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Abstract
We argue that the main mechanism for condensate collapse in an attractive Bose–Einstein
condensate is the loss of coherence between atoms a finite distance apart, rather than the
growth of the occupation number in non-condensate modes. Since the former mechanism is
faster than the latter by a factor of approximately 3/2, this helps to dispel the apparent failure
of field theoretical models in predicting the collapse time of the condensate.

1. Introduction

The so-called Bose Nova experiment on the collapse of a
Bose–Einstein condensate with attractive interactions [1–3]
has opened up a fascinating window in the far out-of-
equilibrium behaviour of these systems. The experiment has
been analysed from a number of perspectives [4–10] and is
fair to say that we have a good qualitative understanding of
the phenomenon. However, at the quantitative level certain
anomalies persist.

In this paper, we shall deal with the apparent failure of
existing models in predicting the collapse time scale tc for the
condensate, in the regime where the scattering length a is just
below the critical value −ac. In [7] the scaling law

tc ∝
[ |a|

ac

− 1

]−1/2

(1)

is proposed, which fits well the experimental results. However,
the proportionality constant is not derived. The authors of
[7] claimed that the proper proportionality constant could be
derived from a complete field theoretic calculation, but when
the calculation was actually done [11–13], it failed to produce
a satisfactory prediction.

In this paper, we shall present a qualitative analysis of
the collapse time for a condensate trapped in a flat box [5]
with periodic boundary conditions. Unlike previous analysis,
we shall assume that the total number of particles in the
condensate remains fixed [14–18]. Under these constraints,
the condensate occupation number is properly defined as
the greatest eigenvalue of the one-particle density matrix
(to be defined below) [19]. Given the assumed geometry,
the corresponding eigenmode is necessarily homogeneous, so
the eigenvalue is just the integral of the one-particle density

matrix with one argument fixed, and the other ranging over the
confining box.

Since the overall normalization of the one-particle density
matrix is determined by the overall density of the gas (see
below), the most important factor in the evolution of the
condensate occupation number is how fast the density matrix
falls off, measuring the degree of coherence among atoms at
finite distances. We shall argue below that the one-particle
density matrix is approximately Gaussian with a variance
which decays in time as exp{−γ t}, with

γ = τ−1

√
|a|
ac

− 1, (2)

where

τ−1 = 2π2h̄

ML2
(3)

is the frequency of the first excited states for a particle in the
box; here M is the mass of an atom and L is the size of the
box. Therefore, after integrating over the three-dimensional
box we obtain that the condensate occupation number decays
as exp{−3γ t}.

The expectation number in the first excited state, as
computed from the Gross–Pitaevskii equation, the Hartree–
Fock–Bogoliubov or the Popov approximation would grow
only as exp{2γ t}. Therefore, condensate collapse from the
loss of coherence between atoms is faster than the estimate
from the loss of particles to excited modes by a factor of 3/2.
For comparison, note that a detailed calculation of the collapse
time for a = −10ac yields a predicted value of 10 ms against
an experimental value of 6 ± 1 ms [13]. Therefore, a factor of
three halves goes a long way to solve the existing puzzle.
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This paper is organized as follows. In the following
section, we present the model of a cold-trapped Bose gas,
introduce a suitable set of density and phase variables and solve
the Heisenberg equations in the linearized approximation.
In section 3, we apply these results to derive the evolution
of the condensate particle number and thereby our main
result. In section 4, we compare this result to the particle
number conserving, Hartree–Fock–Bogoliubov and Popov
approaches. We close the paper with some brief final remarks,
and give supplementary technical details in the appendix.

