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In the Vicsek Model (VM), self-driven individuals try to adopt the direction of movement of
their neighbors under the in°uence of noise, thus leading to a noise-driven order–disorder phase
transition. By implementing the so-called Vectorial Noise (VN) variant of the VM (i.e. the VM-
VN model), this phase transition has been shown to be discontinuous (¯rst-order). In this paper,
we perform an extensive complex network study of VM-VN °ocks and show that their topology
can be described as highly clustered, assortative, and nonhierarchical. We also study the be-
havior of the VM-VN model in the case of \frozen °ocks" in which, after the °ocks are formed
using the full dynamics, particle displacements are suppressed (i.e. only rotations are allowed).
Under this kind of restricted dynamics, we show that VM-VN °ocks are unable to support the
ordered phase. Therefore, we conclude that the particle displacements at every time-step in the
VM-VN dynamics are a key element needed to sustain long-range ordering throughout.
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1. Introduction

Flocking phenomena have attracted great interdisciplinary interest due to their
fascinating characteristics and their ubiquity at all scales, as well as due to their
complex nature. Modeling of swarming and °ocking contributes to the under-
standing of natural phenomena and becomes relevant for many practical and tech-
nological applications, e.g. collective robotic motion, design and control of arti¯cial
microswimmers, and many other self-propelled particle systems1–11 (see Ref. 12 for a
recent review).

Within this broad context, the model early proposed by Vicsek et al.,13 i.e. the so-
called Vicsek Model (VM), has gained large popularity within the Statistical Physics
community, which uses it as an archetypical model to study the onset of order upon
the interactive displacement of self-driven individuals. The VM assumes that the
individuals tend to align their direction of movement when they are placed within a
certain interaction range. This rule, which would trivially lead to fully ordered
collective motion, is complemented by a second one that introduces noise in the
communications (interactions) among individuals. According to the Mermin–
Wagner theorem, continuous symmetries cannot be spontaneously broken at ¯nite
temperature in equilibrium systems with short-range interactions in dimensions
D ! 2.14,15 However, the nonequilibrium nature of the VM leads to a noise-driven
phase transition even in two-dimensional (2D), which separates the ordered phase of
collective motion (for noise amplitudes below the transition) from the disordered
phase of noncollective motion (for noise amplitudes above the transition). Using a
variety of approaches such as hydrodynamic equations,16 long-range links in ad hoc
complex network substrates,17 and o®-lattice simulations,18 it has been shown that
the particle displacements in the VM play the role of e®ective long-range interactions
that are responsible for the onset of ordering.

In the original incarnation of the VM (speci¯cally referred to as Standard VM
(SVM)), °uctuations are implemented as Angular Noise (AN). Later, Gr!egoire and
Chat!e19 proposed an alternative way of implementing °uctuations as Vectorial Noise
(VN). These di®erent implementations of noise are discussed in detail in Sec. 2.
Intriguingly, it has been observed that the di®erent kinds of °ocking behavior (and
even the nature of the phase transition as being discontinuous or continuous) could
seem to depend on the way noise is implemented.13,19–22 In the case of the VM with
VN (VM-VN), the literature describes the transition as discontinuous (¯rst-order).

In order to gain further insight into the VM dynamics and the onset of ordering, a
complex network characterization of the structure of °ocks in the SVM, i.e. the VM
with AN (VM-AN), has recently been performed.23,24 It was found that VM-AN
°ocks are essentially four-dimensional (4D) structures compacti¯ed into the 2D
displacement space. It was also found that the topology of these °ocks, once frozen
(i.e. after disallowing further particle displacements, and evolving the system under a
restricted SVM dynamics in which particles are only allowed to change orientation,
similarly to spins in an XY-like model), are capable of sustaining ordered phases of

G. Baglietto, E. V. Albano & J. Candia

1350095-2



mean-¯eld nature. Recalling that D ¼ 4 is the upper-critical dimension of the XY
model, and that, by virtue of the Mermin–Wagner theorem, XY-like equilibrium
systems are prevented from exhibiting a phase transition in 2D, those results were
interpreted as con¯rming the e®ective 4D nature of VM-AN °ocks.

