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Abstract Effective immunity relies on the recognition of
pathogens and tumors by innate immune cells through
diverse pattern recognition receptors (PRRs) that lead to
initiation of signaling processes and secretion of pro- and
anti-inflammatory cytokines. Galectins, a family of endog-
enous lectins widely expressed in infected and neoplastic
tissues have emerged as part of the portfolio of soluble
mediators and pattern recognition receptors responsible for
eliciting and controlling innate immunity. These highly
conserved glycan-binding proteins can control immune cell
processes through binding to specific glycan structures on
pathogens and tumors or by acting intracellularly via
modulation of selective signaling pathways. Recent find-
ings demonstrate that various galectin family members
influence the fate and physiology of different innate
immune cells including polymorphonuclear neutrophils,
mast cells, macrophages, and dendritic cells. Moreover,
several pathogens may actually utilize galectins as a
mechanism of host invasion. In this review, we aim to

highlight and integrate recent discoveries that have led to
our current understanding of the role of galectins in host–
pathogen interactions and innate immunity. Challenges for
the future will embrace the rational manipulation of
galectin–glycan interactions to instruct and shape innate
immunity during microbial infections, inflammation, and
cancer.
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Introduction

Studies performed over the past decade have been
immensely fruitful in terms of advancing our understand-
ing of the cellular and molecular mechanisms involved in
innate immune responses. These include the identifica-
tion of a large repertoire of pattern recognition receptors
(PRRs), which can selectively discriminate among
pathogen-associated molecular patterns (PAMPs) and
danger-associated molecular patterns (DAMPs) that help
to orchestrate and tailor immune responses [1]. These
diverse receptors comprise a broad range of signaling
PRRs, such as Toll-like receptors (TLRs) and NOD-like
receptors, which relay extracellular information into
immune signaling processes, and endocytic PRRs which
promote the attachment, engulfment, and destruction of
microorganisms by phagocytes [1]. Among the latter, a
biochemically heterogeneous family of C-type lectin
receptors (CLRs), which include among others the
mannose receptor, dectin-1, dendritic cell-specific inter-
cellular adhesion molecule-3-grabbing non-integrin, and

Juan P. Cerliani and Sean R. Stowell contributed equally to this work.

Richard D. Cummings and Gabriel A. Rabinovich should both be
considered as senior authors.

J. P. Cerliani : I. D. Mascanfroni :G. A. Rabinovich (*)
Laboratorio de Inmunopatología, Instituto de Biología y Medicina
Experimental, Consejo Nacional de Investigaciones
Científicas y Técnicas,
1428 Buenos Aires, Argentina
e-mail: gabyrabi@gmail.com

S. R. Stowell :C. M. Arthur : R. D. Cummings (*)
Department of Biochemistry,
Emory University School of Medicine,
Atlanta, GA 30322, USA
e-mail: rdcummi@emory.edu

J Clin Immunol (2011) 31:10–21
DOI 10.1007/s10875-010-9494-2



macrophage galactose lectin, have been shown to recog-
nize specific glycans on the surface of pathogens and
tumors [2, 3]. Following recognition of specific glyco-
epitopes, CLRs can trigger distinct signaling pathways that
favor the expression of an array of cytokines and the
activation of specific transcription factors [3, 4]. In
contrast, a number of PRRs including complement
receptors, collectins (e.g., mannan-binding lectin) and
pentraxins (serum amyloid and C-reactive protein) do not
remain associated with cells but are instead secreted to the
extracellular milieu to recognize specific PAMPs or
DAMPs [5].