2. The model

The idea is to analyse the Bose Nova experiment with the
tools we have developed to handle the Mott transition in [20].
The starting point is a second-quantized field operator �̂(x, t)

which removes an atom at the location x at times t. It obeys
the canonical commutation relations

[�̂(x, t), �̂(y, t)] = 0, (4)

[�̂(x, t), �̂†(y, t)] = δ(x − y). (5)

The dynamics of this field is given by the Heisenberg equations
of motion

−ih̄
∂

∂t
�̂ = [Ĥ, �̂], (6)

where Ĥ is the Hamiltonian. The theory is invariant under a
global phase change of the field operator

�̂ → eiθ �̂, �̂† → e−iθ �̂†. (7)

The constant of motion associated with this invariance through
the Noether theorem is the total particle number.

To progress further, we need a specific model for the
atom–atom interactions. In principle, we should specify
the atom–atom interaction potential. However, in many
applications it is enough to know the cross-section σ for
low-energy spherically symmetric scattering of two identical
bosons. We introduce the scattering length a through σ ≡
8πa2, where the factor 8π involves both the integration over
all scattering angles and the Bose enhancement factors. We
shall adopt as model atom–atom interaction a contact potential
Uδ (x). This is expected to be a good approximation as long
as the distance between atoms is much greater than both the
scattering length and the distance out to which the fundamental
atom–atom interaction is important [21]. To reproduce the
right scattering length we need U = 4πh̄2a/M , where M
is the mass of the atoms. A positive value of a means a
repulsive interaction; we adopt the convention that an attractive
interaction is described by a negative value of a.

Assuming a contact atom–atom potential we get the
Hamiltonian

Ĥ =
∫

dx
{
�̂†Ĥ �̂ +

U

2
�̂†2�̂2

}
. (8)

The single-particle Hamiltonian Ĥ is given by

Ĥ �̂ = − h̄2

2M
∇2�̂ + Vtrap(x)�̂, (9)

where Vtrap denotes a confining trap potential. Then, the
Heisenberg equation of motion

ih̄
∂

∂t
�̂ = Ĥ �̂ + U�̂†�̂2 (10)

is also the classical equation of motion derived from the action

S =
∫

dt dx ih̄�∗ ∂

∂t
� −

∫
dt H (11)

placing hats everywhere. For simplicity we shall replace the
trap potential by a flat bounding box of volume V = L3 with
periodic boundary conditions. Yurovsky has demonstrated
that this is enough for a qualitative treatment of the Bose Nova
[5]. We also assume that we have a finite total number of
particles N, which remains fixed through the evolution (that is,
there is no particle loss to the environment).

2.1. Density and phase variables in the CTP formulation

To analyse further this model we shall adopt density-phase
variables [22, 23]. These variables have been extensively used
to study dynamical problems, including the Mott transition
[24]. This will set the stage for a further canonical
transformation to a more convenient set of degrees of freedom.

In the path integral representation, quantum amplitudes
are given in terms of functional integrals over complex fields �

and �† associated with the destruction and creation operators.
Our starting point is the Madelung representation [22, 23]

�(x, t) = [exp(−iϕ(x, t))]
√

ρ(x, t), (12)

�†(x, t) =
√

ρ(x, t)[exp(iϕ(x, t))]. (13)

In the canonical formalism, the fields ρ and ϕ become
operators with commutation relations

[ρ̂(x, t), ϕ̂(y, t)] = −iδ(x − y). (14)

Within the path integral we allow the phases ϕ to take all real
values, and therefore so do the conjugated density operators
ρ [20, 25]. This makes the square roots in (12) and (13)
problematic. It is best to adopt a new set of variables where
square roots do not appear, as we shall do presently. For further
discussion of density-phase variables in continuum theories
see [26].

