
p
r
o
o
f
s
 
J
H
E
P
_
2
5
9
P
_
1
0
1
2

Published for SISSA by Springer

Received: October 31, 2012

Accepted: December 30, 2012

Published: ???, 2012

Backreacting p-wave superconductors
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1 Introduction

The AdS/CFT correspondence [1–3] in its original form relates a conformal field theory

in d dimensions with type II string theory on AdSd+1. The power of the correspondence

arises from the fact that it is a weak/strong coupling duality i.e. it relates the strong

coupling regime of the field theory with the weak coupling regime of the string theory and

viceversa. After the works [4, 5], the gauge/gravity conjecture begun to be an useful tool

to study condensed matter physics. In particular, it has been applied to study strongly

correlated condensed matter systems through the analysis of a semiclassical dual gravity

theory (see [7, 8] for a review).

In the present work we analyze the backreaction of the gravity dual to a p-wave su-

perconductor1 in 3+1 dimensions [6] (see [9, 10] for a similar treatment in 4+1 dimen-

sions). Along the way we rederive the backreaction of the colorful p+ ip superconductors

previously studied in [11]. We use the prescription given in [12–14] to compute the en-

tanglement entropy from the holographic point of view for both gravity duals. Similar

computations of entanglement entropy in backgrounds duals to condensed matter systems

can be found in [15–18].

p-wave superconductivity is a phase of matter produced when electrons with relative

angular momentum j = 1 form Copper pairs and condense. In other words, the operator

1The tiny difference between a superconductor and a superfluid arises in the fact that although both

effects are produced by a spontaneously symmetry breaking, in the first case there is a local symmetry

which is spontaneously broken while in the second case is a global symmetry. We are going to use the terms

superfluid and superconductor interchangably here. For the considered phenomena this distinction does

not make any difference.
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that condense is a vector, charged under a U(1) symmetry. This kind of superconductivity is

supposed to originate from “strongly correlated” electrons and therefore the BCS theory is

not the correct approach to study its microscopic dynamics. This phenomena is a challenge

for theoretical physics, and due to the fundamental property of the gauge/gravity duality

mentioned above one could envisage the study of such systems through their weak gravity

dual. We are going to introduce the minimal ingredients that one needs on the gravity

side in order to reproduce the dynamics of the superconductor, this kind of approach aims

to reproduce the properties of a condensed matter system without trying to explain their

microscopical origin.

String theory embeddings of p-wave superconductors were studied in [19–24]. The

necessary minimal ingredients on the bulk to have finite temperature, chemical potential

and spontaneous symmetry breaking (SSB) are: a black hole geometry and a non-Abelian

gauge field [25, 26]. The solutions we will consider are asymptotically AdS backgrounds

with a SU(2) non-Abelian gauge field. The SSB is realized on the bulk side as a non-trivial

asymptotics (hair) for the gauge field. The chemical potential and the SSB arise by turning

on two independent directions inside the non-Abelian gauge group. The symmetry breaking

occurs on the gravity side through the formation of a condensate outsides the horizon.

The entanglement entropy (EE) between a subsystem A and it’s complement B is the

von Neumann entropy

SA = −TrA(ρA ln ρA). (1.1)

Here ρA = TrB(ρ) is the density matrix obtained by tracing the density matrix of the whole

system ρ over the B subsystem degrees of freedom. Roughly speaking SA measures how

much information is hidden inside B when we subdivide the system. From the point of

view of the dual gravity theory the EE was conjectured [12] to be proportional to the bulk

minimal area surface, γA, whose boundary at infinity coincides with the boundary of A
(see [14] for a review)

SA =
2πArea(γA)

κ2
. (1.2)

Here κ is the bulk gravitational constant. Note that the standard thermal entropy is

obtained as a particular case of the EE, when the region A is the whole system. In [27] the

authors provide a demonstration of this holographic technique to compute the entanglement

entropy for spherical surfaces and zero temperature CFTs. On this work we compute this

quantity for a strip geometry in the backgrounds dual to a p-wave and to a colorful p+ ip

superconductor.

