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Abstract

Periodically forced oscillators are among the simplest dynamical sys-
tems capable to display chaos. They can be described by the variables
position and velocity, together with the phase of the force. Their phase-
space corresponds therefore to R? x S'. The organization of the peri-
odic orbits can be displayed with braids having only positive crossings.
Topological characterization of dynamical systems actually began to be
explored in physics on this family of problems.

In this work we show that, in general, it is not possible to produce a
3-dimensional imbedding of the solutions of a forced oscillator in terms of
differential imbeddings based on sampling the position only. However, it
may be possible to uncover a description of the phase variable from the
sampled time-series, thus producing a faithful representation of the data.
We proceed to formulate new tests in order to check whether proposed
imbeddings can be accepted as such.

We illustrate the manuscript throughout with an example correspond-
ing to a model of Benard-Marangoni convection.

1 Introduction

Given that two-dimensional ordinary differential equations (ODE) cannot dis-
play chaos, the next-simplest choice in the search for chaos and its consequences
are 3-dimensional systems. In particular, periodically forced nonlinear oscilla-
tors of one degree of freedom can produce flows and Poincaré (stroboscopic)
maps displaying chaos. Some of these systems have gained a particular fame
such as the Duffing oscillator [1] and the van der Pol oscillator [2] (see a review
on both oscillators in [3]). Furthermore, these oscillators can be constructed as



physical devices (often electronic or mechanical). Periodically forced oscillators
or equivalent devices can also be constructed modulating the pumping in class
B lasers [4].

The restrictions determined by the 3-dimensional phase-space impose a rigid
structure to the periodic orbits of the oscillator for any given parameter value.
This structure, a 3-dimensional analogue of Sarkovskii’s order [5, 6], encapsu-
lates in the form of braids much of the information of the chaotic sets of forced
oscillators [7, 8, 9, 10, 11, 12, 13, 14, 15].

The orbit structure of periodically forced oscillators began to be studied in
physics during the 80’s [16, 17]. Methods to make contact with experiments
followed [18, 19]. These methods rested upon time-delay and differential imbed-
dings. While Takens’ imbedding theorem [20, 21] does not directly apply to
periodically forced systems, an extension of Takens theorem, that applies to
forced oscillators, exists [22]. These theorems suggest the possibility of recon-
structing the attractors of forced oscillators in 6 [23] or 7 [24] dimensions, which
are in any case too many, considering that the topological methods exploiting
the braid structure yield nontrivial information only in (or up to) three dimen-
sions.

It has being argued that although the theorems do not suggest a 3-dimensional
imbedding reconstruction, they do not forbid it either. Finding a good 3-
dimensional imbedding and checking imbedding qualities became a craft or art
which rested heavily on the False Neighbours method [25]. Up to the present
days, derivative- or delay-imbeddings inspired in Takens[20] are often used to at-
tempt a reconstruction of the dynamics of forced oscillators using 3 dimensions
[26, 27, 28, 29, 30] or more[31], at different levels of detail and accuracy. One of
the results of this manuscript is that 3-dimensional imbeddings of this kind can-
not provide a complete dynamical reconstruction of phase space except when
a specific additional condition is met.

Three new pieces of information contributed in the 90’s to a better under-
standing of the situation. In the first place, a work by McRobie [32] showed
with a simple theorem that in the R? x S' presentation of the braids associated
to periodically forced oscillators in the natural coordinate system (z,v, ¢) (i.e.,
position, velocity, phase), only positive crossings can be present. The second
contribution was produced in a series of works by Mindlin and collaborators. A
model of a periodically forced Takens-Bogdanov bifurcation was introduced in
relation to the description of a low aspect-ratio Benard-Marangoni experiment
[33]. The reconstruction method shows an important sensitivity to the number
of spatial modes included in the description of the pattern [34] and the braids
produced in the reconstruction based upon the “position” coordinate displayed
positive as well as negative crossings.

The third piece of information was presented in [35], where it was shown
that different attempts to imbed the data produced topologically inequivalent
reconstructed orbits, in terms of their braid content and properties. This prob-
lem, known as the “topological inequivalent imbeddings”, was later addressed
in [36, 37], proposing a resolution of the apparent contradiction.

In this work we will address the specific problem of producing a three-



dimensional imbedding out of the output recorded from a single variable of
a periodically forced oscillator. For such a system we will prove a Lemma indi-
cating that although it might be possible to imbed a periodic orbit or perhaps an
attractor, it is not possible to extend the imbedding to the full phase-space and
hence, no conclusions can be drawn from the imbedded data regarding regions
not visited by the data.

The present research leads to the re-evaluation, in the light of the Lemma, of
the false neighbours method [25]. We will then show that checking the differen-
tial structure of the imbedded flow produces useful acceptance/rejection criteria
beyond “false neighbours”. Finally, the same ideas involved in the Lemma are
used to produce a simple test that detects the clock of a forced system, and
allows for the reconstruction of the original phase space R? x S, beyond the
realm of delay imbeddings.