We adopt the formalism developed in [20] to describe the
transition from the superfluid to the Mott insulator state in an
optical lattice. To compute expectation values, we shall use the
closed time-path formalism, where we choose the independent
variables as follows. In the first branch, we define a new
(complex) variable χ1 (x, t) from

�1(x, t) = exp[−iχ1(x, t)], (15)

�1†(x, t) = ρ1(x, t) exp[iχ1(x, t)]. (16)

In the second branch, we write instead

�2†(x, t) = exp[iχ2†(x, t)], (17)

�2(x, t) = exp[−iχ2†(x, t)]ρ2(x, t). (18)
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In the canonical formulation, the fields χ and ρ become
operators with commutation relations [20]

[ρ̂(x, t), χ̂(y, t)] = −iδ(x − y). (19)

The dynamics of these operators is given by the Hamiltonian

Ĥ (ρ̂, χ̂) =
∫

dx
{

h̄2

2M
(ρ̂∇χ̂ − i∇ρ̂)∇χ̂ +

U

2
ρ̂(ρ̂ − 1)

}
(20)

plus the necessary terms to enforce a fixed total particle number
[20]. Observe that in the new variables, the action is explicitly
analytical.

We now split all variables into a homogeneous and an
inhomogeneous part:

ρ̂(x, t) = n + r̂(x, t), (21)

r̂(x, t) =
∑
p�=0

r̂p(t)fp(x), (22)

where the fp are plane waves,

fp(x) = 1

V 1/2
exp{ipx/h̄}, (23)

and the allowed values of the components pµ,µ = 1–3, of the
momentum p are the integer multiples of 2πh̄/L, and similarly

χ̂ (x, t) = X̂0

V 1/2
+

∑
p�=0

X̂p(t)fp(x). (24)

Observe that the homogeneous part of the density operator
is constrained to be the c-number n = N/V , and the
homogeneous part of the phase is a collective coordinate [27]
which couples only to the homogeneous density. It does not
affect the dynamics of the inhomogeneous modes.

Consider the lowest order theory which is obtained by
keeping only the ‘free’ quadratic part of the Hamiltonian

Ĥfree(r̂p, X̂p) =
∑
p�=0

{
νp

2
(nX̂−pX̂p − ir̂−pX̂p) +

U

2
r̂−pr̂p

}
,

(25)

where νp = p2/M,p = |p|. The Heisenberg equations of
motion are

h̄
d

dt
X̂p = −iνp

2
X̂p + Ur̂p, (26)

−h̄
d

dt
r̂p = nνpX̂p +

−iνp

2
r̂p, (27)

where

Un = 4πh̄2Na

ML3
. (28)

In the Bose Nova scenario, we have U = 0 if t � 0. Therefore,
the frequencies are h̄ω<

p = νp/2. If we call Ap the destruction
operator which kills the initial state, then

rp(0
−) = (−i)

√
n
[
Ap − A

†
−p

]
, (29)

Xp(0
−) = 1√

n
Ap. (30)

For t > 0, we have U < 0 instead, and

Xp(t) = 1√
n

{[
cos[ωpt] − i

(νp

2
+ Un

) sin[ωpt]

h̄ωp

]
Ap

+ iUn
sin[ωpt]

h̄ωp

A
†
−p

}
(31)

with the dispersion relation

ωp = 1

h̄

√
νp

(
Un +

νp

4

)
. (32)

3. The one-particle density matrix

We may now turn to computing the one-particle density matrix

σ(x, y, t) = 〈�̂†(x, t)�̂(y, t)〉
≡ 〈exp i[χ2∗(x, t) − χ1(y, t)]〉. (33)

In the last term, the 1, 2 superindex indicates closed time-path
ordering: operators with a 2 superindex always go to the left of
operators with a 1 superindex. Observe that in our variables,
the observable to be computed is a pure exponential: there are
no square roots to be developed. This is the whole point of
introducing the new variables.

As in the previous section, we separate the variables χ2∗

and χ1 into their homogeneous and inhomogeneous parts.
Observe that the homogeneous terms may affect the overall
normalization of the one-particle density functional but not
its shape. The overall normalization, on the other hand, is
determined by the requirement that σ (x, x, t) = n. So we
may simply continue to disregard the homogeneous terms.