This paper is organized as follows: in section 2 we compute the backreaction of a

3+1 gravity dual to a p-wave superconductor in 2+1 dimensions and analyze its thermo-

dynamic properties. In order to compare with the colorful superconductor, we review in

subsection 2.2 the backreaction of the gravity dual of a p+ ip superconductor. On section 3

we compute the holographic entanglement entropy for a strip geometry in both systems, as

a function of the temperature and the length of the strip. The conclusions are summarized

in section 4.
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2 p and p + ip holographic superconductors

As mentioned in the introduction, the gravity dual to a p-wave superconductor is modeled

by an Einstein-Yang-Mills (EYM) theory. In [6, 28], the 3+1 dimensional gravity theory

dual to a p-wave superconductor has been computed in the probe limit. Moreover the

authors showed that the p + ip superconductor geometry studied in [11] was unstable

under small fluctuations, and that the stable configuration was that of the p-wave solution.

In this section we compute the backreaction of the non-Abelian gauge field on the geometry

dual to a p-wave superconductor in 3+1 dimensions and compare the results with those for

the p+ ip case.

We will work in the simplest set up and consider SU(2) as the gauge group. In the

p + ip case, the ansatz for the gauge field is such that it breaks the U(1) subgroup of the

internal gauge SU(2) and the spatial rotational SO(3) group symmetries into a diagonal

subgroup of them. Instead, the the p-wave superconductor, breaks both U(1) symmetries

completely. The gravity solution that describes the strong coupling dynamics of both

kinds of superconductors is as follows: a charged superconducting layer develops outside

the horizon due to the interplay between the electric repulsion (with the charged black

hole) and the gravitational potential of the asymptotically AdS geometry. At high enough

temperatures there is no hair outside the black hole and the solution is just an AdS-

Reissner-Nordström (AdSRN) black hole. Below a critical temperature Tc a non-trivial

gauge field with non-vanishing chemical potential on the boundary of the geometry and

a sourceless non-vanishing condensate in the bulk appears, originating a breaking of the

SU(2) gauge symmetry.

2.1 p-wave superconductor in 2+1 dimensions

2.1.1 Solution

We start from 3 + 1 SU(2) Yang Mills Theory in AdS gravity (see [29] for a review about

solutions for this theory), the Lagrangian density is

κ2(4)L = R− 2Λ− 1

4
Tr(FµνF

µν) (2.1)

where Λ = − 3
R̂2

, κ(4) is the gravitational constant in four dimensions and the field strength

of the SU(2) gauge field is written as

F a
µν = ∂µA

a
ν − ∂νA

a
µ + gYMǫ

abcAb
µA

c
ν (2.2)

with gYM =
ĝ
YM
κ(4)

the parameter that measures the backreaction and ĝYM the usual Yang-

Mills coupling. We use latin letters for SU(2) indexes and greek letters for the space-time

coordinates. By scaling the gauge field as Ã = A
g
YM

we see that the large gYM limit

corresponds to the probe (non-backreacting) limit of the gauge field. Roughly one can

think that 1
ĝ2
YM

counts the degrees of freedom of the dual field theory that are charged

under the SU(2) gauge group. Moreover, 1
κ2
(4)

counts the total number of degrees of freedom.

– 3 –
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Considering backreaction of the gauge filed amounts to say that the number of charged

states is of the same order as the number of degrees of freedom of the system.

The equations of motion following from the action are

Gµν = Rµν −
1

2
gµνR =

3

R2
gµν +

1

2
Tr[FµγF

γ
ν ]−

gµν
8

Tr[FγρF
γρ] (2.3)

DµF
µν = 0 (2.4)

we propose the following ansatz [9, 30]

ds2 = −M(r)σ(r)2dt2 +
1

M(r)
dr2 + r2h(r)2dx2 + r2h(r)−2dy2 , (2.5)

for the background geometry, and

A = φ(r)τ3dt+ ω(r)τ1dx . (2.6)

for the gauge field. Here we use the matrix-valued notation A = Aa
µτ

adxµ with τa = σa

2i

and σa the usual Pauli matrices, the SU(2) generators satisfy [τa, τ b] = ǫabcτ c. A solution

developing ω 6= 0 in the gauge field ansatz (2.6) breaks the U(1) gauge symmetry associated

with rotations around τ3 (usually called U(1)3) and a h 6= 0 in the metric breaks U(1)xy
symmetry associated to rotations on the xy plane. At high enough temperatures we expect

no hair outside the black hole and the solution with no condensate is AdSRN with

ω(r) = 0,

h(r) = 1

σ(r) = 1,

φ(r) = µ
(

1− rh
r

)