Under this complex scenario, galectins have emerged
as soluble lectins also capable of decoding glycan
information contained in microbes and tumors [6].
Galectins are evolutionarily conserved glycan-binding
proteins with multiple roles in innate and adaptive immune
responses. To date, 15 galectins have been identified in
mammals, most with wide tissue distribution, although
some galectins are expressed with restricted tissue speci-
ficity [7]. Within the immune system, galectins are
expressed by almost all immune cells, either constitutively
or in an inducible fashion and are significantly up-
regulated in inflammatory macrophages, dendritic cells
(DCs), mast cells, decidual natural killer (NK) cells, and
CD4+CD25+ T regulatory (TReg) cells [8–12]. Galectins
share a common structural fold and at least one conserved
carbohydrate-recognition domain (CRD) of about 130
amino acids that mediates carbohydrate binding. A
traditional classification based on structural similarities
includes: (a) “proto-type” galectins (galectin-1, -2, -5, -7, -10,
-11, -13, -14, and -15) which have one CRD and occur as
monomers or dimers; (b) “tandem repeat-type” galectins
(galectin-4, -6, -8, -9, and -12) which are comprised of two
different CRDs separated by a linker of up to 70 amino acids;
and (c) the “chimera-type” galectin-3 which contains a CRD
connected to a non-lectin N-terminal region [13]. A common
structural motif recognized weakly by most galectins is
the disaccharide N-acetyl-lactosamine (Galβ1,4GlcNAc;
LacNAc), which is found in many N- and O-linked
glycans and may be presented as multiple units (poly-
LacNAc) on cell surface glycoproteins [14]. However,
important differences in glycan-binding specificities be-
yond this disaccharide have been described among
different members of the family that underscore the basis
for functional divergences in biological activity [14].
These variations in glycan recognition are mainly associ-
ated with the extent of N-glycan branching, the multiplic-
ity of LacNAc residues, the modification of terminal
saccharides, and/or the protein or lipid scaffold of
glycoconjugates [14]. Most galectins are either bivalent
or multivalent with regard to their glycan-binding activi-
ties, which enable recognition of multiple binding partners

and activation of distinct signaling pathways; one-CRD
galectins can dimerize, two-CRD galectins are at least
bivalent, and galectin-3 can form oligomers upon binding
to multivalent glycoproteins [13]. Although galectins do
not contain a classical secretory signal, some members are
found in the extracellular compartment and are released
through an unusual route that requires intact carbohydrate-
binding activity of the secreted protein [13]. Once
externalized, galectins can bind to multiple glycosylated-
binding partners on microbial pathogens or host cells and
convey glycan-containing information into innate immune
cell programs [15, 16]. However, this activity is limited to
those galectins that are secreted into the extracellular
milieu; some members of the family may remain associ-
ated with cell membranes or function primarily within the
intracellular compartment [17], suggesting both intracel-
lular and extracellular roles for these endogenous lectins.
As other review articles have extensively covered the
contribution of galectins to adaptive immunity in greater
depth [6, 18, 19], we will underscore here recent insights
into the mechanisms by which galectins and their specific
saccharide ligands contribute to pathogen recognition and
innate immune responses.

Galectins in Host–Pathogen Interactions and Innate
Immunity

Complex carbohydrates dominate the surface of pathogens,
and thus it is not surprising that many innate immune
factors evolved glycan-binding properties as a mechanism
of pathogen recognition. Indeed, many factors associated
with activation of immunity display glycan-binding activity.
Recent studies suggest that galectin family members, as
well as CLRs, may also serve as pathogen recognition
receptors (PRRs) [20]. For example, Gal-3 can bind to
glycans expressed by Neisseria gonorrhoeae, Leishmania
major, Schistosoma mansoni, and Trypanosoma cruzi [21–
24]. Given the ability of Gal-3 to uniquely associate with
macrophages [25], engagement of different pathogens by
Gal-3 may not only facilitate immune activation but may
also mediate phagocyte recognition and removal. In this
regard, recent findings demonstrated that binding of
Toxoplasma gondii glycosylphosphatidylinositols to Gal-3
in macrophages is required for parasite recognition and
TNF production [26].

While engagement of pathogens by galectins may serve
in part to activate immunity, several studies suggest that
galectins may provide direct innate immune function. For
example, Gal-3 can recognize distinct pathogenic mycotic
species, such as Candida albicans, while failing to
recognize nonpathogenic Saccharomyces cerevisiae [27,
28]. Importantly, Gal-3 recognition results in significant
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loss of C. albicans viability [28]. Recognition appears to
occur through specific interactions with α1-2-type mannans
[27, 28], a unique sugar sequence motif of fungi previously
unrecognized as a ligand for galectins. By contrast, while
Gal-1 may not directly alter viral viability, Gal-1 appears to
provide some degree of protection from the pathogenic
sequelae associated with Nipah virus infection. Recent
studies suggest that Gal-1 specifically inhibits Nipah virus-
mediated cellular syncytia formation [29, 30], a process that
can result in significant morbidity and mortality secondary
to systemic vasculitis [31].