Since we have restricted ourselves to a Hamiltonian which
is quadratic in the inhomogeneous modes, we may use the
Wick theorem result

〈eiA〉 = 〈1〉Exp

{−1

2
〈A2〉

}
, (34)

with

A = A(x, y) = χ2∗(x, t) − χ1(y, t). (35)

Decomposing the field operators in modes, with due attention
to the closed time-path ordering, we obtain

〈A2〉 = const + 2
∑
p�=0

[
1

V
− f−p(x)fp(y)

] 〈
X†

pXp
〉
. (36)

Using the decomposition (31),

〈A2〉 = const +
4(Un)2

N

∑
p�=0

×
{

sin

[
p(x − y)

2h̄

]}2 [
sin[ωpt]

h̄ωp

]2

. (37)

To continue, we consider only the contribution from the
unstable modes. The condition for instability is U < 0 with
|Un| > νp/4. Since the lowest possible nontrivial value of p
is h/L, we get the critical scattering length as ac = πL/4N .
For a close enough to the critical value, the six modes with
L2p2 = h2 are the only unstable ones. Their frequency is
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ω = −iγ , where γ is given in (2). Setting y = 0 and x = |x|,
we get∑
p=h/L

{
sin

[px
2h̄

]}2
[

sin[ωpt]

h̄ωp

]2

∼ 2

[
π sinh[γ t]

h̄γ

]2 ( x

L

)2
, (38)

therefore

σ(x, t) = n Exp

{
−

[
2πUn sinh[γ t]

N1/2h̄γL

]2

x2

}
. (39)

The condensate occupation number Nc is obtained by
integrating over x, so, once the Gaussian approximation
becomes valid

Nc ∝ e−3γ t . (40)

We therefore obtain the same scaling law as in [7], but the
coefficient is 3/2 times larger. As noted in the introduction,
this correction is enough to account for the anomaly observed
in [13].

4. Comparison with other approaches

In this section, we will compare the result above for the
one-particle density matrix with other approaches in the
literature, namely the particle-number conserving (PNC)
formalism and the Hartree–Fock–Bogoliubov (HFB) and
Popov approximations. We shall not discuss the so-called
truncated Wigner approximation, but refer the reader to the
detailed treatment in [13]. See [28] for further details on these
approaches.

4.1. The equations of motion in the PNC approach

The PNC formalism [14–18] is usually presented as an
expansion in the inverse powers of the total particle number
N. In the preparation for this, it is convenient to scale the
interaction term, writing U = u/N .

The basic insight of the PNC approach is that if the total
particle number remains constant, then each particle above the
condensate corresponds to a hole in the condensate, so we may
speak of particle–hole (PH) pairs.

Let us consider the expansion of the field operator in plane
waves

�(x, t) =
∑

p

ap(t)fp(x), (41)

a0 reduces the number of particles in the condensate by
one. Following Arnowitt and Girardeau, let us introduce the
operator

β = 1√
N̂0 + 1

a0 = a0
1√
N̂0

, (42)

where

N̂0 = N −
∑
p�=0

a†
pap (43)

is the condensate number Heisenberg operator. Observe that
for a number eigenstate β|N0〉 = |N0 − 1〉 unless N0 = 0, in

which case β|0〉 = 0. Therefore, β preserves the norm for all
states orthogonal to the state with no particles in the zeroth
mode (which is much stronger than not having a condensate).
If there is a condensate, any physically meaningful state will
satisfy this requirement, and β may be considered a unitary
operator, with inverse

β† = 1√
N̂0

a
†
0 = a

†
0

1√
N̂0 + 1

. (44)

We now introduce the destruction operator of a PH with
the particle in mode p

λp = β†ap. (45)

If we consider the β’s as unitary, then the λ’s satisfy bosonic
canonical commutation relations. This relationship may be
inverted

ap = βλp. (46)

The number of particles in a given mode is equal to the number
of PH

a†
pap = λ†

pλp. (47)

We write the field operator restricted to the subspace with
a well-defined total number of particles N as � = √

