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Packed beds contained in cylindrical vessels are widely applied in
process industries, especially as fixed bed catalytic reactors. Fluid-
dynamics and transport processes, particularly in multitubular

beds exchanging heat with an external medium, are strongly influenced
by the bed structure, which in turn is defined by the packing geometry
and the ratio between the bed diameter and packing size, called the
aspect ratio, a = dT/dp.

Radial structural properties have been studied from different points of
view. In particular, radial voidage profiles have been experimentally
evaluated in several studies (e.g., Ridway and Tarbuck, 1966; Benenatti
and Brosilov, 1962; Goodling et al., 1983; Mueller, 1992). For spherical
or round particles, the radial voidage changes from exactly one at the
vessel wall to an asymptotic value in the bulk of the bed in the manner
of a damped wave. This variation is explained by the fact that the vessel
wall prevents particles from being randomly distributed close to it and
causes the formation of an adjacent particle layer. In turn, this first layer
induces the building of a less neatly defined second layer and so on. 

In order to obtain a quantitative description of radial voidage
variations, some alternatives have been employed (Mariani et al., 1998).
The approach most frequently used is to advance an empirical function
and adjust some fitting parameters by regression of experimental data.

An alternative approach is to develop a model to describe the radial
distribution of particle centres  (Govindarao and Froment, 1986; Mariani
et al., 1998). The distribution is also evaluated from experimental
information. This approach allows the evaluation of radial voidage
profiles, but in addition, it intrinsically provides the identification of the
particle layers nearest to the vessel wall, from which a discrete model for
the solid phase in packed beds can be formulated. 

The aim of this work is to reach a satisfactory description of the
packed bed structure in the region close to the vessel wall for the case of
uniform spherical packing. The region extending from the wall up to one
particle diameter (i.e., that corresponding to the first particle layer) is
considered critical with respect to aspects such as channelling
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A model describing the radial distribution of
monosized spheres in randomly packed beds up to
distances of about two particle diameters from the vessel
wall is presented here. The model is based on the
existence of a highly ordered layer of particles adjacent to
the wall followed by a more diffuse, but still identifiable,
second layer. Expressions generated from simple geomet-
rical concepts (intersection between a cylindrical surface
and a sphere) straightforwardly allow calculating the
radial voidage profile given the radial distribution of
particle centers and vice versa. These expressions are
employed to fit the model to measures of voidage profiles
within a wide range of aspect ratios, a = (RT /Rp). The
model can be used to accurately predict radial voidage
profiles, but it is stressed that the identification of particle
distribution constitutes more valuable information than
an empirical expression for describing voidage variations.

On présente ici un modèle décrivant la distribution
radiale de sphères monodisperses dans des lits garnis
aléatoires jusqu’à des distances d’environ deux diamètres
de particules de la paroi du réservoir. Le modèle s’appuie
sur l’existence d’une couche très ordonnée de particules
adjacentes à la paroi, suivie d’une seconde couche, plus
diffuse mais cependant identifiable. Les expressions
provenant de concepts géométriques simples (intersec-
tion entre une surface cylindrique et une sphère) permet-
tent de calculer directement le profil de vide radial
lorsque la distribution radiale des centres de particules
est donnée et vice versa. Ces expressions servent à caler
le modèle de mesures de profils de vide dans une vaste
gamme de paramètres d’élancement, a = (RT/Rp). Le
modèle peut être utile pour prédire de manière précise
les profils de vide radiaux, mais il faut dire que la détermi-
nation de la distribution des particules constitue une
information plus valable qu’une expression empirique
pour décrire les variations de vide.
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(Winterberg et al., 2000) or heat transfer toward the wall
(Legawiec and Ziólkowski, 1994). Thus, attending to these
practical conclusions, we will restrain the detailed description
up to distances of about 2 to 2.5 particle diameters from the
wall (the region covered by the first two layers). 

