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Abstract

Two particle Sturmian functions [M. Rotenberg, Ann. Phys., NY 19 (1962) 262; S.V. Khristenko, Theor. Math. Fiz. 22 (1975) 31 (Engl. Transl.
Theor. Math. Phys. 22, 21)] for a short range potentials are obtained by expanding the solution of the Schrédinger equation in a finite L*Laguerre-
type basis. These functions are chosen to satisfy certain boundary conditions, such as regularity at the origin and the correct asymptotic behavior
according to the energy domain: exponential decay for negative energy and outgoing (incoming or standing wave) for positive energy. The set
of eigenvalues obtained is discrete for both positive and negative energies. This Sturmian basis is used to solve the Schrodinger equation for
a one-particle model potential [A.V. Sergeev, S. Kais, J. Quant. Chem. 75 (1999) 533] to describe the motion of a loosely bound electron in a
multielectron atom. Values of the two parameters of the potential are computed to represent the Helium isoelectronic series and the critical nuclear

charge Z. is found, in good agreement with previous calculations.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Sturmian functions [1,2] for a two-body system are of
particular interest in atomic physics. These functions are solu-
tions of the two-body Schrodinger equation for some physical
potential, where the energy is fixed and the strength of the poten-
tial is the eigenvalue. Besides, they satisfy a set of boundary
conditions of the physical problem to be solved. Negative energy
Sturmians that decay exponentially at large distances make a
discrete basis for negative energies, and have been widely used
in atomic physics to determine atomic energy levels [4-6], or
to expand the Coulomb Green function (see [7] and references
therein).

Meanwhile, at positive energies, Sturmian functions might be
defined to satisfy outgoing, incoming or standing wave bound-
ary conditions. The spectrum of eigenvalues thus depend on the
choice of the asymptotic behavior of the eigenfunction. Ovchin-
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nikov and Macek [8] obtained a discrete set of eigenvalues for
purely outgoing wave Sturmians, however this functions became
unbounded as r increased. Rawitscher [9] was able to define a
set of Sturmians with outgoing wave condition even in the case
where a long range potential was present, showing that they
constitute a discrete basis set with discrete eigenvalues.

Following this approach, we propose a systematic method to
obtain Sturmian functions for both negative and positive ener-
gies, expanding the solution of the radial part of the Schrodinger
equation in a L? Laguerre-fype basis set. The use of the Green’s
function ensures the asymptotic behavior in the entire energy
domain. This basis set is therefore suitable for constructing the
wave function of a given scattering problem for both long range
Coulomb potentials or short range potentials.

In Section 1 of this paper we present a brief review of the
Sturmian theory and an analysis of the different asymptotic
behavior according to the energy domain. In Section 2 we
outline the general method to expand the two-particle Sturmian
functions in terms of Laguerre-type basis, and obtain orthog-
onality and closure relations restricted to a finite subspace.
Numerical results for a Coulomb well potential are shown for
both negative and positive energies. In Section 3 we use the
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negative energy Sturmian theory to study the bound states of a
potential proposed by Kais and Sergeev [3], which represents
the one active electron model for an N-electron atom. We also
find the value of the critical charge, that is, the minimum charge
necessary to bind the electrons, for the He-isoelectronic series.
Finally, in Section 4 we present the summary of our work, draw
some conclusions and suggest some applications. Atomic units
are used unless otherwise stated.

2. Theory of Sturmian functions

The Sturmian functions for a two-particle system interacting
through a general short range potential V (7) satisfy the equation
(91

—ivrz + Vo — E| #(F) = —B,V(H)P(F) 1)
subject to appropriate physical boundary conditions. The first
term in the left hand side of Eq. (1) represents the kinetic energy
of the system, Vp is either a long range potential (such as a
Coulomb potential) or zero (free particle), E the energy, consid-
ered a fixed parameter and B,, the strength of the potential, is
the eigenvalue to determine. For a spherically symmetric poten-
tial, separation of variables can be performed, which leads to the
radial Schrédinger equation

[Ho — Ely;(r) = =By V(r)y[ (r) @)
where the Hy is given by

1 &
24 dr?