We start by freshening up the desired goals of imbeddings used within applied
dynamical systems theory (Section 2). Next, we review the basics of periodi-
cally forced oscillators with a specific example (Section 3). We then prove a
simple result showing that in general terms, in the case of periodically forced
oscillators it is not possible to produce a 3-dimensional differential imbedding
(and related geometrical objects) based in one measured coordinate only (Sec-
tion 4). We offer new and more sensible numerical criteria to probe the quality
of a proposed imbedding (Section 5). Further, we describe how the phase-space
reconstruction of periodically forced oscillators can be implemented (Section
6). Further, we address the issue of “topologically inequivalent imbeddings” in
Section 7. Finally, Section 8 presents the concluding remarks.

2 Reyvisiting the imbedding paradigm

In Appendix I we review some basic material about the imbedding theorems. An
important question in applications is: “What do we want imbeddings for?” In
practice, we start with a time-series obtained by some experiment, i.e., a discrete
set of values of some function y(x(t)), just because this is what it is possible to
produce experimentally. But what we really would like to have is a description
of the original phase-space where the system was evolving. Ideally, if Takens’
idea works, letting y be the “projection onto the first coordinate”, we record one
coordinate, and after some manipulation we generate a dynamic evolution on an
Euclidean space of not very large dimension. In experimental science, hence, we
would like to have much more than just an imbedding. We would like to have
a dynamical description that works even in the “empty” space where we do not
have recorded data. The bad thing is that perhaps we have much less. The words
“almost any”, “generically” and “residual set”, appearing in different statements
of Takens’ imbedding theorems indicate that just our particular problem and
choice of measuring function, may not be an imbedding. Hence, imbedding
candidates have to be tested a posteriori. The procedure starts by proposing an
imbedding candidate, generating higher-dimensional dynamical data and finally
checking that the map from the original system to the generated data has a



fair chance of being 1-to-1 and immersive. This has to be done within some
tolerance level, since experimental data has finite precision and sufficiently large
time-series will in general fail to map 1-to-1 onto the target space.

Another side-question is the fact that the usual imbedding practice uses a
discrete data record, i.e., data taken at discrete time-intervals. Since Takens’
imbeddings are based on a continuous-time measuring function y(z(t)), the dis-
crete sampling has to be subject to the standard controls in experimental science,
i.e., the sampling interval has to be sufficiently short so that a continuous func-
tion interpolated from data has a fair chance to describe the original complexity
in the system. For example there are laser experiments where the relevant dy-
namics has a low-frequency variation combined with a high-frequency effect. To
naively set the sampling frequency according to the low-frequency part, renders
the rest of the dynamics essentially invisible [38, 39].

It remains true that experimental data series are finite in the number of
samples, as well as finite in their precision. The data available is then a “zero-
dimensional” data set (and hence lying outside the range of validity of Whitney’s
and Takens’ imbedding theorems).

From the “zero dimensional” recorded data set, a one-dimensional manifold
(a portion of an orbit) is conjectured in the first place (thus coming back to
the validity range of Whitney and Takens through active intervention of the
scientist, in the form of an interpolation recipe). Next, a strange attractor is
conjectured and finally a smooth manifold where the attractor lies is conjec-
tured.

It is useful to have in mind that if f : M — N is an imbedding of the
manifold M, then there is an inverse map from f(M) to N by the definition of
imbeddings. Hence, in the case of forced oscillators where M = R?x S if we find
two different imbeddings, f and g, of the full phase space M, provided we have
chosen conjugated Poincaré sections on each one, then f and g conjugate the
phase space with the orbits in them and their periodic structure into f(M) and
g(M), hence, the braid type[40] is preserved. In this perspective, restricting the
reconstructed phase space to the interior of a well sampled bounding torus, as
discussed in [36, 37], effectively preserves the available topological information.

3 Takens-Bogdanov forced system

We start with the basic definition. A periodically forced oscillator responds to
the following ordinary differential equation

r = v

v = f(z,v,t) = f(z,0,t+T) (1)

with 7" the minimal period of the function f(z,v,t). Given that f is Lipschitz,
there is one solution and only one passing through the point (z,v,¢), where
the third coordinate is a phase in [0,27/T]. The coordinate ¢ arises naturally
by recasting the above time-dependent dynamical system as an autonomous
system. The resulting phase-space is the abstract space R? x S'.



Experimental results corresponding to a Benard-Marangoni flow in a square
container were first put into correspondence with a Takens-Bogdanov bifurca-
tion [41], thus deriving an ODE for the experiment that actually represents an
oscillator in one of the (equivalent) normal forms [42]. When the experiment
was repeated adding a periodic forcing it was natural to model the problem with
a periodically forced oscillator of the form [33]:

v = R(t)(ur+wvv)+2*(v—x) (2)
R(t) = 1+ ecos(wt).