For this purpose, a model in which the bed is divided into
zones identified by the number of particle centres lying on them
will be developed. The model incorporates the experimental
evidence presented by Legawiec and Ziólkowski (1994)
concerning the particle layer adjacent to the wall. In addition,
experimental voidage profiles from different sources covering a
wide range of aspect ratios will be considered for adjusting the
model parameters. 

Both fitting the model to the experimental data and for using
the model as a predictive tool for the radial voidage profile, a
mathematical relationship between a distribution of particle
centres and the voidage profile is required. This relationship has
been recently presented (Mariani et al., 2001) in terms of
elliptic integrals, avoiding the use of numerical integration and
accounting exactly for curvature effects. 

A Model for the Distribution of Particle Centres
Considering a packed bed long enough to neglect end effects,
the radial density function of particle centres ρ(rc) is defined so
that [2πρ(rc)rcdrc] accounts for the number of particle centres
per unit bed length in a cylinder of radius rc and thickness drc.
Recalling that in randomly packed beds, particles are accommodated
from the vessel wall as a series of layers with a decreasing
degree of order, the density function ρ(rc) can be conceived as
built up from the contributions of a series of zones of high
concentration of particle centres separated by spaces of negligible
concentration. The first zone, corresponding to particles with
their centres tight [to a distance (1/2)dp] to the wall, will show
the highest density of particle centres and a very thin width.
The second zone will be confined to a distance of about (3/2)dp,
but it will be thicker and have a lower particle centre density
than the first layer. This trend is maintained toward the interior
of the bed. If the aspect ratio is high enough, a point is reached
in which the zones overlap (i.e., no space in between is left),
defining an innermost, fully randomized region extending up to
the bed axis. This region can be considered as the last zone,
with uniform density of particle centres. From this description, it
is better to write down ρ(rc) as the sum of the zone contributions
rather than as a continuous function:

In order to define the zone density function ρj(rc) and the
number of zones, M, some conclusions from previous investigations
are used. Legawiec and Ziólkowski (1994) measured the
position of particle centres located in a region extending up to
approximately 1dp from the vessel wall. To perform these
measures, the authors generated a consolidated bed from the
solidification of a polymer solution in its voids, which could be
extracted from the vessel.

The visible structure adjacent to the wall allowed them to
count the number of particles in effective contact with it. In
addition, they used a depth gauge to verify the non-existence of
separation between these particles and the vessel wall. For the
more internal spheres, the experimental procedure consisted of
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drilling through the polymer to a sphere surface. Then, the
depth gauge was introduced into the orifice to measure the gap
between the sphere surface and the vessel wall. In this way, the
spheres close to the wall were classified in three groups:
• Group A: spheres whose centres are exactly at 0.5dp from

the wall (in effective contact with it).
• Group B: spheres whose centres are in an interval 0.9 to 1dp

from the wall.
• Group C: spheres whose centres are in an interval 1 to 1.1dp

from the wall.
Particles were not detected out of the intervals indicated,

i.e., between 0.5 to 0.9dp.
Most of the spheres were those belonging to Group A,

amounting 90.4%. Only 1.1% of the spheres classified as
Group B, while a more significant percentage, 8.5%, was
counted for Group C.

Two significant conclusions arise from these results. First of
all, a high concentration of particle centres exists at a distance
of 0.5dp from the wall. They can be regarded as those particles
comprising a first particle layer in contact with the wall. This
fact will be incorporated in the proposed model by considering
that the first zone of particle centres is defined by a density
function, ρ1(rc), equaling an impulse function concentrated at
0.5dp from the vessel wall.

On the other hand, the existence of Group B and C particles
is justified by failures in the array of particles in contact with  the
wall, causing holes in which Group B and C particles can fit.
Since Group B particles are scarce, in order to simplify the
model we will lump both groups into a second zone that
extends from 1dp to 1.1dp with a uniform density function
ρ2(rc). The particles in this zone will make up 9.6% of the total
number in both the first and second zones. 

The identification of the second particle layer (third zone of
the model) is more difficult since, as described above, the effect
of the wall becomes weaker towards the bed axis. Thus, we can
expect that the particle centres extend over a finite region
rather than being concentrated at a point as in the first layer,
but the position and thickness of the third zone can not be
quantified beforehand. Consequently, the third zone of the
model will be defined as presenting a finite thickness (to be
evaluated) and a uniform density function ρ3(rc).