Given the key role played by di®erent kinds of noise implementation in the ob-
served behavior of the VM, the aim of this paper is to follow up previous works23,24

and investigate the topology of VM-VN °ocks using standard tools from Complex
Network theory. Besides performing an extensive complex network characterization
of the structure of VM-VN °ocks, we present a study of restricted VM-VN dynamics
(where, as explained above, we allow only changes in orientation and treat particles
as spins in an XY-like model de¯ned on a \frozen °ock substrate"). We analyze the
results in the context of the theoretical implications of Mermin–Wagner and,
whenever relevant, we compare our observations to those reported previously on the
VM-AN case.

This manuscript is organized as follows: in Sec. 2, we de¯ne the model and the
simulation method; Section 3 is devoted to the presentation and discussion of the
results; ¯nally, our conclusions are stated in Sec. 4.

2. The VM and the Simulation Method

The VM consists of a ¯xed number of interacting particles,N , which are moving on a
2D plane. The VM is perhaps the simplest model that captures the essence of col-
lective motion in a nontrivial way. In computer simulations, the plane of motion is
represented by a square with periodic boundary conditions. The particles move o®-
lattice with constant and common speed v0 # jvj. Each particle interacts locally
adopting the direction of motion of the subsystem of neighboring particles within an
interaction circle of radius R0, centered at the considered particle. The interaction
radius is the same for all particles. Without loss of generality, we adopt the inter-
action radius as the unit of length throughout, i.e. R0 # 1. The average direction of
motion of all particles within the interaction radius is perturbed by the presence of
noise. There are two main variants of the model according to the way in which the
noise is introduced: AN and VN.

The AN case was originally proposed by Vicsek et al.13 and consists on the
evaluation of the average angle of motion of the neighboring particles at time t, ! t

j,
which is then a®ected by a noise term. Hence, the updated direction of motion for the
ith particle, ! tþ1

i , is given by

! tþ1
i ¼ Arg

X

hi;ji
ei!

t
j

2

4

3

5þ "# ti; ð1Þ

where " is the noise amplitude, the summation is carried over all particles within the
interaction circle centered at the ith particle, and # ti is a realization of a $-correlated
white noise uniformly distributed between '% and %. The AN term can be thought of

Complex network structure of °ocks in the Vicsek Model with Vectorial Noise

1350095-3



as due to the error committed by the particle when trying to adjust its direction of
motion to the averaged direction of motion of their neighbors. The VM-AN model
has received much attention in the recent collective motion literature (see Ref. 12
and references therein). Although not the main focus of this work, we will repeatedly
refer to previously reported VM-AN results as needed.

The VN was introduced by Gr!egoire and Chat!e19 as an alternative approach, in
which noise arises from the interaction between the ith particle and each of its
neighbors. So, instead of Eq. (1), the directions of motion are updated according to

! tþ1
i ¼ Arg

X

hi;ji
ei!

t
j þ "kie

i# t
i

2

4

3

5; ð2Þ

where ki is the number of neighbors of the ith particle.
In this paper, we implement the VM-VN model dynamics by adopting the

so-called backward update rule: after the position and orientation of all particles
are determined at time t, we update the position of the particles at time tþ 1
according to

xi
tþ1 ¼ xi

t þ vi
t"t; ð3Þ

where"t # 1 is the unitary time-step. Equation (3) is then followed by the update of
all velocities at time tþ 1 according to Eq. (1) or Eq. (2). For a detailed discussion on
the impact of di®erent updating rules, see Ref. 22.

The VM exhibits a far-from-equilibrium phase transition between ordered states
of motion at low noise levels and disordered motion at high noise levels. This order–
disorder transition is manifested by the natural order parameter of the system,
namely the absolute value of the normalized mean velocity of the system, given by

’ ¼ 1

Nv0

XN

i¼1

vi

!!!!!

!!!!!; ð4Þ

where ’ is close to zero in the disordered phase and grows up to one in the ordered
phase. The phase transition associated with the onset of large-scale ordered °ocks in
the VM-VN model is discontinuous (¯rst-order).19

By de¯nition, the VM is an automaton, i.e. all particles update their states si-
multaneously in one time-step. The particles move o®-lattice in a 2D square of side
L ¼

ffiffiffiffiffiffiffiffiffiffi
N=&

p
, where & is the particle density. We adopt v0 ¼ 0:5 and & ¼ 2 through-

out. For these parameter values (which are standard in the literature), the system is
known to undergo a ¯rst-order phase transition at the coexistence point
"coex ¼ 0:613.25 Since we are interested in stationary con¯gurations, we start out
our simulations with random initial states and disregard the ¯rst 105 time-steps.
We investigate di®erent system sizes up to N ¼ 4( 105. After reaching the sta-
tionary regime, we determine the set of connected clusters by means of the Hoshen–
Kopelman algorithm26 adapted for the case of o®-lattice systems. In order to build a
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set of complex networks that represent the stationary °ocks generated by the
VM-VN dynamics, we de¯ne that two individuals are linked if the distance between
them is within the interaction radius R0. Hence, complex networks representing
°ocks in the stationary regime are nonweighted and undirected.