Also this equation can be recasted as an autonomous system (as will be done
below) by replacing ¢ with the phase ¢ in R and adding the additional equation
¢=1.

We will use some of the chaotic attractors of (2) in the examples of the com-
ing sections. Because of this reason we introduce them here. For p = 1.0434,
v = -1, w = 0.399 and € = 0.45 the system of eq.(2) shows two separated
attractors related by a rotation (z,v,t) — (—x, —v,t). Each attractor intersects
the control section {v = 0, ¥ > 0} in three non-intersecting regions, each one
including points close to a periodic orbit of stroboscopic-period one. However, if
the system is further explored, say for e = 0.452 while keeping the other param-
eters as above, the period-1 orbit at € = 0.45 can be continued without problems
onto its modified version at € = 0.452 with the additional observation that the
attractor no longer intersects the control section in three non-intersecting sets.
Rather, the three “islands” have merged and other regions of the attractor are
visited (see Figure 1).

4 A lemma on the imbedding of periodically
forced oscillators

In view of the situation depicted in Section 2, the theorems by Takens [20]
and Stark [22] based upon the ideas of Whitney [24], represent indications of
whether we can expect to be lucky or not with our conjectured system. The
reconstruction of 3-dimensional systems with 3-dimensional imbeddings requires
additional elements and tests applicable to data.

In [43, 44] the authors explore changes of coordinates transforming (x,y, 2)
into (X,Y, Z) = (z, &, &) for different 3-dimensional autonomous systems known
to have chaotic attractors among their solutions (Lorenz, Rossler, and oth-
ers). The proposed differential 3d-imbeddings present two kinds of difficulties:
(a) some of the transformations are many-to-one (projections), while (b) other
transformations present singularities on sub-manifolds of dimension smaller than
3. Both difficulties may appear simultaneously.

These difficulties might not be completely invalidating. Concerning (a), the
sampled data may visit just one branch of the (multivalued) inverse map and
then, the transformation restricted to the actual data may still be invertible.
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Figure 1: Intersection of reconstructed data of eq. (2) with the control surface
{v =0, v > 0} for delay (7 = 205). Green color, solid line, ¢ = 0.45: three
islands can be seen (on the upper right corner). Red color, dotted, e = 0.452: the
islands have merged and other regions of the attractor are visited. The variables
(z,t) intersecting the control section are plotted as (e coswt, e® sinwt).

In the same form concerning singularities in (b), the attractors and conjectured
manifolds need not intersect the singular set (once again, tests should be devised
to assert the reasonability of the theoretical reconstruction).

The corresponding analysis for forced oscillators is as follows.

Lemma 1 Differential imbeddings for forced oscillators. Let

(bt(xO, Vo, (bO) = (l‘(t), U(t)a ¢(t))

be the time-evolution given by eq.(1) (recasted as an autonomous system) of an
arbitrary initial condition (z(0),v(0),(0)) = (zo,vo, o). Let the map

BFE : (z,v,¢) — (z,2,g9(x,v, 9))

be the proposed imbedding for the solutions of eq.(1), where g(x,v,®)) is a real
function, differentiable in its three variables, and 2mw-periodic in ¢.

Then, BF is a projection that does not commute with the flow (i.e., for
a large set of initial conditions, two different initial conditions with the same
projection yield different projected dynamics). o

Before sketching the proof, let us explore the implications of the result.
Examples of such functions g may be the rhs of ¥ in eq.(2) or the first component
of ®_,(xg,v9,dp) for fixed delay 7 (i.e., differential or delay imbeddings for
the third coordinate). The lemma implies that a transformation such as BF
requires additional, ad hoc and fine-tuned analysis before being accepted as an
imbedding, and that it will or will not be a imbedding depending of the



particularities of the solution to be studied. Thus, e.g., the bona-fide
procedure applied to the attractor of eq.(2) for e = 0.45, even if it would have
worked in that case (generating an acceptable imbedding), may or may not yield
an imbedding for € = 0.452. These facts further stress the difficulties emerging
from non-sampled areas of the phase-space as well as the need of finding support
in the data to asses the validity of bona-fide procedures.

PROOF It is evident from the first line in eq.(1) that for our purposes & is
identical to v throughout. Since g(z,v, @) is real, continuous and periodic, for
each fixed pair (z,v), the function g can be seen as a (differentiable) function
of ¢ € [0,27] and as such it attains its maximum and minimum values in the
interval. For any value g lying between these extreme values, g(z,v,¢) = g
has at least two solutions. Hence, with the possible exception of both extreme
values, for every point (z, &, g) in the proposed imbedding there are at least two
possible pre-images (z, v, ¢1) and (x, v, ¢2) in the original phase-space. Hence,
BF is a projection (from phase-space to “imbedding space”).