Nβφ,

φ = φ0 +
1√
N

λ(x, t) − 1

2N
F [δn(t)]φ0, (48)

where for a homogeneous condensate we must have φ0 =
V −1/2,

λ(x, t) =
∑
p�=0

λp(t)fp(x), (49)

δn(t) =
∫

d3x λ†λ, (50)

F(x) = 2N

[
1 −

√
1 − x

N

]
∼ x + O(N−1). (51)

Within our approximations β commutes with φ. To lowest
order in N−1, λ evolves according to

0 = −ih̄λ,t + Hλ + Un(λ + λ†) + O(N−1/2) (52)

(see the appendix).

4.2. The HFB and Popov approximations

Before proceeding to compute the one-particle density matrix
in the PNC approach, let us show that the HFB and Popov
approximations give essentially equivalent results.

The HFB and Popov approximations are implementations
of the symmetry breaking approach to condensation, where
the formation of a BEC is associated with the spontaneous
breaking of the U (1) symmetry (7) [29]. The field operator
develops a c-number expectation value, which by translation
symmetry may depend only on time,

〈�〉 = e−i�(t)�(t). (53)

More generally

� = e−i�(t)[�(t) + ψ]. (54)
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In the HFB approach, we use this decomposition in the
Heisenberg equations of motion, where we also replace the
products of two fluctuation operators by their expectation
value, and use the so-called Hartree approximation:

ψ †ψ2 ∼ 2ñψ + m̃ψ †, (55)

where

ñ = 〈ψ †ψ〉, (56)

m̃ = 〈ψ2〉. (57)

The Heisenberg equations decompose into equations for the
mean fields and equations for the fluctuations

ih̄
d

dt
� + η� = U�3 + 2Uñ� + Um̃�, (58)

ih̄
∂

∂t
ψ + ηψ = Hψ + 2U(�2 + ñ)ψ + U(�2 + m̃)ψ †, (59)

where

η = h̄
d�

dt
. (60)

The HFB approximation has the serious drawback that it is not
gapless, and therefore is hardly reliable in a problem such as
the Bose Nova, which depends critically on the behaviour of
long wavelength modes. The Popov approximation overcomes
this problem by further neglecting m̃. Then we obtain

η = U�2 + 2Uñ, (61)

and the fluctuation equation becomes

ih̄
∂

∂t
ψ = Hψ + U�2(ψ + ψ †). (62)

Under this approximation �2 remains constant. This may
be avoided by including explicitly the effect of particle loss
through three-body recombination. However, the final results
are robust against these terms [8, 10, 13], and we shall not
consider them in detail. On the other hand, the total number
of particles is not conserved.

If we assume that the temperature is effectively absolute
zero, then �2 = n initially and remains close to it until
much later in the collapse; the effect of finite temperature
is discussed in [13] and is seen to be minor. If we just replace
�2 = n, the Popov equation for the fluctuations reduces to
the PNC equation for the inhomogeneous modes (52). This
approximation gives a reasonable description of early jet and
burst formation [7], so it may be considered reliable.

4.3. The one-particle density matrix in the PNC approach

We now return to the calculation of the one-particle reduced
density matrix:

σ(x, y, t) = 〈�̂†(x, t)�̂(y, t)〉
≡ n

{
1 − 1

N
[〈δn〉 − V 〈λ†(x, t)λ(y, t)〉]

}
. (63)

Decomposing into modes, we get

σ(x, y, t) = n

⎧⎨
⎩1 − 1

n

∑
p�=0

[
1

V
− f−p(x)fp(y)

] 〈
λ†

pλp
〉⎫⎬⎭ .