Although innate immune factors commonly discriminate
self from non-self by recognizing PAMPS, several patho-
gens appear to uniquely generate self-like antigens [1, 4],
which might be thought of as a type of molecular mimicry.
As central tolerance mechanisms result in the deletion of
potentially self-reactive cells [32], the defense mechanism
whereby an individual is protected against pathogens
decorated with self-like antigens remained unknown.
Although galectins can recognize glycan antigens unique
to pathogens [27, 28], some galectins also display signif-
icant affinity for self-antigens. Consistent with this, recent
studies demonstrated that several galectins, in particular,
Gal-4 and Gal-8, display high affinity for human ABO (H)
blood group antigens [33, 34]. Given the reduced ability of
a blood group positive individual to provide humoral
immunity against cognate blood group antigens on patho-
gens, these results suggested that Gal-4 and Gal-8 might be
uniquely poised to provide immunity against blood group
bearing pathogens, irrespective of the blood group status of
an individual. Unexpectedly, recent results demonstrated
that Gal-4 and Gal-8 recognize and kill blood group
positive Escherichia coli [35]. This innate immune activity
appears to be specific to blood group positive pathogens
because it was observed that Gal-4 and Gal-8 fail to
recognize or kill related bacteria that fail to express the
blood group antigen or bacteria expressing mutations in the
LPS biosynthetic pathway, leading to loss of blood group
antigen synthesis. Engagement of blood group B-positive
pathogens by Gal-4 and Gal-8 results in rapid loss in
mobility, significant alterations in membrane architecture,
and loss of membrane integrity [35]. While recognition of
the specific blood group B antigen on the surface is
necessary for Gal-4- and Gal-8-induced killing, recogni-
tion alone does not result in loss of viability; for
example, Gal-3, which also recognizes blood group B-
positive E. coli, fails to alter viability [35]. Taken together,
these results provide one of the first striking examples of
an innate immune factor that recognizes a distinct self-like
antigenic target on the surface of a pathogen and provides
a possible mechanism whereby individuals might protect
themselves against a blood group positive pathogen
irrespective of their own blood group status.

Unlike the innate immune effects proposed previously,
several studies suggest that galectin–pathogen interactions
could also mediate pathogen adhesion and therefore
facilitate infection. For example, several key studies
demonstrated that Gal-1 can significantly alter cellular
sensitivity toward HIV infection by stabilizing HIV
interactions at the plasma membrane [36, 37]. Importantly,
Gal-1-mediated enhancement of viral infection may not be
limited to HIV. A recent study suggested that Gal-1 may
play a similar role in HTLV infection [38]. Similarly, Gal-1
appears to facilitate Trichomonas vaginalis infection by
providing an adhesion contact to cervical epithelium [39].
Moreover, Gal-3 may also enhance infection by enabling
Helicobacter pylori adhesion to gastric epithelium [40].

While the majority of studies examined the activity of
galectins against human pathogens, interactions between
galectins and pathogens appear to be highly conserved. For
example, while Gal-3 may serve as a PRR in the detection
of L. major infection in humans [23], a similar tandem-
repeat galectin, PpGalec, found in the midgut of the sandfly
Phlebotomus papatasi, appears to mediate attachment and
survival of L. major in this key vector [41]. Similarly, Gal-9
may also promote infection by facilitating L. major
adhesion in humans [42]. In contrast, a galectin from the
mushroom Coprinopsis cinerea appears to provide innate
immunity against Caenorhabditis elegans through recogni-
tion of a unique terminal galactose-containing core N-glycan
structure [43]. Taken together, these results demonstrate that
various galectin family members likely play a wide variety
of roles within innate immunity and that several pathogens
may actually utilize galectins as a mechanism of host
invasion (Figs. 1 and 2).

Galectin Regulation of Neutrophil Turnover

Cellular turnover represents a fundamental immunological
homeostatic process. Following a pathogenic challenge,
significant recruitment of leukocytes involved in both
innate and adaptive immunity enables neutralization of
invading pathogens. However, in order for effective
homeostasis to be maintained, significant leukocyte con-
traction must occur in order to prevent damage of viable
tissue and reduce the probability of autoimmunity [44].
Several key players may be important in regulating
leukocyte viability and turnover. For example, TNF family
members appear to induce apoptosis in distinct lymphocyte
populations [45]. Indeed, individuals with mutations in the
TNF family member Fas develop autoimmune lymphopro-
liferative syndrome (ALPS), a disorder characterized in part
by significant accumulation of lymphocytes [46, 47].