Consider now two different points in R? x S corresponding to the same
point in the projection, say X = (z,v,¢1) and Y = (z,v, ¢3) along with their
respective time-evolution given by the flow associated to eq.(1), X (¢) and Y (¢),
where X(0) = X and Y(0) = Y. The third coordinate, ¢, evolves in each
case as ¢;(t) = ¢; + 2#% mod 27, ¢ = 1,2. Assume further that ¢o > ¢ and
that there is no other solution of g(z,v, ) = g between ¢ and ¢;. Let finally
0<60=q¢y— 1 <2m.

Since f(X(0)) = f(Y(0)), the initial condition of both dynamical orbits lies
on the (implicitly defined) two-dimensional sub-manifold of phase-space,

’PR:{f(l‘,U,(b)—f({E7U7¢+9) :O}'

The projection commutes with the flow only along orbits lying completely within
this manifold for ¢ # 0. Geometrically, the time derivative of PR along the flow
has to be zero (the vector field has zero scalar product with the normal vector
of the manifold, or, intuitively, the points on the manifold follow their dynamics
without leaving the manifold), i.e.,

V(f(x,v,qS) - f(.’l?,’l),(b—i— 9)) : (v,f(x,v,¢), 1) =0.

This condition also defines a two-dimensional sub-manifold of phase-space. On
the intersection of both manifolds lie the orbits along which the projection
BFcommutes with the dynamics. Outside this (small') set of orbits, the pro-
jection does not commute with the flow, and the projected dynamics for a given
pre-image will differ from the projected dynamics of the other pre-image(s). m

A simple corollary of the Lemma is that no delay imbedding of a forced
oscillator can be extended to the full phase space.

IThe intersection of two 2-d manifolds in 3-space can at most be a 2d-manifold itself (if,
e.g., one manifold is a subset of the other). In general it will be a finite set of 1-d manifolds
(transverse intersection) and in exceptional cases it could be a discrete or even empty set.



Let us illustrate the proof with eq.(2) and a differential bona-fide procedure.
Let BF(x,v,¢) = (z,%,%). From eq.(2) we obtain

(px + vi)ecos(¢) = & — 2%(& — x) — (px + vi).

For each projected point away from ¢ = 0 or ¢ = 7w we have two different
pre-images, which by the properties of the cosine function will yield different
dynamics, unless we move along the manifold PR = {(z,v,¢) : px + v =0,¢ €
[0,27]}. Yet PR as a whole is not invariant with respect to the flow, since its
time-derivative following the flow is:

pi + v(R(t) (pe + vi) + 2% (@ — 2)) = —2(p® + 2% (v + p)) /v.

Hence, the only orbit lying completely on the two dimensional manifold (for
general values of v, i) is (0,0, ¢), certainly a particular solution of the problem.
Outside this solution, the bona-fide procedure is a projection that does not
commute with the flow.

5 Testing proposed imbeddings techniques be-
yond false neighbours

The result offered by Lemma 1, makes clear that only in exceptional cases? the
standard procedures based in the position coordinate might give an acceptable
3-dimensional reconstruction of periodically forced oscillators (i.e., only if the
recorded data systematically avoids all but one branch of the inverse map).
However, to develop and improve tests of the quality of proposed imbeddings
is still proper, since there has been some confusion around the concepts. Also,
the (new and old) tests presented in this manuscript are relevant in a wider
perspective, since they do not depend on the choice of imbedding procedures
and will be useful when alternative methods are considered.

Lemma 1 also suggests that the distinctive sign of an imbedding is to induce
a flow in the imbedding space from the flow generating the data. We will use
this property to produce a test complementary to the standard tests.

Basically, an imbedding is a 1-to-1 mapping with nonsingular derivative
at each point. To “test” a proposed bona-fide procedure (BEF-imbedding in
what follows, but recall that it is not an imbedding until we present satisfactory
support in its favour) requires estimating both properties some way or the other.
Additionally, since we often do not know the dynamical details of the system
generating experimental data, some test to determine a reasonable “imbedding
dimension” is necessary. The main ideas in terms of testing BF-imbeddings has
been since long ago detecting false neighbours [25].

The intuition behind the method is to establish if two portions of the data
lying far enough in the time-order come too close to each other (e.g., closer

2Such exceptional cases did not occur in any of the computations performed for this
manuscript.



than a certain threshold chosen by the scientist). This detection is a first step,
requiring further analysis to assess its consequences.