(64)

Each mode evolves according to

ih̄
dλp

dt
= νp

2
λp + Un

(
λp + λ

†
−p

)
. (65)

The dispersion relation is given by (32). At t = 0, λ must
destroy the physical state, so λp (0) = eiϕpAp for some phase
ϕp. From the equation of motion we derive the initial velocity

ih̄
dλp

dt
(0) = νp

2
eiϕpAp + Un

(
eiϕpAp + e−iϕpA

†
−p

)
. (66)

Therefore,

λp(t) =
{[

cos[ωpt] − i
(νp

2
+ Un

) sin[ωpt]

h̄ωp

]
eiϕpAp

− iUn
sin[ωpt]

h̄ωp

e−iϕpA
†
−p

}
. (67)

This equation and (31) show that〈
λ†

pλp
〉 = n

〈
X†

pXp
〉

(68)

and therefore the PNC result (64) is just the first term in the
expansion of our earlier result (36) in inverse powers of N1/2.

Indeed, the representations of the field operators (15) and
(48) are equivalent, to next to leading order in N−1/2, provided
we identify eiϕp = −i and exp{−iX̂0/V 1/2} = n1/2β.

5. Final remarks

After this point, it only remains to comment on the reasons
why this proposal works.

From the formal point of view, our expression for the
one-particle reduced density matrix is seen to agree with the
perturbative implementation of the particle number conserving
approach to next to leading order. This agreement suggests
that, more generally, our approach implements a resummation
of the PNC expansion. A key feature is that we use variables
that keep the exponential structure of the one-particle density
matrix. Therefore, the method suggested amounts to a
perturbative evaluation of the exponent, but is non-perturbative
with respect to the final result.

This formal advantage of the proposed method correlates
with a shift in the physical emphasis, from particle creation
in the excited modes to the loss of coherence among atoms.
Comparing this to other formal studies of decoherence, it
comes as no surprise that the latter process is faster than the
former [30, 31].

Observe that in principle the main result of this paper can
be obtained from standard approaches, such as PNC, HFB or
Popov, provided the output of those approaches is interpreted
as the short time behaviour of the one-particle density matrix
(e.g., ‘resumming’ (64) into (36)). This would signal that,
taking into account the short time limitation in dealing
perturbatively with unstable modes, the essential physics
involved in producing the main result, when exponential
parametrizations are used, is already present in the standard,
linearized time-dependent mean-field approximations.

We submit this minor contribution with the expectation
that it will help clear the way to a full quantitative
understanding of this fascinating experiment.
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Appendix. Derivation of (52)

The idea is to seek a solution of the Heisenberg equations of
motion for � where the β and λ have developments in inverse
powers of N. Define a q-number chemical potential µ̂ from

β† dβ

dt
= −iµ̂

h̄
, (A.1)

we have

ih̄
∂

∂t
φ = (H − µ̂)φ + uφ†φ2. (A.2)

We then find

0 = −µ̂φ0 + uφ3
0 +

1√
N

[−ih̄λ,t + (H − µ̂)λ

+ uφ2
0(2λ + λ†)

]
+ O(N−1). (A.3)

Taking the expectation value, we find

0 = −〈µ̂〉φ0 + uφ3
0 − 1√

N
〈µ̂λ〉 + O(N−1). (A.4)

Recall that µ̂ is Hermitian. So we may decompose this
equation into

0 = −〈µ̂〉φ0 + uφ3
0 − 1

2
√

N
〈µ̂λ + λ†µ̂〉 + O(N−1) (A.5)

and

0 = 1

2
√

N
〈µ̂λ − λ†µ̂〉 + O(N−1). (A.6)

Subtracting the expectation value from the Heisenberg
equation, we get

0 = (〈µ̂〉 − µ̂)φ0 +
1√
N

[ − ih̄λ,t + (H − µ̂)λ

+ uφ2
0(2λ + λ†)

]
+

1√
N

〈µ̂λ〉 + O(N−1), (A.7)

and from (A.7), (A.6) and (A.5), we get

µ̂ = 〈µ̂〉 + O(N−1) ∼ u

V
= Un. (A.8)

Observe that this implies

〈µ̂λ〉 = O(N−1/2), (A.9)

the equation for λ simplifies to (52).
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