,

M(r) = r2 +
µ2r2h
r2

−
(

µ2

8
+ r2h

)

rh
r
. (2.7)

Replacing the ansatz into the EYM equations of motion results into five equations,

three of them are second order differential equations, and the remaining two are first order

constraints

M ′ =
3r

R̂2
− 1

8σ2

(

g2
YM

φ2ω2

rh2M
+ rφ′2

)

−M

(

1

r
+

rh′2

h2
+

ω′2

8rh2

)

σ′ =
σ

h2

(

rh′2 +
ω′2

8r

)

+
g2
YM

φ2ω2

8rM2h2σ
;

h′′ =
1

8r2h

(

−ω′2 +
g2
YM

φ2ω2

M2σ2

)

− h′
(

2

r
− h′

h
+

M ′

M
+

σ′

σ

)

;

ω′′ = −
g2
YM

φ2ω

M2σ2
+ ω′

(

2h′

h
− M ′

M
− σ′

σ

)

;

φ′′ =
g2
YM

φω2

r2h2M
− φ′

(

2

r
− σ′

σ

)

. (2.8)
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This system of equations enjoys four scaling symmetries that become useful when numeri-

cally solving it, they are

1. σ → λσ, φ → λφ

2. ω → λω, h → λh

3. M → λ−2M, σ → λσ, gYM → λ−1gYM , R̂ → λR̂

4. M → λ2M, r → λr, φ → λφ, ω → λω

Using these scaling symmetries we can set R = rh = 1 and fix the boundary value of the

metric functions σ(∞) = h(∞) = 1. The geometry and the gauge field must be regular at

the horizon which implies the following expansion in the IR (small r)

M = M1(r − rh) +M2(r − rh)
2 + . . .

h = h0 + h2(r − rh)
2 + . . .

σ = σ0 + σ1(r − rh) + σ2(r − rh)
2 + . . .

ω = ω0 + ω2(r − rh)
2 + ω3(r − rh)

3 + . . .

φ = φ1(r − rh) + φ2(r − rh)
2 + . . . (2.9)

On other hand in the UV (large r) the desired behavior is:

M = r2 +
M b

1

r
+

(ωb
1)

2 + ρ2

8r2
+ . . .

h = 1 +
hb3
r3

− (ωb
1)

2

32r4
+ . . .

σ = 1− (ωb
1)

2

32r4
+ . . .

ω = ωb
0 +

ωb
1

r
−

g2
YM

µ2ωb
1

6r3
+ . . .

φ = µ+
ρ

r
+

g2
YM

µ2ωb
1

12r4
+ . . . (2.10)

To achieve SSB, we look for solutions where the non-normalizable component vanishes

ωb
0 = 0. Standard AdS/CFT dictionary instruct us to interpret the boundary and sub-

leading values of φ as the chemical potential µ and the charge density ρ of the dual field

theory [31]. Moreover, the sub-leading coefficient M b
1 in the boundary expansion of gtt

coincides with the regularized Euclidean on-shell action [4]. The normalizable coefficient

in ω is dual to the vacuum expectation value of the current 〈J1
x〉 ∝ ωb

1 and serves as an

order parameter for the system.

Solutions of the system (2.8) depend on the four IR coefficients φ1, ω0, h0, σ0 and the

backreaction parameter gYM . All other coefficients in (2.9) can be written in terms of those.

We proceed to integrate the equations of motion numerically out from the horizon using

a shooting method in order to get the desired asymptotic behavior. We explore the range

gYM ∈ [0.85, 24] and observe that the behavior of the functions does not change qualitatively

– 5 –
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Figure 1. The dimensionless metric functions σ(r) and h(r) for g
YM

= 2 and T = 0.2312µ.

1.0 1.5 2.0 2.5 3.0 3.5 4.0
r0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

ΦHrL

ΩHrL

M  HrL

20

Figure 2. The dimensionless metric function M(r) and the gauge field functions ω(r) and φ(r) for

g
YM

= 2, T = 0.2312µ.

as gYM is varied. In figure 1 and 2 we give the plot of the solutions of (2.8) with boundary

conditions (2.10). We use µ to adimensionalize whenever needed. This means that we are

working in the grand canonical ensemble.