If the BF-imbedding was in fact a projection, adding an extra dimension
may lift apparent intersections and remove false neighbours. We interpret this
result as suggesting that the imbedding dimension was too low, and retry the
procedure in higher dimensions. Eventually, an optimal imbedding dimension
is obtained: the lowest possible with no more false neighbours than what we are
prepared to tolerate

This is indeed the idea implemented in [35] and many other works of the
time. In formulee, consider an m-dimensional BF-imbedding given by the points
Tim = (z},...,2"), then, x; ,, is considered a false neighbour (at the € level) of
Zjm if A(@im, Tjm) < € but d(@;m+1,Tjm+1) > €. The process is cumulative,
i.e., the first m components of x; ,,41 coincide with x; . Also, d is a suitable
distance for each dimension, usually the Euclidean distance.

If the data does indeed have interesting topological information, some de-
tected false neighbour candidates will persist even up to very large imbedding
dimensions. In fact, the related method of close returns [45] used to deter-
mine if some portions of the data may lie close to an unstable periodic orbit
of the original system, rests upon the fact that the data returns very close
to itself after some time T, (the period of the shadowed orbit), and moreover
that this close return occurs not only for an isolated point in the data set but
for a relatively large consecutive set of points. Periodic orbits of period p (in
sampling-time units) are detected when L > 1 consecutive points are found,
such that d(z; m, Titp,m) < € for i =1,---, L. There is only a qualitative differ-
ence between a close return and a false neighbour: In the first, the near crossing
of portions of data is almost tangent, and occurs for L consecutive points with
the same p-interval and in many different dimensions. In the second, the near
crossing is transverse, and ideally it occurs up to some dimension ¢ but not for
dimension ¢ 4 1. It is somewhat insatisfactory that the same test (close return
of distantly sampled points) is used both to reject imbeddings and to accept
periodic orbits. We introduce here two tests that still can detect unappropri-
ate imbedding candidates, although without interference from the occurrence of
periodic orbits.

If the BF-imbedding was in fact a projection, we may further profit of this
fact to improve the test. A possible scenario is that the experimental sampling
visits two regions of phase-space lying far away from each other but having very
similar projections. In such a case we have no imbedding and the proposed
procedure should be rejected. However, this situation might be disguised as a
close return. An orbit starting in region 1 and eventually shifting to region 2
could be seen after projection as a portion of data closing onto itself. When a
close return in the data is found, it may be related either to a close return in
the original phase space of the problem (true close return) or to a close return
arising because of the projection (false close return). How to distinguish both
situations? We consider here some alternatives.

Since the only accessible information is in the recorded data, we can ask
whether the time-sequence of points in a BF-imbedding represents a flow or
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Figure 2: Number (in millions) of neighbouring pairs of points in the ¢ = 0.45
dataset for different values of the delay k£ and different imbedding dimensions.
False neighbours are the difference between consecutive curves.

not. This is, we ask whether BF (z,v,¢)(t) can be considered a flow or not.
Assuming boundedness of the reconstructed space, we consider the following

indicators:

Kmaz = sup
t

d(BF(z,v,9)(t + A) — BF(2',v',¢")(t + A)) 3)
d(BF (z,v,¢)(t) — BF (z',v',¢')(t))

d(BF (z,v,0)(t — A) — BF(z',v',¢")(t — A)) (4)
d(BF (z,v,¢)(t) — BF (z',v',¢')(t))

Kpin = sup
t

Figure 3: K,nap and K,y tests for different values of the delay k and different
imbedding dimensions. The test time was arbitrarily taken as A = 70 (e = 0.45).

If BF is an imbedding, the flow in the reconstructed attractor is conjugated



to the flow in phase-space. In such a case, regarding A as a multiple of the sam-
pling time, K4, represents an estimate (from below) to the Lipschitz constant
of the flow on the imbedded manifold. Similarly K,,;, estimates the Lipschitz
constant of the inverse (time-reversed) flow. If; on the contrary, BF' is a projec-
tion, then pairs of points that lie relatively close to each other after projection,
may have separated forward images after projection. Conversely, distant points
may have closer images after projection, thus yielding larger values of K4z
and K,,;, respectively. In short, if the K-values for a class of BF-imbeddings
are systematically larger than those for higher-dimensional alternatives, we can
interpret this as a negative indicator: It is proper to suspect that BF' is not an
imbedding. We will illustrate a practical use of these estimators with the forced
oscillator of eq.(2) in a coming subsection.

The test proposed above does not use the particular properties of forced
oscillators. On the contrary, the next proposal is restricted to them. According
to Lemma 1, as a result of the projection in forced oscillators, two points differing
in their phase are assigned to the same projected point. Then, a BF-imbedding
can be put to test by considering the time-difference between close returns in
the reconstructed data. This time-difference should be an integer multiple of
the period in an imbedding, but it may present other values, possibly a broad
collection of values, if the BF-imbedding turns out to be a projection with
additional (spurious) returns.