From the perspective of our complex-network-based approach, the basic building
blocks of the system are connected networks, where each node is an individual and a
link represents a Vicsek-type interaction between individuals. For a given snapshot
con¯guration of the system, the stationary state is statistically represented by a large
ensemble of such connected networks (°ocks). In order to improve the accuracy of
our measurements, we generate 300 independent steady-state con¯gurations, which
are averaged to determine probability distribution functions of a number of statis-
tical observables. In some instances, we also apply a moving average ¯lter27 to
smooth out short-scale °uctuations from the probability distribution functions.

We also investigate the onset of orientation ordering in so-called frozen clusters.
Clusters of individuals are ¯rst generated using the full VM-VN dynamics, as
explained above. However, once the stationary °ocks are obtained, the particle
displacements (Eq. (3)) are suppressed. Within these frozen clusters, individuals are
still allowed to change their orientation following the VN rule (Eq. (2)), with a noise
amplitude in the range 0 < "f < 1, but their positions in the 2D displacement space
remain ¯xed. Under this kind of restricted dynamics, the particle velocity vectors can
be regarded as \spins" in an XY-like model de¯ned on the complex network substrate
provided by the °ock topology.

3. Results and Discussion

Figure 1(a) shows a snapshot of a con¯guration in the stationary regime of the VM
with VN (VM-VN), where N ¼ 4( 105 individuals move in a 2D displacement space
with periodic boundary conditions. It should be noticed that our implementation of
the VM does not take into account volume exclusion e®ects due to the size of the
particles, as considered in some recent versions of the model.12 Some large-scale
patterns (whose size is comparable to the dimensions of the box of particle dis-
placements) are readily distinguishable in the snapshot of Fig. 1(a); however, micro-
and mesoscopic patterns are much less discernible. As will be shown below, clusters
are present in the system at all scales, from very small °ocks formed by a few
individuals to giant °ocks that carry a sizeable fraction of the mass of the whole
system.

Instead of focusing on patterns in the 2D displacement space, however, we will
consider network representations of °ocks of interacting particles following the
de¯nitions explained in Sec. 2. From this complex network interpretation, the length
of the links does not correspond to the actual physical distance between neighbor
particles, although the intrinsic modularization of the network structure carries
signi¯cant spatial information. The advantage of the complex network perspective is
that we can apply a well-developed conceptual framework, as well as a rich set of
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computational tools, that enable us to fully characterize the system's topological
properties.

Figure 1(b) shows the complex network structure of a typical VM-VN °ock.
Nodes are colored according to their degree: nodes with fewer connections than
average (k=hki < 1) are shown in white, those slightly more connected than average
(1 ! k=hki < 2) in grey, and the highly connected ones (2 ! k=hki) in red. Out of the
148 nodes (individuals) in this network (°ock), we observe three highly connected
ones that appear displayed in red. However, none of these nodes are network hubs
that monopolize most of the links. In other words, the distribution of links is rather
uniform, thus indicating the absence of leaders guiding the °ock as a whole. There is
an abundance of triangles, which indicates a high local clustering, whereas leaves (i.e.
nodes with just one neighbor) are very uncommon. We also observe a pronounced
modular structure with voids separating distinct modules within the °ock, which
suggests the lack of the small-world property.28

Stationary con¯gurations are characterized by an ensemble of °ocks of di®erent
sizes spanning many orders of magnitude. Figure 2 shows the probability distribution
of cluster masses corresponding to di®erent system sizes (N ¼ 4( 104 and 4( 105)
as well as di®erent noise values (" ¼ 0:30 and 0:56). Notice that, here and throughout
this paper, we de¯ne the mass of a connected cluster, mc, as the number of its
constituent nodes. Probability distribution functions (and moments thereof) are
averaged over 300 independently generated steady-state con¯gurations throughout.
In Fig. 2, cluster mass distributions are power-laws with exponents in the range
1:6 ! 'c ! 2, as indicated by the solid reference lines. Statistical errors are below 5%.