2.1.2 Thermodynamics

In this section we compute the thermodynamic quantities associated with the solutions.

As we shall see from the study of the potential function in the grand canonical ensem-

ble2 we have a second order phase transition between a superconducting and normal

symmetric phases.

The temperature of the dual theory is given by the Hawking temperature of the

black hole

T =
M1σ0
2π

=
1

16πσ0

(

24σ2
0 − φ2

1

)

rh (2.11)

2To go from the grand canonical ensemble (fixed µ) with free energy Ω, to the canonical ensemble (fixed

ρ) with free energy F , we should add a boundary term to the Euclidean action. This changes the variational

problem and implies the known Gibbs relation F = Ω+ µρ.

– 6 –
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0.4
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Ω1
b

Μ2

Figure 3. The plot shows the normalizable coefficient of the ω function which is proportional to

the condensate 〈J1

x
〉. The black, green and blue lines refers to solutions with g

YM
= 1, 1.5, 2 and

Tc = 0.0749, 0.1565, 0.2312 respectively. Note that the condensate vanishes for T > Tc.

where the second equality comes from the consistency of the series expansion (2.9) that

relates the coefficient M1 with σ0 and φ1. The area of the horizon, Ah, gives the entropy

S =
2π

κ2(4)
Ah =

2π2V T 2

κ2(4)

122
(

24σ2
0 − φ2

1

)2 (2.12)

where V =
∫

dx dy. In figure 3 we plot the order parameter ωb
1(i.e. the VEV of the current

〈J1
x〉) as a function of the temperature. Note that at T = Tc the condensate vanishes

showing the disappearance of the superconducting state for T > Tc. From our numerical

results we find 〈Jx
1 〉 ∝ (1 − T

Tc
)1/2 near Tc and therefore the critical exponent takes the

value 1/2. In reference [9] the authors scan the range gYM ∈ [1.82, 31.5] and find that

the phase transition becomes first order for gYM < 2.74. We didn’t find such first order

phase transition in the 3+ 1 case. Figure 4 shows the behavior of the Bekenstein-Hawking

entropy (2.12) as function of the temperature for our solution and the AdSRN black hole.

The gauge/gravity correspondence identifies the Euclidean on-shell gravity action SE

times the temperature T as the grand canonical potential function Ω of the system. To

compute it we continue to Euclidean signature, time being compactified with period 1
T to

avoid singularities. The on-shell action has a factor 1
T due to time integration, writing

Son−shell =
S̃bulk
T one has

S̃bulk = −
∫

dx dy dr
√−gL (2.13)

where the lagrangian density is given by (2.1). The yy component of the stress tensor is

proportional to the metric and then the Einstein equations (2.3) implie that

Gyy =
r2

2h2

(

κ2(4)L −R
)

(2.14)

Then we have

Gµ
µ = −R = Gr

r +Gt
t +Gx

x +
1

2

(

κ2(4)L −R
)

(2.15)

– 7 –
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Μ2

Figure 4. The entropy as a function of the temperature. The blue line is for the superconducting

phase with g
YM

= 2 and the red line for the normal phase (AdSRN geometry). There is a second

order phase transition at T = Tc = 0.2312.

0.10 0.15 0.20 0.25

T

Μ

-0.25

-0.20

-0.15

-0.10

-0.05

Κ2 W

V Μ3

Figure 5. The potential function Ω computed from (2.20) as a function of T for g
YM

= 2. The red

line is the potential for the RN solution and the blue line is for the superconductor case.

and from this we obtain

L =
2

r2σκ2(4)

[

r3Mσ

h

(

h

r

)′]′

(2.16)

where ′ denotes derivative with respect to the holographic coordinate r. Then, the bulk

contribution to the on shell action (2.13) can be written as

S̃bulk = −
∫

dx dy dr
√−gL = − 2V

κ2(4)

[

r3Mσ

h

(

h

r

)′]

r=r∞

(2.17)

where r∞ is the boundary of the space. As usual, in order to have a well defined variational

problem when imposing Dirichlet boundary conditions on the metric we need to add to the

action a Gibbons-Hawking term

S̃GH = − 1

κ2(4)