5.1 Examples of application I

First, we will present the results corresponding to the attractor of (2) for p =
1.0434, v = —1, w = 0.399 and € = 0.45. We check BF-imbeddings of the form:
Xy Tigs — Tiy - - - Titkm following the proposal in [35]. In these units, the period
of the forcing term is 300, £k = 6...299 and m = 1...3 gives the dimension of
the BF-imbedding as m + 2. Higher-dimensional imbeddings were tested but
are not presented here to keep the graphs as simple as possible. The data sets
under study correspond to 1000 periods of the forcing term.

A neighbour detection for each BF-imbedding is displayed in Figure 2. False
neighbours can be estimated by the difference between consecutive curves. Ob-
serve that the number of neighbours diminishes monotonically with m for any
delay, as expected. The number of neighbours roughly diminishes also for longer
delays (large k). We could interpret this as a consequence of the divergence of
nearby trajectories in chaotic flows, what makes the discrimination more effi-
cient for longer delays.

Next we consider the test K4z, €q. (3). Results are displayed in Figure 3.
The 3-dimensional imbedding appears to be reasonable, i.e. roughly equivalent
to the procedures in higher dimensions, only in a region of delays below k = 75
and in a second region around k = 150.

These two tests are roughly compatible with the findings in [35]. We may
argue that there are indeed two delay regions where the 3-d BF-imbeddings
seem to behave somewhat better than for all other delays. Note that in [35]
and many other precedent and subsequent papers, only tests along the one in
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Figure (2) were done.

On the other hand, when the test K, eq. (4), is considered (see Figure
3), we verify that 3-d BF-imbeddings fail for all delay values while the 4-d
alternatives appear to be acceptable, at least in a region around k = 50.

The strong dependence of the K,,;, value with the value k of the delay
occurring in the 3d BF-imbeddings, also contradicts a standard expectation
regarding delay imbeddings, since the delay is not supposed to be a critical
variable. On the contrary, the higher dimensional imbeddings do not contradict
this expectation.

Hence, so far the tests already suggest that none of the 3-d BF-imbeddings
is a true imbedding since they fail the test K,,;,. In the light of this result
we learn now that the slightly worse performance of the 3-d BF-imbedding in
the two initial tests was indeed decisive. To confirm this conclusion we study
the time-intervals between close returns for one of the best candidates, with
delay k& = 50. We plot —log(d) against ¢, where d is the distance measured
in the BF-imbedding and ¢ the time between d-close returns (in sampling-time
units), comparing the results for 3d and 4d BF-imbeddings. Larger values of
—log(d) correspond to closer returns. We observe in Figure 4 that there exist
recurrences in the 3d BF-imbedding that are removed in 4d. These returns
occur at intermediate periods and suggest spurious close returns arising as a
consequence of the projection. Note that the return times in the 4d alternative
are well-tuned with the period of the forcing.

i b by

0 500 1000

2000 2500 3000 0 500 1000 1500 2000 2500 3000
9

Figure 4: Detection of the natural period. Left: 3d procedure. Note the spurious
dots between peaks and the relatively thick periodic peaks. Right: 4d procedure.
The spurious dots have dissappeared and the peaks are sharper at the base.
Larger values on the y-axis correspond to closer returns (e = 0.45).

5.2 Examples of application II

We consider here a slightly different situation for the same eq. (2), in this case
setting € = 0.452. Figures (5)—(7) reproduce the computations of the previous
subsection for the present case.

12
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Neighbours

Figure 5: Number (in millions) of neighbouring pairs of points in the ¢ = 0.452
dataset for different values of the delay k£ and different imbedding dimensions.
False neighbours are the difference between consecutive curves.

The false neighbours test of Figure 5 again displays a systematically better
performance when increasing the imbedding dimension. The optimal delay value
for 3d seems to lie near k = 250, but the number of detected neighbours is about
a factor of 10 larger than for 4d procedures. The scale of the graph does not
allow to draw conclusions about how “good” the 4d procedure could be when

60000 T T T
— 3d
4d
5d
- 6d
40000 | —
=
E
Z
20000 —
0 e Lol b
0 50 100 150
Delay Delay

Figure 6: K4, and K,,;, tests for different values of the delay k and different
imbedding dimensions. The test time was arbitrarily taken as A = 70 (e =
0.452).

The test Kpq, (Figure 6) displays now an unacceptable performance both
in dimensions 3 and 4, while the unsuccessful performance of dimension 3 in
Knin (Figure 6) renders the scale insufficient to read any differences in higher
dimensions.
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Finally, the detection of the natural period (Figure 7) displays returns (al-
though not very close) for essentially all investigated time-intervals in dimension
3.