+1

Hy =
0 2ur?

+ W 3

To complete the formulation of this Sturm—Liouville prob-
lem, it is necessary to add two boundary conditions, which will
be defined according to the energy domain.

The first boundary condition requires that the Sturmians func-
tions should be regular at the origin for both negative and positive
energies,

y/(r)=0, when r=0. )

The second boundary condition defines the asymptotic
behavior of the functions, depending on the energy E of the
system. At negative energies, Sturmians must behave as bound
states and decrease exponentially,

y/(R) — 0, forR— 0. )

Besides, there are different choices for positive energies: out-
going, incoming or standing wave asymptotic condition. The
first two options can be summarized by writing the boundary
condition as

Y (R) = Hli(R), for R — oo, (6)

where HljE is the usual outgoing (incoming) Coulomb or free
wave function depending on the form of Vj. The separation of
the entire potential in long (Vp) and short (V) range effects has

the advantage of including the correct asymptotic behavior in
the resulting function. The standing wave Sturmian is

y/(R)=0, whenR — oo. @)

For large but finite values of R, Eq. (2) together with bound-
ary conditions at ¥ = 0 and R, define a Sturm-Liouville problem
which leads to a discrete set of eigenvalues §, and eigenfunc-
tions y; with v=1,2,... For negative energy and positive
energy standing wave Sturmians, the spectrum of eigenvalues
is real, while for outgoing or incoming positive energy Sturmi-
ans the spectrum is complex. Thus, these Sturmian functions
define a complete discrete basis with orthogonality and closure
properties

O IV = /0 dr ! (V) = 8y ®)
D> W EVE ) =867 — 1) ©)

Using the definition of the Green’s function
[E — HylGo(r, ¥) = 87 — 1), (10)
Eq. (2) is transformed into an integral equation of the form
¥ = BuGoVy/ (1D

The use of the Green’s functions ensures the correct asymp-
totic behavior of the resulting Sturmian function y;, provided
that the long range effects of the Coulomb potentials are included
in Gy.

3. Sturmians in a L? Laguerre-type basis set

To solve the integral equation defined in Eq. (11), we consider
a finite, Laguerre-type basis set with a free, real parameter A

Pn(r) = e AT L2 20, (12)

where L¢ are the generalized Laguerre polynomials [10]. We
expand the Sturmian function, solution of Eq. (2) as

o
31) = A _an lon)- (13)
n=0

The Laguerre basis is orthogonal with weight function w(r) =
1/r:

<‘pm,l

We replace the Laguerre representation of |y;) in Eq. (11)

(14)

1 rQi+2+n)
—|¥n,l ) = sm,n —.

r n!

and project onto ( yl”/ |1/r, to obtain a set of equations given by

N—1

ay ;=8> ay Tun (15)
n=0

where the matrix elements (T),, , = Tjn,, are

Tm,n =

m! 1
B -GoV 16
ral+2+m <<Pm,1 —Go ‘fﬂn,z> (16)
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Furthermore, Eq. (15) can be simplified using the expansion
of the Green’s function in the Laguerre basis

o0
Go= Y loygijeil. (17)
jvj/=0

The asymptotic behavior of G is now included in the matrix
elements g; . For positive energies the outgoing Green’s func-
tion is given by [11]

—aph_(E:0gH(Eib)
(E 4+ 22/2)(j 4+ D1 (' + Doy

where j. and j. are the lesser and greater of (j, j'), (n); the
Pochhammer symbol and p; and qJ-’l are the regular and irreg-
ular Pollaczek polynomials [11]. The extension of the Green’s
function G(J)r to negative energies gives the correct asymptotic
behavior for this energy domain. Using expression (17) in (15)
the elements 7, , can be written as

¢y = (18)

o0
T =Y _8m(0iilVIgni)- (19)
j=0

The matrix T of size N x N, has complex elements in the
outgoing, positive energy case and real for negative energies.