Although lymphocytes appear to be dependent on factors
that induce apoptotic cell death, neutrophils may have evolved
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a unique apoptosis-independent mechanism of turnover.
Individuals with ALPS often display reduced neutrophil
numbers, and mice deficient in Fas or FasL display normal
numbers of neutrophils prior to and during inflammatory
events [46–49]. Neutrophils in mice engineered to over
express Bcl-2 in myeloid cell lines exhibit significant
resistance to apoptotic cell death, yet fail to display altered
baseline numbers and remain sensitive to phagocytosis in vivo
[50]. Consistent with this, non-apoptotic neutrophils appear
to be phagocytosed during normal neutrophil turnover [51].

Although previous studies clearly demonstrated that
neutrophils undergo turnover independent of apoptosis in
vivo, the mechanism responsible for this turnover remained
unknown. Recent studies suggest that several galectin family
members may specifically induce apoptosis-independent
removal of neutrophils. During the early stages of apoptosis,
cells commonly externalize phosphatidylserine (PS), a phos-
pholipid normally confined to the inner leaflet of the plasma
membrane [52], which has therefore been considered a death
signal. However, independently of being an apoptotic
marker, cell surface PS serves as a key ligand for
macrophage-mediated phagocytosis [53]. Similar to cells
undergoing apoptosis, it was recently shown that several
galectin family members, including Gal-1, Gal-2, Gal-3,
Gal-4, and Gal-8 induce PS exposure in activated, but not
resting, neutrophils [54–57]. However, unlike cells under-
going apoptosis, galectin-induced PS exposure occurs
independently of cell death. For example, despite inducing

PS exposure, Gal-1 fails to induce DNA fragmentation,
mitochondrial potential changes, or alterations in membrane
architecture or integrity [55, 56]. Furthermore, PS exposure
induced by Gal-1 also reverses following Gal-1 removal [54,
56]. Consistent with this, Gal-1-induced PS exposure occurs
independent of common irreversible processes associated
with apoptosis, such as caspase activation or an accompa-
nying loss of membrane integrity [56]. Although galectins
appear to induce PS exposure in neutrophils independent of
cell death, galectin-induced PS exposure sensitizes cells to
phagocytic removal by macrophages [55, 56], which
represents one of the first examples of targeted phagocytic
removal of a living cell. In addition, Gal-3 may directly
facilitate clearance of neutrophils by directly enhancing
macrophage-mediated phagocytosis [58]. Because galectins
fail to induce cell death, yet sensitize cells to phagocytic
removal, this unique activity was recently coined “preapa-
resis” [59], signifying the ability of galectins to prepare cells
for removal without directly inducing apoptotic cell death.

In addition to the proper regulation of neutrophil
turnover, immunological homeostasis requires significant
regulation of neutrophil activation and recruitment. Endo-
thelial cells play a central role in the proper activation,
localization, and extravasation of neutrophils to an area of
tissue injury or pathogen invasion [60]. Although previous
studies predominately focused on the roles of selectins and
integrins in the regulation of neutrophil extravasation [60,
61], several recent studies implicate various galectin
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family members in this process. Such studies suggest that
Gal-1 can significantly inhibit extravasation of neutro-
phils in vitro and in vivo [62, 63]. Unlike selectins, Gal-1
may regulate neutrophil extravasation at the level of
transmigration [63]. Recombinant delivery of Gal-1
prevents neutrophil extravasation in vivo, and Gal-1 null