L L L L L 2 L L L L L
0 500 1000 1500 2000 2500 3000 0 500 1000 1500 2000 2500 3000
)

0 500 1000 1500 2000 2500 3000

Figure 7: Detection of the natural period. Upper left: 3d procedure. Note the
abundant spurious dots between peaks and the relatively thick periodic peaks.
Upper right: 4d procedure. Part of the spurious dots persist although the peaks
are getting sharper at the base. Second row: 5d procedure. The peaks are

now much sharper. Larger values on the y-axis correspond to closer returns
(e = 0.452).

The overall picture given by these tests is that a relatively small change in
the system parameters produced a dramatic worsening of the performance of
different BF-imbedding procedures. Not only are the 3d candidates in this case
clearly insatisfactory, but even the 4d computations may also be insufficient.

6 Imbedding techniques for Periodically Forced
Oscillators

The results in Figures 4 and 7 indicate a correct way to proceed in order to
generate dynamical data from a recorded variable of a periodically forced os-
cillator. It is an immediate fact arising from eq. (1) that recording the two
variables (x;, ¢;) of a periodically forced oscillator, then we can reconstruct the
original phase-space data, for sufficiently small sampling intervals. First we
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numerically compute the time-derivative of the z-array and from each pair of
recorded variables generate a point of phase-space, namely (x;, v;, ¢;), to within
the accuracy of the recording and numerical procedures.

If, as it has been frequently the case, ¢ is lacking from the experimental
records, still the numerical evidence from the Figures strongly supports the
assumption that there exists in the data a natural period where the quality
and extent of the close returns is several orders of magnitude better than for
any other return-time (one unit of the vertical axis corresponds to a factor of
e). There is a clear difference (detectable already by inspection) between the
height of the regular peaks in both figures and the typical height of the irregular
part of the graph. Note also that the quality of the sharp peaks deteriorates
for increasing time, being this compatible with the fact that the sampled data
arises from orbits lying in the vicinity of unstable period-1 or period-2 orbits,
hence longer return times accumulate larger errors.

Periodically forced oscillators cannot have other periodic orbits than those
given by the returns on the Poincaré section. It is hence a given assumption that
the natural period of the data corresponds to a multiple of the forcing period.
In this way we can associate to each data point x; a phase-value ¢; = 27 /T,
where T is the natural period given by inspection of Figures (4) and (7). In the
present case we have T' = 300.

The data in this manuscript was numerically integrated using a computer
program, hence the sharp peaks with periodicity 7" = 300 in Figures 4 and 7.
For the model problems analyzed in this manuscript, the reconstructed data sets
(zi,24,%;), ¢ = 1,--+, N coincide up to numerical accuracy with the outcome
of the numerical integration of eq. (2). In a typical experimental setup, the
forcing period need not be an integer multiple of the sampling time, and some
subsequent estimation procedure for the forcing period may be required.

7 The Issue of Topologically Inequivalent Imbed-
dings

In the light of these findings, the results in [35] deserve reevaluation. Is it pos-
sible that two bona-fide imbedding procedures yield topologically inequivalent
results, e.g., different braid-types for the same orbit? Let us try to understand
how and why this could be possible.

One source of inequivalences for periodically forced oscillators may lie in
the fact that there exist inequivalent control sections. Indeed, the oscillator in
eq.(2) has the trivial periodic orbit (0,0, ¢). A control section ¢ = ¢ represents
this orbit as a fixed point. On the other hand, a control section & = vy cannot
detect this orbit (not even for vy = 0, when it would entirely lie on the control
section), but it will still detect all periodic orbits linked with the trivial one. For
the choice vy = 0, the period of the orbits in this control section will increase
by a factor given by their linking number with the trivial orbit.

Another source of inequivalences may be that it may not be possible to
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extend a bona-fide procedure to the whole of phase space, although it seems
to work for a limited data set. As a general rule, when the available data
leaves large portions of phase-space unsampled or poorly sampled, different
procedures may handle the data in different and inequivalent ways. Essentially,
two different imbedding procedures may yield two different ways of imbedding a
closed curve in a three dimensional space. However, topological assertions about
the imbedded orbits carry assumptions about the complement of the orbit in
phase space. If the data has insufficient sampling in this complement, there is
no way to support these assumptions.

If the data collection is improved in the sense of extending the well-sampled
region of phase space (for example, incorporating trajectories in the basin of
attraction of the invariant attractor) to the point that all periodic points can
be detected, immersed in a sea of data points sampling a topological disk in the
Poincaré section, then, having reached this point we also reach the certainty
that at least one of the bona-fide procedures yielding inequivalent topological
properties actually was not an imbedding. Hence, in order to interpret exper-
imental data, it is advisable to render explicit the additional hypotheses not
supported in the actual data and to keep them to a minimum.