∫

dx dy
√−g∞∇µn

µ = − V

κ2(4)
r2σ

[

M ′

2
+M

(

σ′

σ
+

2

r

)]

r=r∞

, (2.18)
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where nµdxµ =
√
Mdr is the outward pointing unit normal vector to the boundary and

g∞ is the determinant of the induced metric on the boundary. Precisely at r = r∞ (2.18)

diverges and therefore must be regularized adding the intrinsic boundary counter-term

S̃ct =
1

κ2(4)

∫

dx dy
√−g∞ =

V

κ2(4)

[

r2
√
Mσ

]

r=r∞
(2.19)

Finally the dual thermodynamic potential Ω results

Ω = lim
r∞→∞

S̃on−shell

= lim
r∞→∞

(S̃bulk + S̃GH + S̃ct) (2.20)

Upon regularizing the action the potential Ω results to coincide with the sub-leading

value of the gtt component of the background metric i.e. Ω = M b
1 [4]. We have verified our

numerical solution computing Ω in both ways finding an excellent agreement. In figure 5

we plot the potential (2.20) as function of the temperature. As we mentioned above a

second order phase transition develops at T = Tc: the grand potential and the entropy

are continuous but S is not differentiable. Below Tc the system is in the superconducting

phase, as we increase the temperature above Tc the AdSRN geometry dominates the free

energy, this models a transition from a superconducting to a normal phase.

2.2 p + ip wave superconductors

Here, we review the results of [11] and compare them with the results of the previous

section. We will find that at T = Tc the system has a second order phase transition and

for all ranges of temperatures the grand potential of the p-wave solution found in previous

section is lower than that of the p+ ip, implying that the stable phase of the system is the

p-wave phase in accordance with the stability analysis [6].

2.2.1 Solution

The background and gauge field ansatz for model a p+ ip-wave solution are

ds2 = −M(r)dt2 + r2h(r)2(dx2 + dy2) +
dr2

M(r)
(2.21)

A = φ(r)τ3dt+ ω(r)(τ1dx+ τ2dy). (2.22)

One important difference with the p-wave superconductor of the previous section arises in

the choice of the gauge field ansatz that now breaks the U(1)3 × U(1)xy into a diagonal

combination. The p-wave case fully breaks the U(1)3 × U(1)xy. This allows us to use a

metric ansatz that is totationally symmetric in the xy-plane.

– 9 –
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The equations of motion obtained for this ansatz are four second order differential equa-

tion plus a first order constraint arising from the rr component of the Einstein equations

h′′ = −h

2

[

1

r2
− 3

R̂2M
+

M ′

rM
+

φ′2

8M
+

ω′2

4r2h2

]

−h′

2

[

6

r
+
h′

h
+
M ′

M

]

−
g2
YM

ω2

8r2hM

[

φ2

M
+

ω2

2r2h2

]

M ′′ =
3

R̂2
+

M

r

[

−M ′

M
+

1

r
+

ω′2

4rh2

]

− h′

h

[

M ′ − h′

h
− 2

r

]

+
3

8
φ′2 +

g2
YM

ω2

4r2h2

[

φ2

M
+

3ω2

2r2h2

]

ω′′ =
g2
YM

ω

M

[

ω2

r2h2
− φ2

M

]

− M ′ω′

M

φ′′ =
2g2

YM
φω2

r2h2M
− 2φ′

[

1

r
+

h′

h

]

0 = − 3

R̂2
+

M

r2

[

1− ω′2

4h2
+

M ′

M
r

]

+
h′

h

[

M

(

2

r
+

h′

h

)

+M ′

]

+
1

8
φ′2.

The equations have three scaling symmetries that will help us to numerically solve the

system. They are

1. ω → λω, h → λh

2. M → λ−2M, φ → φ
λ , R̂ → λR̂, gYM → g

YM
λ

3. M → λ2M, h → h
λ , φ → λφ, r → λr

and allows us to set R = rh = 1 and the value of h(r) at the boundary to h(∞) = 1. The

IR behavior of these equations are those of a charged black hole

M = M1(r − rh) +M2(r − rh)
2 + . . .

h = h0 + h1(r − rh) + h2(r − rh)
2 + . . .

ω = ω0 + ω1(r − rh) + ω2(r − rh)
2 + . . .