mice experience enhanced neutrophil emigration [62, 63].
Furthermore, once neutrophils extravasate, Gal-1 appears
to inhibit their chemotaxis [63]. By contrast, Gal-3 appears
to mediate neutrophil attachment to vascular endothelial
cells following Streptococcus pneumoniae infection [64].
Gal-3 null mice experience a significant reduction in
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Fig. 2 Galectins in innate immunity. Galectins influence a variety of
biological processes of cells participating in innate immunity either in
an extracellular or intracellular fashion. The functions illustrated here
have been demonstrated by in vitro exposure to recombinant galectins,
targeted delivery of galectins in vivo, or following challenge of
galectin-deficient mice. While Gal-1 inhibits neutrophil transmigration
through extracellular matrix, Gal-3 favors neutrophil adhesion to
endothelia through its oligomerization processes. Galectins also affect
the function of neutrophils by promoting phosphatidylserine (PS)
exposure without inducing apoptosis, and regulating superoxide and
IL-8 production. In addition, galectins can affect the functional fate of
monocytes/macrophages by skewing the balance toward alternative
versus classical activation, controlling nitric oxide production, and
regulating FcγRI-mediated phagocytosis and MHC II-dependent
antigen presentation. Furthermore, Gal-3 contributes to monocyte/

macrophage chemotaxis and phagocytosis. Emerging evidence also
indicates a role for galectins in the control of mast cell function.
Endogenous and exogenous Gal-3 promotes mast cell activation and
degranulation. However, indirect evidence gathered in vivo indicates
that Gal-1 blocks mast cell degranulation, but mechanisms are
unknown. Interestingly, while Gal-1 promotes DC maturation and
migration, it also instructs these cells to become tolerogenic and
secrete high amounts of IL-27 and IL-10. Of note, Gal-3 inhibits
whereas Gal-9 stimulates IL-12 production by DCs. Thus, galectins
modulate innate immune reactions through a plethora of mechanisms,
including the control of adhesion and transmigration through
endothelial cell surfaces, the ability to recognize, engulf, and kill
intruders and damaged cells and the capacity to produce pro- and anti-
inflammatory cytokines and respond to chemotactic gradients
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neutrophil accumulation within the lung following infec-
tion with S. pneumoniae [65]. Importantly, these later
studies provide a few of the only genetic studies
demonstrating a role of galectins in neutrophil regulation
in vivo [62, 65].

In addition to regulating neutrophil viability and recruit-
ment, earlier studies examining the impact of galectins on
neutrophils demonstrated that several galectin family mem-
bers also regulate neutrophil activation [66]. Gal-3 activates
NADPH-oxidase, a key factor in the microbicidal activity of
neutrophils [67], in exudated but not peripheral neutrophils
[66, 68]. Exudation and LPS engagement of neutrophils
appears to increase the expression of cell surface Gal-3
ligands and sensitizes cells to Gal-3-mediated activation of
the respiratory burst [66, 69] and neutrophil-mediated
phagocytosis [68]. In turn, Gal-3 appears to sensitize
neutrophils to soluble fibrinogen [68]. Subsequent studies
identified CD66a and CD66b as potential ligands for Gal-3-
mediated neutrophil activation [70]. Galectin-mediated acti-
vation of neutrophils does not appear to be limited to Gal-3
as recent studies suggest that Gal-1 may induce similar
alterations in neutrophil activity [71].

The unique nature of the inflammatory environment that
surrounds neutrophil-mediated immunity likely selected for
distinct roles for galectin family members in neutrophil
activation, recruitment, and turnover. Endothelial expression
of galectins likely enables regulation of neutrophil activation
and extravasation [72–74]. However, once neutrophils accu-
mulate at specific sites following tissue injury, inflammatory
resolution is dependent on effective removal. However,
neutrophil numbers often far outweigh the number of macro-
phages responsible for removing them [75]. Indeed, ineffective
removal and excessive neutrophil necrosis often significantly
impairs inflammatory resolution and can contribute to abscess
formation [76]. The unique localization of galectin family
members within tissue parenchyma likely enables them to
inhibit neutrophil chemotaxis and facilitates neutrophil turn-
over, potentially allowing for important demarcation of viable
from necrotic tissue [63, 74]. The unique ability of galectins to
induce an “eat me” signal without causing cell death by the
process of “preaparesis” may also allow neutrophils to
maintain membrane integrity in a relatively harsh inflamma-
tory environment until successfully phagocytosed [76]. These
results demonstrate that galectin family members likely play
key roles at a variety of checkpoints necessary for proper
regulation of neutrophil function.