Particle centres beyond the third zone and up to the bed axis
will be assumed to be uniformly distributed in a fourth zone.
The thickness of the separation gap between the third and
fourth zones will be also regarded as a parameter to be adjusted
from experimental evidence. 

According to the outlined model, Equation (1) becomes:

with 
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where Npj is the number of particle centres per unit bed length
in the j th zone, rj

i and rj
e are the internal and external radii of

the j th zone and the impulse function is normalized according to: 

where xj is the dimensionless distance from the wall in units of dp.
A sketch of the proposed model for the distribution of

particle centres is shown in Figure 1.
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Figure 1. Sketch of zones for defining the function ρ(rc). 

Table 1. Expressions for S(ξ,µ) (Mriani et al., 2001).
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The parameters to be adjusted are: the number of particle
centres per unit bed length in the first and the third zones, Np1 and
Np3, the internal and external radii of the third zone, or, according
to Equation (4), x3

i and x3
e, and the distance x4

e for the fourth zone.
For the second zone, according to the assumptions discussed

above, Np2 = 0.106Np1, x2
i = 1.1 and x2

e = 1. Finally, the number
of particle centres in the fourth zone Np4 is evaluated from the
total number of particles in the bed Np, which should satisfy: 

Np can be expressed in terms of the average bed voidage ε−:

Values of ε− are calculated in this work from the experimental
data used for fitting the parameters. By contrast, when using
the model for predictive purposes, the following expression
based on that suggested by Mariani et al. (1998) can be used
to evaluate ε− as a function of the aspect ratio:

Relationship between Voidage Profile and
Particle Centre Distribution
The local voidage ε(r) is defined as the fraction of voids
intersected by a cylindrical surface of radius r. For monosize
spheres, ε(r) is related to ρ(rc) as follows (Mariani et al., 2001):

where S(ξ, µ) is the area of a cylindrical surface of radius ξ
intersected by a sphere of radius Rp centred at a distance µ from
the cylinder axis.

Replacing ρ(rc) from Equation (2) into Equation (7) and
accounting for the definitions given by Equations (3a, b), the
procedure developed by Mariani et al. (2001) yields:

where V(ξ, µ) is the volume of a sphere of radius Rp left inside a
cylinder of radius ξ. Again, the distance from the sphere centre
to the cylinder axis is µ.

The geometrical quantities S(ξ, µ) and V(ξ, µ) are calculated by
using the expressions displayed in Table 1 (Mariani et al., 2001),
where RF , RD and RJ are the Carlson’s elliptic integrals of the 1st,
2nd and 3rd kind respectively (Press et al., 1992).

Adjusting the Model Parameters from
Experimental Information
Several experimental techniques have been used to evaluate
radial voidage profiles in packed beds. A review of the subject
can be found in Mariani et al. (1998). An analysis of available
experimental data in their bibliography allowed some unreliable
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data to be discarded. Accordingly, radial voidage profiles with
the following features were discarded as unreliable:
1. Those not showing the typical damped wave from the vessel

wall to the axis; and
2. Where the extrema along the wave show atypical values. 

The sources of experimental radial profiles finally selected,
along with aspect ratios and average voidages, are shown in
Table 2. It must be pointed out that these data involve a wide
range of aspect ratios.

A FORTRAN code (Greg Software Package) developed by
Stewart et al. (1992) was used to fit the experimental radial
profiles to Equation (8). 

The fitted values of the dimensionless distances, x3
i , x3

e and x4
e,

which define the locations of the third and fourth zones, are
shown in Table 3. No significant trend between these parameters
and the aspect ratio was found. 

