2

receptors, since this effect was suppressed in the presence
of D-Arg-Hyp3 D-Phe7 Bk, a selective B2 antagonist,
whereas it was not modified in the presence of d-
Arg9Leu8 Bk, a selective B1 antagonist. This is in
agreement with previous reports which showed that Bk
stimulates eicosanoid production through the activation
of B2 receptors in a number of organs and tissues such as
blood vessels,26 rat uterus,27 human airways28 and rabbit
isolated perfused ear.21

The stimulatory effect of Bk on PG release was greatly
increased in electrically-stimulated vasa deferentia when
compared with non-stimulated tissues and the effects of
Bk combined with field stimulation are greater than those
expected from the sum of two independent stimuli. This
is particularly evident for PGI2. The precise mechanism
by which this potentiation occurs is not clear at present.

The observation that Bk as well as electrical stimula-
tion, individually or simultaneously applied, increased
the release of all the detected PGs to the same extent
could suggest that its stimulatory action is exerted at the
phospholipase or the cyclooxigenase levels. In support of
this view, in the rat perfused heart, Bk has been shown to
stimulate phospholipase A2 and phospholipase C, both of
which may provide a source of free arachidonic acid, a
rate-limiting-step in the synthesis of eicosanoids.29 More-
over, a1 adrenergic stimulation also activates phospholi-
pase A2 and phospholipase C in FRTL5 thyroid cells.30

On the other hand, the fact that indomethacin did not
modify the contractile responses either in non-stimulated
or in electrically stimulated vas deferens, or the increase
in the twitch responses evoked by Bk, suggests that
prostanoids are not involved in the mechanism of those
contractile effects. This is in accord with the work of Patra
et al. who demonstrated that in the rat and human vas
deferens the release of PGE2 and PGF2a is not correlated
with contraction.31

In conclusion, these findings indicate that, in the rat vas
deferens, the increase in prostaglandin production and
release and the contractile effects induced by Bk are
independent of each other. The effects of Bk on
prostaglandin production appears to depend on the
activation of B2 receptors, while the increase in prosta-
glandin release induced by electrical stimulation, as well
& 2001Harcourt Publishers Ltd P
as the potentiation of such effects observed when Bk and
electrical stimulation were applied simultaneously,
should be mediated by the release of noradrenaline and
the subsequent activation of a1 adrenoceptors.
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