Galectin-Mediated Control of Mast Cell Degranulation
and Function

Mast cells play essential roles at the interface of innate and
acquired immunity [77]. These cells release a large number

of mediators and cytokines when activated by IgE,
anaphylatoxins, and/or products derived from either patho-
gens or the host during innate immune responses. Although
best known for their role in allergic disorders, mast cells
can also exacerbate models of autoimmunity, play a role in
tumor immunity, and increase inflammation during bacte-
rial infections. In other settings, however, mast cells can
limit inflammation and tissue injury [77]. Gal-3 was earlier
identified as an IgE-binding protein capable of binding
mast cells and basophils [78], thus it was not surprising to
find that this lectin plays crucial roles in mast cell
physiology. Upon cross-linking of FcεRI, Gal-3-deficient
mast cells secrete lower amounts of histamine and IL-4 than
wild-type mast cells [10]. Accordingly, Gal-3 null mice
showed reduced passive cutaneous anaphylaxis reactions in
vivo compared to wild-type littermates [10]. While intra-
cellular Gal-3 stimulates mast cell function, extracellular
Gal-3 induces mast cell apoptosis [79], suggesting a dual
role for the intracellular or extracellular lectin in regulating
cell fate. Moreover, injection of Gal-1 in a model of rat hind
paw edema reduces mast cell degranulation through still
unresolved mechanisms [80] consistent with the well-
established anti-inflammatory function of this lectin [19].
Recent studies involving RBL-2H3 cells demonstrated that
Gal-9 suppresses mast cell degranulation through mecha-
nisms involving inhibition of IgE–antigen complex forma-
tion. These results were further verified in vivo showing
attenuation of asthmatic and cutaneous anaphylactic reac-
tions following Gal-9 administration [81]. Thus, galectins
control mast cell physiology through different mechanisms
involving positive or negative regulation of granule release,
IgE–antigen complex formation and survival. Given the
broad expression of Gal-1, Gal-3, and Gal-9 in peripheral
tissues [13], it is likely that the synchronized action of these
lectins together with chemokines, cytokines, and IgE
determines the fate and function of mast cells.

Galectins Shape Macrophage Function and Plasticity

Monocytes and macrophages are key cellular components
involved in resistance to pathogens, tissue repair, and
cancer surveillance [82]. Macrophages display remarkable
plasticity and can change their physiology in response to
environmental cues, giving rise to three versatile popula-
tions with distinct biological functions. “Classically acti-
vated” macrophages arise in response to IFN-γ and produce
high levels of IL-12 and modest levels of IL-10. By
contrast, “regulatory macrophages” are generated in re-
sponse to immune complexes, prostaglandins, or glucocor-
ticoids and produce high levels of IL-10 and low levels of
IL-12. On the other hand, macrophages treated with IL-4
(“alternatively activated” or “wound-healing” macro-
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phages) produce low levels of IL-12 and IL-10 but express
resistin-like molecule-α (RELM-α) intracellularly, a marker
that is not expressed by the other macrophage populations.
Whereas “classically activated” macrophages display
microbicidal activity and favor tissue damage, “regulatory
macrophages” suppress immune reactions and “alternative-
ly activated” macrophages play a key role in tissue repair,
angiogenesis, and Th2-type cytokine skewing [83]. The
broad expression of galectins within the monocyte/macro-
phage compartment [8, 84, 85] together with their locali-
zation in inflammatory and tumor microenvironments
suggested that these proteins might play a role in
modulating macrophage physiology.

Early studies demonstrated that exposure to Gal-1 shifts
the balance toward “alternatively activated” or “regulatory”
macrophages as demonstrated by increased arginase activity
[86] and PGE2 production [80]. Subsequent studies have
shown that Gal-1 acts on monocytes/macrophages by
regulating critical regulatory molecules such as Fcγ
receptor 1 (FcγR1) and major histocompatibility complex
(MHC)-II and modulates essential functions including
phagocytosis and antigen presentation [87]. In addition,
exposure to Gal-1 inhibits IL-12 production and enhances
IL-10 production by parasite-infected macrophages [88].
Importantly, Gal-1 does not affect survival of human
monocytes even following activation but instead can
modulate macrophage activity through ERK1/2-dependent
pathways. These effects were also apparent in macrophages
recruited in response to inflammatory stimuli following
treatment with Gal-1 and were further confirmed in Gal-1-
deficient (Lgals1−/−) mice [87]. More recently, studies
highlighted an unexpected role for Gal-1 in facilitating
viral adsorption to macrophages during HIV-1 infection
[37], suggesting that blockade of this protein might play a
role in viral–host cell interactions.