φ = φ1(r − rh) + φ2(r − rh)
2 + . . . (2.23)

where as before we impose the Maxwell potential φ to vanish at the horizon in order to

have a well defined gauge field in the Euclidean continuation. On the UV we demand

M = r2 + 2hb1r + (hb1)
2 +

M b
1

r
+

−8hb1M
b
1 + ρ2 + 2(ωb

1)/3

8r2
+ . . .

h = 1 +
hb1
r

− (ωb
1)

2

48r4
+ . . .

ω =
ωb
1

r
− hb1ω

b
1

r2
+ . . .

φ = µ+
ρ

r
− ρhb1

r2
+ . . . (2.24)

Note that for SSB we do not allow for a non-normalizable piece in ω. As before the scaling

symmetries 3. allows to fix hb0 = 1. In figure 6 we plot the behavior of the solutions and

figure 7 shows the order parameter 〈J1
x〉 >∝ ωb

1 as function of the temperature. For T = Tc

both condensates vanish and a second order phase transition onsets. Note that the values

of the condensate for the p+ ip case are lower than those in the p-wave case.

– 10 –



p
r
o
o
f
s
 
J
H
E
P
_
2
5
9
P
_
1
0
1
2

1.5 2.0 2.5 3.0 3.5 4.0
r

0.02

0.04

0.06

0.08

0.10

ΦHrL

107 ΩHrL

104 hHrL

M  HrL

25

Figure 6. Behavior of the dimensionless functions M(r), h(r), ω(r) and φ(r), plotted for g
YM

=

2, T = 0.2312µ.
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Figure 7. The dual theory VEV 〈J1

x
〉 ∝ ωb

1
as a function of temperature for the case of the p-wave

(blue line) and colorful (orange line) superconductors for g
YM

= 2. Its vanishing for T > Tc =

0.2312, suggesting a phase transition between a superconducting and a normal state.

2.2.2 Thermodynamics

The temperature associated to the background solution is proportional to the derivative of

the gtt component of the metric evaluated at the horizon. In this case one has

T =
M1

2π
(2.25)

The Bekenstein-Hawking formula, that relates the entropy with the area of the black hole

horizon, for the present case reads

S =
2π

κ2(4)
Ah =

2π

κ2(4)
r2hh

2
0. (2.26)

figure 8 shows the entropy in the p+ ip (orange line), p-wave (blue line) and RN (red line)

cases.
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Figure 8. Bekenstein-Hawking entropy for the RN (in red), p + ip (orange) and p-wave (blue)

solutions with g
YM

= 2 and Tc = 0.2312. There is a second order phase transition for both

superconductors at T = Tc.
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Figure 9. Grand Canonical potential as a function of the temperature. RN solution (red), p+ ip

(orange) and p-wave (blue). For all range of temperatures below Tc the p-wave solution is preferred

over the colorful one (g
YM

= 2 and Tc = 0.2312).

The grand potential Ω, is given by the sub-leading coefficient of the metric function

gtt, as

Ω =
VM b

1

κ2(4)
(2.27)

This potential is plotted in figure 9, it clearly shows that for any given temperature the

p-wave solution (blue) is preferred over the p + ip (orange) state. For T > Tc the system

is in the normal phase (red) and the condensate (shown in figure 7) vanishes.

3 Holographic entanglement entropy

An holographic prescription to compute entanglement entropy (EE) on the AdSd+1 gravity

dual of a CFTd was given in [12] in terms of minimal surfaces. The entanglement entropy

AdS prescription involves subdividing the system into two regions, A and it’s complement
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Figure 10. Diagram of the stripe shape for the region A used to compute the entanglement entropy.

B, and find the minimal static d − 1 dimensional surface (at constant time) γA such that

its boundary coincides with the boundary of the subsystem A (see figure 10).

The entanglement entropy between the two regions is proposed to be the classical area

of γA,

SA =
2π

κ2(d+1)

∫

γA

d(d−1)σ

√

g
(d−1)
ind , (3.1)

where g
(d−1)
ind is the induced metric on the surface and κ2(d+1) is the gravitational constant

in d+ 1 dimensions.