(a) (b)

Fig. 1. (Color online) (a) Snapshot of a VM-VN steady-state con¯guration with 4( 105 individuals.
(b) Representation of a VM-VN °ock as a complex network with 148 nodes, 563 links and hki ¼ 7:6. The
color code of a node indicates its degree: white (k=hki < 1), gray (1 ! k=hki < 2) and red (2 ! k=hki < 3).
The noise amplitude corresponding to both panels is " ¼ 0:56 (below the coexistence point "coex ¼ 0:613).
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It is interesting to notice that, in the large-mc region, the distributions depart from
the power-law behavior, which suggests the existence of giant components, that is,
very large clusters that carry a sizeable fraction of the mass of the entire system.

Let us now gain more insight into the structure of the clusters and evaluate the
average path length (APL).28,29 For each pair of nodes ðA;BÞ within a connected
cluster, the path length ‘AB (also known as chemical distance) is de¯ned as the
minimum number of links needed to get from node A to node B or vice versa (in
undirected networks, this distance is the same in both directions). By calculating all
pairwise node-to-node path lengths in the cluster and taking the average, one obtains
the APL, which consequently is a characteristic length of the cluster.

Figure 3(a) shows a log–log plot of the APL as a function of the cluster size mc. In
Euclidean lattices, the volume of an object is related to its characteristic length by an
integer power, i.e. the dimension of the object. Based on this observation, as well as
on the experience gained in the study of fractal objects, it is customary to de¯ne the
dimension (D) of a complex network according to:

APL / m1=D
c ð5Þ

where mc is the complex network size or, in the present context, the cluster mass.29

The solid line in Fig. 3(a) shows the best ¯t of Eq. (5) to the data, which yields
D ¼ 1:98ð2Þ, hence suggesting that VM-VN °ocks are essentially 2D structures. It is
interesting to point out that, in contrast to these ¯ndings, VM-AN °ocks (i.e. °ocks
obtained using AN as prescribed by the so-called SVM) have an e®ective dimension
D ¼ 4:0ð2Þ.23,24 Notice that, here and throughout, error bars are determined from
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Fig. 2. (Color online) Cluster mass probability distributions for di®erent levels of noise and system sizes,
as indicated.
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the ¯tting procedure, which takes into account the individual statistical error of each
data point as well as its departure from the best-¯tting function.

Figure 3(b) shows a log–log plot of the average degree hki as a function of the
cluster size mc. The average degree of large clusters of mass mc > 104 saturates
around the constant value hkis ) 16. For clusters of mass mc < 104, the mean degree
is smaller than hkis due to a non-negligible surface-to-volume ratio of the spatial
distribution of the °ock mass (since surface nodes are less connected than bulk
nodes). Interestingly, the average degree for VM-AN °ocks scales with °ock mass as
a power-law, i.e. hki / m(

c , with ( ¼ 0:50ð1Þ, which has been shown to be consistent
with VM-AN °ocks being 4D structures compacti¯ed into the 2D displacement
space.23,24 In contrast, the results from Figs. 3(a) and 3(b) are consistent with VM-
VN °ocks being °at 2D objects with approximately constant coordination number
(i.e. with similar topological properties as regular 2D lattices).
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6mc

10
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3

A
PL

(a)

10
2

10
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10
4

10
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10
6mc

6

10

16

<k
>

(b)

Fig. 3. (a) Log–log plot of the average path length APL as a function of the cluster size mc. The ¯t of
Eq. (5) to the data (solid line) yields D ¼ 1:98ð2Þ. (b) Log–log plot of the average degree hki as a function
of the cluster size mc. The average degree saturates in the large cluster limit around the constant value
hkis ) 16 (dashed line). In both plots, the noise amplitude is " ¼ 0:56 (below the coexistence point
"coex ¼ 0:613).