By contrast, the number of particles in the first and third
zones Np1 and Np3 (the remaining fitting parameters) showed
a dependence on the aspect ratio. In order to correlate this
behaviour, we have considered compact arrangements that
can be envisaged for a layer of particles accommodated against
the vessel wall. There are at least two ways of establishing
compact arrangements. The first, a ‘crown’ arrangement, is
defined by adding particles in contact with one another
around the internal perimeter of the tube. The next crown of
spheres is built in the same way, allowing each particle to rest in
the cavity formed by each pair of particles in the preceding
crown, and so on. The second alternative, a ‘string’ arrangement,
is obtained by placing one particle on top of another along the
bed height, forming a string of particles. The next string is built
by lodging each succedding particle in the holes left in the
former string. The number of particles in a crown or the
number of even strings turns out to be a whole number only
for some specific values of a. For instance, just two strings fit in
the tube if a = 1.866, four for a = 2.22 and so on. The crown
arrangement can be used from a minimum value a = 2, when
a crown is formed by two spheres. Nonetheless, for our
purposes the number of particles per unit bed length, Nc,
resulting from either arrangement, will be regarded as a
continuous function of a. 

Table 2. Experimental data used for the fitting procedure.

a ε– Authors

5.60 0.438 Benenatti and Brosilow (1962)

7.62 0.422 Ridgeway and Tarbuck (1966)

8.56 0.417 Goodling et al. (1983)

10.70 0.408 Goodling et al. (1983)

14.10 0.400 Benenatti and Brosilow (1962)

20.30 0.392 Benenatti and Brosilow (1962)

∞ 0.378 Benenatti and Brosilow (1962)

Table 3. Values of fitted parameters.

Parameter x3
e x3

i x4
e xw G1 G3

Value 1.209 1.486 1.735 0.894 0.825 0.710
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It has been proven that values of Nc for both arrangements are
almost indistinguishable if a > 2.2. As the minimum a employed
here for the fitting procedure is a = 5.6, no difference is actually
found. Adopting the expression for the string arrangement:

Taking Equation (9) into account, we have expressed the
number of particles in the first zone of our model by:

where G1 is a parameter considered independent of a.
For Np3, an analogous expression can be written by

considering a ‘fictitious wall’ at a dimensionless distance xw
from the vessel wall. The aspect ratio for the bed thus defined results:
a’ = a – 2xw.

where G3 is a parameter, which is also assumed independent of a.
In summary, the parameters to be fitted for the range of

aspect ratios here analysed are: xw, G1 and G3. The best-fit
values are presented in Table 3.

Best values of N*p1 and N*p3 were also obtained for each
experimental voidage profile to check if the ratios N*p1/Nc and
N*p3/Nc can be effectively considered as being independent of
a. The comparison between, N*p1/Nc, N*p3/Nc and G1, G3 is
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displayed in Figure 2. It can be clearly appreciated that the
ratios N*p1/Nc and N*p3/Nc show no definite trend in the studied
range of a, and their dispersion is satisfactorily low. The values
obtained for G1 and G3 indicate that both the first and second
particle layers are more loosely packed than in a compact
theoretical arrangement. As expected, the second layer deviates
more strongly than the first one. 

The quality of the fit can be appreciated in Figures 3a, b for
a = 5.6, and a = 14.1 and in Figure 4 for a = 20.3. The model
fits the experimental curves in a very satisfactory way, from the
wall up to x ≅ 2.2, the region where the voidage profile is
dominated by the two first particle layers included in the model.
Two stationary minima and two stationary maxima appear in
this region. The values of voidage and positions of these

Figure 2. Fitting of the model parameters: � Optimum N*p1/Nc values
for each a; � Optimum N*p3/Nc values for each a; ––––– Optimum G1
and G3 values (Equations 10, 11).

Figure 3. Comparison between experimental and predicted radial
voidage profiles (Equation 8): (a) at a = 5.6 (Benenatti and Brosilow,
1962); (b) at a = 14.1 (Benenatti and Brosilow, 1962).
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extrema are particularly well reproduced by the model. The
overall error for all fitted experimental voidage profiles,
expressed as the average of absolute values, (εexp – εcalc)/εexp, is
about 7%. 