In [32] and [33] the EE was computed respectively for backgrounds dual to confining

large N gauge theories and for several black holes geometries. In this section we perform this

computation for a general background and apply it to the p and p+ip-wave superconductors

found on section 2. Note that the prescription to deal with the EE is very similar to that

made in [34, 35] to compute VEV of Wilson loops. In the last case the object being

computed is the minimal area of a string that explores the AdS space with its endpoints

fixed to the boundary. The following discussion follows closely that made in [36].

We write the d+ 1 background metric as

ds2d+1 = −gtt(r)dt
2 + gxixi

(r)dx2i + grr(r)dr
2, i = 1 . . . d− 1, (3.2)

where r is the holographic coordinate. The region of interest consists in the straight belt

in the direction xj with width L on the x1 direction. The static embedding belt ansatz is

x1 = x1(ζ), xj = ζj , r = r(ζ), with j = 2, . . . , d − 1. A diffeomorphism invariance in SA

remains, depending on the context it will be fixed either as x1 = ζ (global embedding) or

r = ζ. The entropy (3.1) is

SA =
2πΛ

κ2(d+1)

∫

dζ
√

gx2x2(r) . . . gxd−1xd−1
(r)
√

grr(r)r′2 + gx1x1(r)x
′2
1 , (3.3)

where Λ =
∫

dζ2 . . . dζd−1 and ′ denotes χ derivatives. Defining gχχ(r) = gx2x2(r) . . .

gxd−1xd−1
(r) and the functions

f2(r) = gχχ(r)gx1x1(r), η2(r) = gχχ(r)grr(r) (3.4)

the entanglement entropy is written

SA =
2πΛ

κ2(d+1)

∫

dζ
√

η2(r)r′2 + f2(r)x′21 . (3.5)
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By minimization of (3.5) we obtain

x′1(ζ) = ±f(r0)η(r)

f(r)

r′(ζ)
√

f2(r)− f2(r0)
, (3.6)

where r = r0 is the the minimum value in the holographic coordinate reached by the

surface. Depending on the background under study this could be the horizon radius or the

end of the space-time. Inverting this relation we can read the length of the belt in the x1
direction

L = 2

∫ ∞

r0

dr
dx1
dr

= 2

∫ ∞

r0

dr
η(r)

f(r)

f(r0)
√

f2(r)− f2(r0)
. (3.7)

We now fix the remaining diffeomorphism invariance as x1(ζ) = ζ, this choice has the

advantage of providing a complete parametrization of the embedding r(x1), (x1 ∈ [−L
2 ,

L
2 ]

and the boundary condition are r(±L
2 ) = ∞). From (3.6) in (3.5) the entanglement entropy

reads

SA(r0) = 2
2πΛ

κ2(d+1)

∫ ∞

r0

dr
f(r)η(r)

√

f(r)2 − f(r0)2
. (3.8)

Expression (3.8) diverges at r = ∞ due to the infinite extension of the surface. The

interpretation of this divergence is that another solution exists, with the same boundary

conditions, consisting on two disconnected surfaces expanding all along the radial direction.

Its area is

SAdisc
= 2

2πΛ

κ2(d+1)

∫ ∞

rmin

dr η(r), (3.9)

here rmin is the minimum value of r allowed for the geometry. The EE is defined therefore

with respect to the reference state (3.9)

∆SA =
4πΛ

κ2(d+1)

(

∫ ∞

r0

dr
f(r)η(r)

√

f(r)2 − f(r0)2
−
∫ ∞

rmin

dr η(r)

)

. (3.10)

In what follows we are going to study the EE for the solutions of (2.8) and (2.2.1).

In the p-wave case the relevant functions are:

f2
p (r) = gyygxx = r4, η2p(r) = gyygrr =

r2

h2N
(3.11)

where the sub-index p reminds that they correspond to the p-wave superconductor. With

this, we can compute explicitly the quantity (3.10)

∆SA =
4πΛ

κ2(4)

(

∫ ∞

r0

dr
r3

h
√
N
√

r4 − r40
−
∫ ∞

rmin

dr
r

h
√
N

)

(3.12)

On figure 11 we plot ∆SA as a function of the length of the strip L. This shows ∆SA

for different values of the backreaction parameter and different values of the temperature.

As expected the bottom line is the one which has the lowest temperature because as we

lower the temperature we must have more degrees of freedom that condense. The linear

behavior for large values of µL is a manifestation of the area law proposed in (3.1). On
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Figure 11. Entanglement Entropy as a function of the size of the strip for the p-wave solution.