G. Baglietto, E. V. Albano & J. Candia

1350095-8



A very important topological measure of a complex network is the clustering
coe±cient, C.28,29 The clustering coe±cient for node i with ki links is de¯ned as

Ci ¼
2ni

kiðki ' 1Þ
; ð6Þ

where ni is the number of links between the ki neighbors of i. Then, the network's
clustering coe±cient is calculated as the average of Ci taken over all vertices, i.e.
C ¼ hCii. Empirical results over a wide variety of real networks have shown that C is
signi¯cantly higher for most real networks than for corresponding random networks
of similar size.28,30,31 Furthermore, the clustering coe±cient of real networks is to a
high degree independent of the number of nodes in the network.

Figure 4 shows the clustering coe±cient C as a function of the cluster size mc

using the noise amplitude " ¼ 0:56. Notice that °ocks of all sizes display a very high
degree of clustering, as we anticipated based on the high density of triangles observed
in the network structure from Fig. 1(b). Also, we observe that the size dependence is
very weak. By ¯tting the scaling relation C / m')

c , we obtain ) ¼ 0:0017ð1Þ.
The asymptotic clustering coe±cient in the limit of an in¯nitely large cluster,

C1, has been shown to depend on the density of particles inside the cluster, &in,
according to

C1 ¼ ½ð4%' 3
ffiffiffi
3

p
Þ&in ' 8+%&in

4ð%&in ' 1Þð%&in ' 2Þ ; ð7Þ

10
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0.65
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C
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-C

Fig. 4. Log–log plot of the clustering coe±cient C as a function of the cluster sizemc. The solid line shows
a power-law ¯t with exponent ) ¼ 0:0017ð1Þ. Inset: by subtracting the asymptotic clustering coe±cient
C1, the exponent )1 ¼ 0:03ð1Þ is determined.
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which is expected to be an excellent approximation in the case of large clusters where
the surface-to-bulk ratio is negligible.24 Since we found that hkis ) 16 in themc ! 1
limit, then Eq. (7) leads to C1 ’ 0:563. The inset to Fig. 4 shows a log–log plot of
C ' C1 as a function of the cluster mass mc. The solid line shows a power-law ¯t for
the decay of C ' C1 as a function of mc, where the exponent is )1 ¼ 0:03ð1Þ.

In order to determine whether modular organization is responsible for the high
clustering coe±cients seen in many real networks, Ravasz et al.32,33 introduced the
scaling law

CðkÞ / k''h ; ð8Þ

where CðkÞ represents the distribution of the clustering coe±cient as a function of
the node degree and 'h is the exponent that measures the hierarchical structure of
complex networks. Indeed, it has been observed that many real networks are com-
posed of modules that combine into each other in a hierarchical manner. These
hierarchical networks are uncovered by a scaling behavior of CðkÞ that follows
Eq. (8) with 'h ’ 1. Figure 5 shows the log–log plot of CðkÞ as a function of the
degree. The drop with the degree is very mild, namely 'h ¼ 0:011ð2Þ, which points to
a lack of hierarchical organization in the network structure of °ocks. We argue that
the emergence of a hierarchical topology is prevented due to the fact that links in the
network construction process are distance-driven and limited by spatial constraints
(since particles must lie within an interaction radius R0 in order to be connected).

Another important network characterization is the degree of assortative mixing,
i.e. whether high-degree vertices are preferentially attached to other high-degree
vertices (in which case the network is termed assortative) or whether, on the

10
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k

0.50

0.60

0.70

C
 (k

)

Fig. 5. Log–log plot of the clustering coe±cient CðkÞ as a function of the degree k, showing that the
network topology of Vicsek °ocks is nonhierarchical.
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contrary, high-degree vertices are preferentially attached to low-degree ones (in the
case of disassortative networks).34,35 Most often, social networks are assortatively
mixed, while technological and biological networks tend to be disassortative. Net-
work models such as classical random graphs and Barab!asi–Albert scale-free net-
works are neither assortative nor disassortative.