For example, we calculate the Sturmian functions corre-
sponding to a Coulomb well auxiliary potential

1
-~ if
viy={ o TP (20)
0, ifr > p
and a Coulomb potential Vo = —1/r. We use this potential to

test our method, since this problem has a well-known analyti-
cal solution. We solve the Schrodinger Eq. (2) for each region
defined by the range of V. We match both solutions at r = p,
with appropriate boundary conditions for the inner (regular at
the origin) and outer (exponential decay for negative energy and
outgoing wave for positive energy) regions.

First we compare the eigenvalues obtained numerically with
the exact ones for a negative energy in Table 1 and positive
energy in Table 2, and study its convergence as the number N of
element basis increases. We use A = 2.1 in all the calculations.

At negative energies we see fast convergence of the first six
eigenvalues, which are real and positive; and convergence is uni-
form for increasing N. For positive energies, the requirement of
outgoing wave asymptotic condition gives complex eigenvalues,

Table 1
First six eigenvalues for the model potential (20) compared to the exact ones for
E=—-1.1lau,p=20and/ =0

N =10 N =20 N =50 Exact g,
0.483 0.483 0.483 0.483
1.967 1.967 1.967 1.967
3.477 3.476 3.476 3.476
5.156 5.152 5.151 5.151
7.236 7.217 7.216 7.215
9.834 9.775 9.772 9.770

Table 2
Absolute value of the first six eigenvalues for the Coulomb well potential with
E=1.1au,p=20and/=0

N =80 N = 100 N =120 Exact |8,
0.907 0.889 0.876 0.882
0.970 0.964 0.953 0.946
1.607 1.586 1.577 1.594
1.640 1.645 1.639 1.624
2.661 2.670 2.665 2.647
2.805 2.779 2.774 2.798

Sturmian Function

r(a.u.)

Fig. 1. Sturmian function for the Coulomb well potential with p = 5 and E =
—1.1a.u.for B, = 9.770. The full line is the exact solution and the dashed-dotted
line the Sturmian for N = 10.

with negative imaginary part, and the absolute value is given in
Table 2. Convergence is achieved increasing the number of ele-
ment basis, and it does not appear to be a uniform rule as in the
negative energy case. The Sturmian functions for a given eigen-
value are shown in Fig. 1 (negative energy) and Fig. 2 (positive
energy), where in both cases we observe good convergence as
N increases.

4. One electron model

In this section we study the Sturmian functions for a one
active electron model potential of the form [3]

1
V) =+ %(1 — et 1)

in the negative energy range. This potential is used to approxi-
mate the interaction between a loosely bound electron and the
atomic core in a multielectron atom. For a N-electron atom with
nuclear charge Z, this effective potential must tend to —Z/r at
small distances and to (—Z + N — 1)/r as rincreases. After the
scaling transformation r = Zr’, the potential tends to —1/r at
small rand (—1 + (N — 1)/Z)/r for large r. Then, defining the
free parameter y in Eq. (21) as y = (N — 1)/Z, gives the correct
limiting behavior of the effective potential.

If we split the potential in Eq. (21) as Vp = —1/r and
V =(1—e"%)/r, we will see that the free parameter y can
be considered as the eigenvalue of the problem as in Eq. (2).
Thus now we fix a negative energy and study the behavior of
the “charge” y = B,. As a first step we study the eigenvalues as
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Fig. 2. Real (a) and Imaginary part (b) of the Sturmian function for the Coulomb
well potential with p = 20 and E = 1.1 a.u. for 8, = 0.270744 — i0.838841.
The full line is the solution for N = 120 and the dashed line is the exact Sturmian.

a function of the energy for different parameters 8. To this end,
we define a critical screening parameter &, such that the largest
bound-state energy level is exactly zero. It has been determined
that §; = 1.1906 for 1s states and §; = 0.2202 for 2p states
[12].