Two sets of experimental values not included in the fitting
procedure are those presented by Mueller (1992) at a = 5.96,
and by Giese et al. (1998) at a = 9.3. A very good agreement is
found between model predictions and these data, as shown in
Figures 5 a, b. 

As noted above, the region from the vessel wall up to one
particle diameter is critical as far as local bed transport proper-
ties and local permeability are concerned. The results from the
model are particularly precise in this region and some points are
worth remarking: 

• The effect of the vessel curvature on the position of the first
minimum voidage is correctly predicted. A close inspection
of experimental voidage profiles shows that the position of
the first minimum moves farther from the wall as a
decreases, as revealed by the data collected by Mariani et al.
(1998). At large values of a, the first minimum corresponds
to xmin = 0.5, i.e., the position of the centre of a particle
touching the wall. At any value of a, the minimum voidage
location predicted by the model can be found by minimizing
the values from Equation (8), considering that only the first two
zones will contributes in the region close to x = 0.5. The results
thus obtained are in good agreement with the experimental
data. The values of xmin can also be precisely approximated,
at least for a > 4, by the following expression:
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• The model predicts a maximum slope of the voidage profile
at the vessel wall. At least within the precision allowed by the
discrete number of data points reported in experimental
work, the slope of the voidage profile is maximum at the
vessel wall. This effect can be appreciated in Figures 3, 4 and 5.
These figures also show that the model yields a maximum
slope at the wall. This property can only be achieved if ρ1(rc)
is defined as an impulse function. By contrast, if a step
function is assumed for ρ1(rc) (as for the remaining zones),
the slope at x = 0 will be exactly zero, and an inflection point
will appear closer to the wall, indicating a thinner first zone. 

The effect of the first zone size can be visualized from the
pioneer model for particle centre distribution developed by
Govindarao and Froment (1986). The bed is divided into zones of
equal thickness (1/6)dp, with some zones devoid of particles centres

Figure 4. Comparison between experimental radial voidage profile at
a = 20.3 (Benenatti and Brosilow, 1962) and values predicted by the
present model (Equation 8) and from Govindarao and Ramrao (1988).

Figure 5. Comparison between experimental and predicted radial
voidage profiles (Equation 8): (a) at a = 5.96 (Mueller, 1992); (b) at a = 9.3
(Giese et al., 1998).
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and others filled in by particle centres with uniform density. The first
zone, as in the model presented here, represents the first particle
layer and extends from x = 0.5 to x = (2/3). Values of Np1 for this
model were correlated later with a by Delmas and Froment (1988)
and, independently, by Govindarao and Ramrao (1988). The
profile predicted from the model for a = 20.3, according to results
obtained by Govindarao and Ramrao (1988), has been plotted in
Figure 4, where the shape of the curve close to the wall produced
by the finite thickness of the first zone is clearly revealed. 

Extension to Lower Aspect Ratios
The lowest a included in the set of experimental data employed
in the fitting of model parameters is a = 5.6, so the use of values
reported in the previous section should be constrained within
this lower bound.

Although it is not common to find industrial multitubular
packed beds with aspect ratios a < 5.6, the interest of such cases
cannot be ignored, as for pilot plant applications. The range
1 < a ≤ 2 is very specific in the sense that stable particle positions
can be conceived only if they touch the wall. This fact has been
treated quantitatively by Govindarao et al. (1992), who
developed an analytical expression to evaluate Np, which was
successfully validated against experimental evidence. In terms of
the model presented here, the first zone encompasses the whole
bed with Np1 = Np. The use of Equation (8), reduced to ε(r) =
1 – Np1S(r,RT – Rp)/(2πr), was suggested by Mariani et al. (2000).