One way to determine the degree of assortative mixing is by considering the
average degree hkNNi calculated among the nearest-neighbors of a node of degree k.
Figure 6 shows the log–log plot of hkNNi as a function of k. The solid line shows the ¯t
to a power-law hkNNi / k)a , where the assortativity exponent is )a ¼ 0:80ð1Þ, thus
revealing a very high degree of assortative mixing. Alternatively, one can measure
the degree of assortativity as the Pearson correlation coe±cient of the degrees at
either ends of an edge. This measure, originally introduced by Newman,34 is obtained
from the expression

r ¼ 1

*2
q

X

ij

ijðeij ' qiqjÞ; ð9Þ

where i; j are the degrees of the vertices at the ends of a given edge and the sum-
mation is carried over all edges in the network. Instead of using a node's degree ki,
here we are interested in the node's remaining degree qi ¼ ki ' 1 that excludes the
edge between the two nodes being considered. Moreover, eij is the joint probability
distribution of the remaining degrees of the two vertices at either end of a randomly
chosen edge,36 and *2

q ¼
P

k k2qk ' ½
P

k kqk+2 is the variance of the qk distribution.
The de¯nition of r through Eq. (9) lies in the range '1 ! r ! 1, with assortative

10
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k

10
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10
1

10
2

<k
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>

Fig. 6. Log–log distribution of the average degree hkNNi of nearest-neighbors of nodes of degree k. The
solid line corresponds to a power-law ¯t with exponent )a ¼ 0:80ð1Þ, which reveals that VM-VN °ocks are
highly assortative.
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networks having r > 0 and disassortative ones having r < 0. For instance, several
scienti¯c collaboration networks show assortative mixing in the range
0:12 ! r ! 0:36, while the network of connections between autonomous systems on
the Internet has r ¼ '0:19 and the food web from undirected trophic relations in
Little Rock Lake, Wisconsin has r ¼ '0:28.34 The Pearson correlation coe±cient
measured among large °ocks turns out to be r ¼ 0:79ð6Þ, i.e. a very high assortative
mixing.

As mentioned above, it is well-known that high local clustering and high assor-
tativity are distinct hallmarks of social networks. Moreover, the imitation mecha-
nism between neighboring interacting particles introduced by the VM dynamics
resembles well-studied \ferromagnetic"-like interactions that play a key role in the
occurrence of social cooperative phenomena.37,38 Hence, these observed structural
properties of VM °ocks can be interpreted as arising from the social nature that
underlies the behavior of individuals according to the VM dynamics.

As already discussed in Sec. 1, one of the most intriguing features of the VM is the
onset of long-range ordering and the existence of a noise-driven order–disorder phase
transition in D ¼ 2 dimensions. In order to explore this phenomenon, here we
analyze whether the topology of frozen clusters, once particle displacements and
cluster rearrangements are suppressed, is capable by itself of supporting the ordered
phase. For this purpose, we ¯rst generate con¯gurations of clusters by applying the
full VM-VN dynamics. Once the nonequilibrium stationary state is reached, we
identify all connected clusters and \freeze" them, i.e. we disallow any further dis-
placements of the individuals. From that point onwards, the orientation of the
particles is allowed to evolve according to the rules for VN (Eq. (2)), but subsequent
displacements (Eq. (3)) do not occur. We will refer to this stage as \restricted VM
dynamics." Notice that the full VM dynamics has an entanglement between particle
displacements and XY-type interactions. By resorting to \frozen clusters," we dis-
entangle these two major components.

Figure 7 shows plots of ’ versusm'1
c for VM-VN frozen clusters. The clusters were

¯rst generated with " ¼ 0:56 (below the ¯rst-order transition point at "coex ¼ 0:613)
using the full VM dynamics, and after freezing them, di®erent noise amplitudes "f
were used, as indicated. The extrapolations to the mc ! 1 limit are consistent with
the absence of orientational ordering. The solid line is a power-law with exponent 1=2,
which is the expected behavior in the disordered phase according to the central limit
theorem. Best ¯ts to the data yield exponents equal to 0:52ð2Þ (for "f ¼ 0:7) and
0:51ð2Þ (for "f ¼ 0:8). Since the e®ective dimension of VM-VN clusters is D ¼ 2, we
can interpret the absence of the ordered phase by analogy with the XY model and the
fact that, by virtue of the Mermin–Wagner theorem,14,15 models having the same
symmetries as the XY model cannot exhibit ordered phases in D ! 2.