The results for 1s and 2p charge states are shown in
Figs. 3 and 4. In the energy region where 8, ~ 1, V(r) behaves
like a pure Yukawa potential. Then, the eigenvalues B,(E)
depend strongly on the value of §. If § < 4., then we may
find another bound state for B, > 1. However, if § > 8. when
By =~ 1, the potential can not support another negative energy
state. In this case, the eigenvalue tends to the Coulomb form
By =1 —n/—2E, as § increases, where n here stands for the
energy level quantum number. Meanwhile, we can see that for
the positive energies, the charges become complex with posi-
tive imaginary part, meaning that the effective potential is now
a complex and emitting one.

The model potential (21) may be used to map any isoelec-
tronic series for an N-electron atom, since when y = 8, =
(N — 1)/ Z, the eigenvalue represents the scaled charge of an
atomic system. The free parameter § is then fixed such that for the
corresponding scaled ionization energy of the outer electron, the
scaled charge of this atom is an eigenvalue. In Fig. 5 we show the
parameter § as a function of the scaled ionization energy [13,14]
for the He-isoelectronic series in its ground state. The numeri-
cal results for the series were fitted with a function obtained by
the study of the eigenvalues as a function of the energy and the

(a) i 1
25 =
--------------- &=0,4 SR BRENp=].5 .
2,0 frmmmme- 8=0,6 -——=-%=2 .
[—remen- 50,8 oo . ]
= 15 F = =1
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& - e -
1s states 1

0.0 i 1 i 1 " 1 L "
7-0,4 -0,3 -0,2 -0,1 0,0 0,1

Energy(a.u.)
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Fig. 3. (a) Real part and (b) imaginary part of the eigenvalues for potential of
Eq. (21) as a function of the energy for different values of § for 1s states.
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Fig. 4. (a) Real part and (b) imaginary part of the eigenvalues for potential of
Eq. (21) as a function of the energy for different values of § for 2p states.
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Fig. 5. Free parameter § as a function of the ionization energy for the He-
isoelectronic series from [13,14].
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Fig. 6. Charge eigenvalue as a function of the ionization energy for the He-
isoelectronic series.

parameter §. The plot shows a strong non-linearity in the vicinity
of E; = 0, where the system passes to the continuum.

Using §(E) to map the series, we can extrapolate the value
of the critical charge Z., the minimum charge necessary to bind
the electrons. According to this one electron scaled model, the
critical charges are found from y, = (N — 1)/Z., the extrapo-
lated eigenvalue for which E; = 0. Fig. 6 shows the plot of the
eigenvalues as a function of the energy for the He-isoelectronic
series, and the extrapolated critical charge is

. =0917 (22)

which agrees very well with the values obtained by Kais and
Sergeev [3] and Hogreve[15] of Z, = 0.912.

5. Conclusions

We presented a method to find Sturmian functions with
a given asymptotic condition for both negative (exponential
decay) and positive (outgoing, incoming or stationary) ener-
gies expanding the solution in a L?> Laguerre-type basis set.
The example presented here showed that our numerical results
converge to the exact negative and positive energy (with outgo-
ing wave condition) solution for a Coulomb well potential. The
advantage of this method is that it provides a systematic way to
find the Sturmian functions for almost any auxiliary potential,
and provides the correct asymptotic behavior in the entire energy
domain.

The model potential for an N-electron atomic system in the
frame of one active electron model proposed by Kais and Sergeev
[31, Eq. (21) was studied by fixing the energy and taking the
parameter y as the eigenvalue, obtaining the Sturmian functions
for this potential. To study a given atomic system, the energy
is fixed to be the ionization energy, and the free parameter 6 is
chosen such that y = (N — 1)/Z is an eigenvalue. This allowed
us to find a representation of an N-electron atom of nuclear
charge Z using the Sturmian theory. Numerical results for the H
e-isoelectronic series (N = 2) were found for the value of the
parameter § as a function of the energy. These results were also
fitted to extrapolate the behavior of the eigenvalue as E; — 0.
and used to obtain the critical charge for the He-isoelectronic
series. This procedure suggests that one can obtain a significant
physical information from the Sturmian functions, going beyond
the simple use of them as a basis set to re-expand a wave function.
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