To our knowledge, there is little experimental information in
the remaining range 2 < a < 5.6. We consider here the
experimental results for local voidages reported by Mueller
(1992) for a = 3.96, which are plotted in Figure 6, along with
predicted values from an empirical correlation proposed by the
author. If we employ the approach presented here for this
aspect ratio, it must be noted that the fourth zone looses its

meaning because its thickness becomes almost negligible
(0.14dp), with the value x4

e in Table 3. On the other hand, the
shape of the experimental profile indicates that the fraction of
solid in the bed centre region is very small. The fourth zone is
then removed, as a first approximation. We perform the regression
of these data to get a specific set of best-fit parameters. It turns
out that the third zone is better modelled by an impulse
function, rather than by a step function, for ρ3(rc ). Then,
Equation (8) becomes:

The fitted values were G1 = 0.801, x3 = 1.411 (the location of
the second pulse), and G3 = 0.765 calculated from Equation (11),
with a’ = a – 2(x3 – 0.5). A very good match with the
experimental results is obtained in this way (Figure 6). 

The values of G1 and G3 and the negligible thickness of the
third zone suggest that the first and second particle layers
exhibit a much closer resemblance for a = 3.96 than for a > 5.6. In
particular, the second zone has become more compact and well
ordered. This effect is likely produced by the size of the tube, which
very approximately allows the formation of just two particle layers,
thus impairing the dispersion of second-layer particles.

It can be concluded that the approach followed in this study is
likely to be useful for low aspect ratios in the range 2 < a < 5.6,
while very strong geometrical constraints within this range may
introduce configurations highly depant on the aspect ratio, which
in turn will be reflected by the values of the model parameters.

Conclusions
A model capable of describing the structure of a cylindrical packed
bed of monosized spheres has been presented in this work. It is
based on evaluating the density number of particle centres along
the tube radius. The model represents a better alternative than
traditional empirical correlations for estimating radial voidage
variations in the region close to the vessel wall. Voidage profiles
can be precisely described and at the same time, the first and the
second particle layers adjacent to the wall can be identified. The latter
information is essential for modelling packed beds from a discrete
point of view, i.e., by acknowledging the discontinuous nature of
the solid phase. This kind of model is likely to provide a better
support for interpreting and correlating bed properties close to
the vessel than pseudo-continuous models. 

The model parameters were estimated by fitting a considerable
amount of experimental data covering a wide range of aspect
ratios (a = 5.6 – ∞). These parameters have a clear physical
meaning, as they define the spatial location and density of the
particle centres. Those fixing the position of particle centres
were found to be practically independent of the aspect ratio of
the bed, while the number of particle centres in each zone was
expressed in terms of a compact arrangement of particles,
producing a theoretical dependence on a. 

For 2 < a < 5.6, the experimental information is very scarce.
An experimental voidage profile for a = 3.96 could be well fitted
to the model while employing a different set of values for the
parameters. Thus, the approach followed in this study is likeliest
to be useful in this range of a, and more experimental data are
needed to reach predictive capabilities.

Finally, it is worth noting that real spherical packing will
usually present some dispersion in particle size. These cases are
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Figure 6. Comparison between experimental (Mueller, 1992) and
predicted radial voidage profile (Equation 13) at a = 3.96.
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much less systematically studied, and further effort is needed to
obtain predictive expressions. The formulation presented here
could be readily extended by assembling the contribution of
particles in each size class.
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Nomenclature
a aspect ratio, (dT/dp)
dp particle diameter, (m)
dT vessel or tube diameter, (m)
Nc number of particles per unit bed length in a compact 

arrangement, (m–1)
Np total number of particles per unit bed length, (m–1)
Npj number of particle centres per unit bed length in the j th

zone, (m–1)
r radial coordinate, (m)
rc radial position of the particle centre, (m)
Rp particle radius, (m)
RT vessel tube radius, (m)

S(ξ, µ) area of a cylindrical surface intersected by a sphere, (m2]
V(ξ, µ) volume of a sphere intersected by cylindrical surface, (m3)
x dimensionless distance from the wall, (RT–r)/dp
xmin value of x corresponding to the first stationary minimum voidage

Greek Symbols
ε− overall bed voidage
ρ(r) radial voidage 
ρ(rc) radial density function of particle centres, (m–3)
ρj contribution of the j th zone to ρ(rc), (m

–3)
ρ−j average number of particle centres in the j th zone, (m–3)
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