The black, green and blue lines are for values g
YM

= 1, T = 0.0749µ, g
YM

= 1.5, T = 0.1565µ and

g
YM

= 2, T = 0.2312µ respectively.
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Figure 12. Entanglement Entropy as a function of the size of the strip for the p + ip solution.

The black, green and blue lines are for values g
YM

= 1, T = 0.0749µ, g
YM

= 1.5, T = 0.1565µ and

g
YM

= 2, T = 0.2312µ respectively.

figure 13 we plot the EE of the condensed (blue line) and normal (red line) phases as

a function of the temperature and for a constant value the length of the belt L. Similar

results were found in [17] for the 4 + 1 model in the range of parameters where the second

order phase transition arises.

In order to deal with a finite entropy, avoiding the substraction of the disconnected

solution, we can write the EE as

SA(r0) =
4πΛ

κ2(4)

∫ R

r0

dr
r3

h
√
N
√

r4 − r40
= SA +

4πΛ

κ2(d+1)

R (3.13)

where SA has dimensions of length with no divergences. The figure 13 shows that the EE

for the superconductor (blue line) is lowest that for the RN (red line) solution. This is

expected because in the superconducting state there are condensed degrees of freedom.

Performing the same analysis for the solutions of (2.2.1) we obtain

f2
p+ip(r) = gyygxx = r4h4, η2p+ip(r) = gyygrr =

r2h2

M
, (3.14)
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Figure 13. Entanglement Entropy as a function of T and fixed µL = 3, g
YM

= 2 and Tc = 0.2312.

The blue line is for the p wave solution, the orange line is for the p + ip superconductor and the

red one is for the Reissner-Nordstrom solution.

and the following EE:

∆SA =
4πΛ

κ2(4)

(

∫ ∞

r0

dr
r3h3√

M
√

r4h4 − r40h(r0)
4
−
∫ ∞

rmin

dr
rh√
M

)

(3.15)

In figure 12 we show the behavior of ∆SA in this case, and we can perform the same

analysis as for the p-wave superconductor. Again, a different approach to obtain a non-

divergent entropy, as in the previous case, avoiding the substraction of the disconnected

surface, consists in separate the divergent piece of the integral (3.8) and take in account

the finite part of it, SA. In this case:

SA(r0) =
4πΛ

κ2(4)

∫ R

r0

dr
r3h3√

M
√

r4h4 − r40h(r0)
4
= SA +

4πΛ

κ2(4)
R. (3.16)

On figure 13 we plot this finite part (orange line) for gYM = 2 and Tc = 0.2312 and show

that, as expected, is lowest than the EE for the RN solution. Moreover, the figure shows

that the EE in the p-wave case is lower than in the p + ip superconductor. This suggest

that for a given temperature there are more condensed degrees of freedom on a p-wave

superconductor.

4 Summary

On this work we studied the holographic dual to a p-wave and a p+ip-wave superconductors

in 3+1 dimensions. We computed the backreaction of the p-wave solution and studied

its thermodynamics properties. As expected, and in contrast with the solution in 4+1

dimensions studied in [9], we found a second order phase transition between the normal

and superconducting phases. Later, we reviewed the backreaction of the gauge field on the

geometry of the colorful black hole and compared it with our solution. From the study

of the thermodynamic quantities and in particular from its grand canonical potential, we

noted that for a fixed value of the temperature the p-wave solution has less potential and
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then it is preferred. We related this with the fact that the p+ ip solution is unstable under

small fluctuations and it decays into the p-wave background.

Finally, using the holographic proposal given in [12] to compute the entanglement

entropy of a quantum field theory using its gravity dual, we computed it for both solutions

on a straight belt geometry as a function of the temperature and of the size of the belt. We

observed that for both cases the EE behaves linearly for large values of L, which confirms

the proposed area law. The EE vs L plots moves to large values of ∆SA as we increase

the temperature. As a function of the temperature we observe that the largest EE is for

the RN solution. This is expected because the superconductor has condensed degrees of

freedom. Moreover the p-wave solution presents more condensed degrees of freedom than

the colorful black hole. That may explain the fact that the condensate value is larger for

the p-wave system at a given temperature.
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