In the particular case in which topological inequivalent “imbeddings” have
been reported [35] the word imbedding refers to the imbedding of a periodic
orbit in R® (or of S! in R?). The “imbeddings” do not represent a disk in
the Poincaré section but rather three disjoint disks. By the above reasoning,
they cannot both be extended to a whole disk in the Poincaré section, a fact
already recognized in [35], where one goal was to address naive and “black-box”
use of topological implications. Furthermore, none of the proposed imbedding
procedures passes the more demanding tests introduced in this work, so they
are not satisfactory candidates in the first place.

However, two procedures that properly identify the control section ¢ = ¢q
and that can be extended to all of phase space, will render the same braid types
for all orbits, this is a consequence of the nature of the space R? x S! inspiring
the definition and elaboration of the concept of braid type [40, 46].

8 Conclusions

We have explored some possible imbedding methods for attractors in periodi-
cally forced oscillators (1), particularly looking for 3-d reconstructions allowing
for topological analysis of the attractor. In this exploration we have shown that
reconstructions of the form (x, &, x3); are projections from phase-space (and not
imbeddings) for broad choices of x3 including delay coordinates. We have fur-
ther demonstrated that such projections do not produce a flow in the projected
space as a projection of the flow in phase space.

While z alone as information source appears to be insufficient to describe
periodically forced oscillators with 3-d imbeddings, the pair (x, ¢) does provide
a complete description of the system. In optimal sampling situations, the phase
¢ can be estimated from the time-series of . By considering the characteristic
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times of the close returns it is possible to detect the clock. Thus, effectively
sampling the phase ¢ as the measured time.

This newly gained perspective suggests how false neighbours tests can be
complemented with new tests. In the examples we explored, the new tests
allowed to discard proposed imbeddings that previously could pass the controls
based on false neighbours only.

Indeed, a drawback of the false neighbours test is that if the data contains
periodic orbits, then the test will persist detecting neighbours across many di-
mensions. There is therefore some arbitrariness in deciding when to stop the
procedure and declaring a given imbedding dimension as optimal. The new
checks K4 and K, on the contrary, consider if a smooth flow is compatible
with the proposed imbeddeding of the data. Here, the existence of periodic or-
bits will not influence the estimates. For the special case of periodically forced
oscillators, the return times test exploits the periodicity of the forcing to accept
or reject proposed imbeddings.

We summarise the conclusions as an itemlist:

e Dynamical reconstructions of the form (z, &, z3) are projections from phase-
space and not imbeddings.

e The coordinate pair (x,¢), on the other hand, does provide a complete
description of the system (from which a good imbedding can be extracted).
In optimal sampling situations, the phase ¢ can be estimated from the
time-series of x.

e The method of false neighbours, although a good indicator, is not sensitive
enough to discriminate between imbeddings and not-imbeddings.
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Appendix I: Basic summary on imbeddings

An imbedding® consists of two parts. First a map f : M — N (of an m-
dimensional manifold M to a manifold N) that is homeomorphic onto the image,
i.e., f is injective and continuous, and the inverse map defined from f(NN) to
M is also continuous. Further, the induced map between tangent spaces at
each point of M is injective (this is called an immersion), i.e., m independent
directions at T, are mapped onto m independent directions at T’ (y,).

The imbedding of abstract manifolds in R™ is treated in the theorems of
Whitney [24]. The simplest theorem states that any compact Hausdorff* man-
ifold of class C" (r > 1) can be imbedded in R™, for n large enough. The idea
behind this statement is that since a compact manifold is defined by a finite
set of local charts®, we may build an imbedding satisfying the definitions more
or less by putting these charts “beside” each other so that their images land in
different dimensions on a huge-dimensional space [47]. The famous imbedding
theorem of Whitney states that compact, Hausdorff, C" (r > 1 this time) mani-
folds can be imbedded in R*™*! [47]. Further refinements have been produced,
e.g., a similar result holds for non-compact manifolds, it holds already with
r = 1, already dimension 2m is enough to imbed any manifold (but for special
classes of manifolds the minimal imbedding dimension is even lower), etc.

Part of the intuition behind Whitney’s proof was based on approximations:
Given any C" map g : M — R?*™+1 there is an imbedding f arbitrarily close to
it (i.e., for any positive ¢ an imbedding f can be found such that for all z € M,
[f(z) = g()| < e [47]).

Takens [20] profitted of the approximation approach and realized that given
a smooth real-valued outcome function of a dynamical system with a smooth
vector field X (and associated flow ®;(x)), then it is a generic® property that
the construction (y(z), y(®s(x)), -, y(Pams(x))) is an imbedding of the original
manifold (where ®;(z) lives) on R*™*1,

3There are many spellings of this word circulating in the literature. We adopt the spelling
used by Whitney [24] in his fundamental work.

4i.e., separated. Most “natural” manifolds in applications are Hausdorff.

5C7-smooth maps from finite open connected regions to R™.

SIn this context, generic means that the set of functions y and vector fields X yielding
imbeddings is an open and dense subset of the set of all smooth functions and smooth vector
fields.
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