On the other hand, Gal-3 displays multifaceted roles
within the macrophage compartment [89]. In fact, Gal-3
serves as a selective chemoattractant for macrophages
[90], functions as an opsonin [58, 91], and triggers the
production of reactive oxygen species by macrophages
and monocytes [92, 93]. In addition, Gal-3 activates
microglial cells and macrophages to phagocytose degen-
erated myelin in the central nervous system [94]. Interest-
ingly, recent studies examining the mechanisms
underlying these immunoregulatory effects demonstrated
that this lectin exerts cytokine-like regulatory actions in
brain-resident microglia/macrophages through induction
of pro-inflammatory mediators and regulated expression
of signaling pathways including JAK2 and STAT1,
STAT3, and STAT5 [95]. Interestingly, Gal-3 significantly
induces phosphorylation of STATs in microglia from IFN-
γ-deficient mice, suggesting that this effect is independent
of IFN-γ, a canonical activator of the JAK-STAT pathway

[95]. These findings provide a rational explanation for the
pro-inflammatory effects induced by Gal-3. Interestingly,
macrophages from Gal-3-deficient (Lgals3−/−) mice
showed reduced IL-4-induced alternative macrophage
activation in vitro compared to those from wild-type
macrophages, but the two genotypes were comparable in
IFN-γ/LPS-induced classical activation and IL-10-induced
deactivation [96]. Recombinant Gal-3 also promoted IL-4-
induced alternative activation [96], suggesting that it
might be a general function of galectins to selectively
control the state of macrophage activation. On the other
hand, Gal-9 induces apoptosis of a monocytic cell line
(THP-1) and transactivates pro-inflammatory cytokine genes
in monocytes by functioning intracellularly [97]. Moreover, a
recent study demonstrated that Gal-9, which is expressed by
Mycobacterium tuberculosis-infected macrophages, interacts
with Tim3 expressed on Th1 cells to restrict intracellular
bacterial replication [98]. The Gal-9–Tim-3 interaction
leads to macrophage activation and stimulates bactericidal
activity by stimulating caspase-1-dependent IL-1β secre-
tion [98]. Thus, galectins can endow macrophages with
antimicrobial, pro-inflammatory, or immunoregulatory
functions at the cross-road of innate and adaptive immune
responses.

Circuits of Galectins and Glycans in the Regulation
of DC responses

DCs are the central players in all immune responses, both
innate and adaptive [99]. Conventional DC subsets de-
scribed in humans include myeloid DCs and plasmacytoid
DCs [99]. Pioneering studies demonstrated that DCs are
important in orchestrating adaptive immune responses
through their ability to capture, process, and present
antigens to naïve T cells [99]. However, in recent years,
there has been a shift from the perception of DCs solely as
inducers of immune reactivity to the view that these cells
are crucial regulators of immunity, which includes their
ability to induce and maintain tolerance [100, 101].