It is interesting to compare these results with an analogous frozen-cluster analysis
of VM-AN °ocks in the SVM.23,24 In sharp contrast with the results from Fig. 7, it
was then found that even for very large noise amplitudes, the order parameter in the
large cluster limit (mc ! 1) tended to ¯nite values, e.g. ’ ’ 0:04 for "f ¼ 0:9.
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Moreover, exact results from the mean-¯eld solution obtained for an in¯nite density
of individuals were found to closely follow the trend of the computer simulation
results. How can these results be reconciled with Mermin–Wagner? The answer lies
in the e®ective dimension of the complex network topology of VM °ocks. In the VN
case, the topology is that of the °at 2D structure of the displacement space.
Therefore, the \frozen °ock" structure is not able to sustain, by itself, XY-like or-
dered states; the existence of a VM-VN ordered phase relies therefore on the particle
displacements at every time-step, which are introduced into the model dynamics via
Eq. (3). In the AN case, instead, the complex network analysis showed that VM-AN
°ocks are 4D structures compacti¯ed into the two dimensions of the displacement
space.23,24 Thus, the VM-AN \frozen °ock" topology is able to support XY-like
ordered states; moreover, this ordered phase is of mean-¯eld nature, as expected from
the fact that D ¼ 4 is the upper-critical dimension of the XY model.

4. Conclusions

In this paper, we presented a detailed study of the topological properties of VM °ocks
generated under VN. The complex network structure of VM-VN °ocks is charac-
terized by the absence of hubs (°ock leaders), very high clustering, very high
assortative mixing and nonhierarchical topology. Our ¯ndings are summarized in
Table 1. These observations agree qualitatively with the structure of VM °ocks
generated under AN. We believe that these common features can be explained as due
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Fig. 7. (Color online) Log–log plot of the order parameter as a function of the inverse cluster mass for
frozen clusters with di®erent noise levels, as indicated. The solid line shows a power-law with exponent 1=2,
which is the expected behavior in the disordered phase according to the central limit theorem.

Complex network structure of °ocks in the Vicsek Model with Vectorial Noise

1350095-13



to the intrinsic distance-driven, \ferromagnetic" nature of the VM. Indeed, the
model's geographical constraints cause the °ocks to lack hubs or any modular
hierarchies, while the alignment dynamics explain the very high local clustering and
assortative mixing, resembling the typical topology of social networks. Based on this
evidence, we describe VM °ocks as geographically-constrained \social" networks.

In order to gain further insight into the onset of order in the VM, we disentangled
the two main ingredients of the model dynamics, namely particle displacements and
particle alignments (i.e. rotations of the velocity vectors). By resorting to \frozen
clusters" in a restricted VM dynamics, we found that the topology of VM-VN °ocks
is incapable of supporting orientation ordering of the resulting XY-like model, which
agrees with the expectations from the Mermin–Wagner theorem for 2D equilibrium
systems. However, these ¯ndings are in sharp contrast with VM-AN frozen °ocks,
which are indeed capable of sustaining ordered states in the thermodynamic limit, as
shown in Refs. 23 and 24. The apparent paradox is resolved when the e®ective
dimension of VM-AN °ocks is taken into account: the topology of VM-AN °ocks is
4D, and therefore the restricted dynamics leads to mean-¯eld like ordered states, in
agreement with the expected behavior of 4D XY-like models.

The main goal of this paper was to complement previous work in order to analyze
Vicsek Model °ocks from a topological perspective, thus underlining relevant simi-
larities and di®erences arising from di®erent (and widely studied) implementations of
noise in the model. Certainly, further e®orts are needed to understand the interplay
between model dynamics and structure, as well as the intriguing onset of order under
di®erent conditions. We hope that this work will stimulate further investigations in
the complex yet fascinating ¯eld of cooperative phenomena in self-propelled particle
systems.
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Table 1. Summary of results for the topological analysis of VM-VN °ocks.

Observable Result

Cluster size distribution: P / m''c
c 'c ¼ 1:6' 2

Average path length: APL / m1=D
c

D ¼ 1:98ð2Þ
Average degree distribution: hki / m(

c ( ) 0
Clustering coe±cient distribution: C / m')

c ) ¼ 0:0017ð1Þ
Asymptotic clustering coe±cient: C1 C1 ¼ 0:563
Reduced clustering coe±cient distribution: C ' C1 / m')1

c )1 ¼ 0:03ð1Þ
Hierarchical modularity: CðkÞ / k''h 'h ¼ 0:011ð2Þ
Assortative mixing: hkNNi / k')a )a ¼ 0:80ð1Þ
Assortative mixing (Pearson correlation coe±cient) r ¼ 0:79ð6Þ
Frozen clusters: limmc!1’ No Ordering
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