During microbial infection or tumor establishment,
different mechanisms take place to initiate either an
immunogenic or tolerogenic pathway [102]. In explora-
tions of possible mechanisms underlying the broad anti-
inflammatory activities of Gal-1 [18], recent studies
demonstrated that DCs differentiated or matured in a
Gal-1-enriched microenvironment acquire a distinctive
“regulatory signature” characterized by high expression
of the cell surface marker CD45RB, phosphorylation of
the transcription factor STAT3, and abundant secretion of
IL-27 and IL-10 [9]. More importantly, when transferred
in vivo, these DCs promoted T cell tolerance in antigen-
specific and neoplastic settings, blunted Th1 and Th17
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responses, and halted autoimmune inflammation through
mechanisms involving DC-derived IL-27 and T cell-
derived IL-10 [9]. This immunoregulatory circuit linking
Gal-1 signaling, IL-27-producing tolerogenic DCs and IL-
10-secreting Treg cells may operate during microbial
infection, resolution of autoimmune disorders, and tumor
settings [9]. Remarkably, Gal-1 expression is augmented
during the peak of inflammation and is dramatically up-
regulated by tolerogenic stimuli including vasoactive
intestinal peptide, vitamin D3 and IL-10 but significantly
downregulated by pro-inflammatory cytokines (TNF and
IFN-γ) and most TLR agonists [9]. Such results suggest
that the Gal-1-glycan axis might operate during the
resolution of immune responses. Moreover, DCs lacking
Gal-1 had lower expression of IL-27, higher expression of
IL-23 and less STAT3 phosphorylation, and were much
more immunogenic than their wild-type counterpart [9]. In
accordance with these findings, injection of recombinant
Gal-1 favored the recruitment of a subset of uterine DCs
with a tolerogenic phenotype [103]. Moreover, other
studies demonstrated that exposure to Gal-1 promoted
the maturation and migration of DCs through mechanisms
involving Syk and PKC signaling [104]. Gal-1 stimulated
Syk phosphorylation and recruitment of phosphorylated
Syk to CD43 and CD45 glyco-receptors on monocyte-
derived DCs to regulate DC activation and migration
across extracellular matrix. Remarkably, intradermal in-
jection of Gal-1 in MRL-fas mice, which have a defect in
skin DC emigration, increased the in vivo migration of
dermal DCs to draining lymph nodes [104], suggesting
that DCs exposed to Gal-1 may acquire a distinctive
immunoregulatory program characterized by a “mature” or
“immature” cell surface phenotype, increased migration
profile, and enhanced tolerogenic potential. Thus, in the
presence of Gal-1, DCs may undergo maturation and
migrate to peripheral tissues to promote immune tolerance,
further emphasizing the lack of correlation between the
maturation state of DCs and their immunogenic or
tolerogenic potential [19]. Similarly, DCs lacking Gal-3
secrete higher amounts of IL-12 than wild-type DCs and
favor the polarization of T cells toward a Th1-type profile
[105, 106], suggesting a common mechanism by which
endogenous galectins may control DC immunogenicity. In
addition, endogenous Gal-3 can also regulate the trafficking
pattern of DCs through intracellular mechanisms involving
control of membrane ruffles [107]. Furthermore, DCs
exposed to Gal-9 produce higher levels of IL-12 and are
endowed with Th1-type polarizing potential [108]. Interest-
ingly, DC maturation is accompanied by pronounced
changes in glycan expression which might affect binding
of galectins to the surface of these cells [109]. Collectively,
these data imply divergent roles of galectins in the control of
DC maturation, trafficking pattern, and immunogenicity.

Conclusions and Future Directions

Pattern recognition receptors sense microbial components
to trigger innate immune responses, the first line of host
defense against infectious agents and tumor antigens.
However, aberrant activation of immune cell components
often causes massive inflammation, leading to the devel-
opment of autoimmune diseases. Therefore, both activation
and inactivation of innate immune responses must be
strictly controlled to limit tissue damage [1–3]. Here, we
described the consequences of galectin signaling as it
relates to host–pathogen interactions and innate immune
cell functions. While some members of the galectin family
can influence initiation of immune responses through
facilitating phagocytosis, chemotaxis, granule release, and
pro-inflammatory cytokine secretion, under certain circum-
stances, galectins may also contribute to the resolution of
acute inflammation by preparing neutrophils for phagocytic
removal, inhibiting neutrophil transmigration and driving
the differentiation of regulatory DCs and “alternatively
activated” macrophages. Similar to what has been observed
for many cytokines and growth factors, it is not surprising
that galectins may exhibit “double-edge sword” effects with
opposing biological outcomes depending on different
intrinsic factors such as the physicochemical properties of
the protein (monomer/dimer equilibrium), stability of the
protein in oxidative versus reducing microenvironments, as
well as extrinsic factors such as the target cell type and its
activation or differentiation status.

Additionally, we have illustrated several examples of
pathogens that bind host galectins through glycan-mediated
interactions and trigger immune cell signaling processes.
Particularly, we have underscored one of the first striking
examples of innate immune factors (Gal-4 and Gal-8) that
recognize a distinct self-like antigenic target on the surface
of a pathogen and provides a possible mechanism whereby
individuals might protect themselves against a blood group
positive pathogen irrespective of their own blood group
status. Follow-up studies are needed to examine the
mechanism of bacterial killing by galectins and the larger
physiological significance of this activity in regulating the
microbiome and limiting growth of pathogenic microbes.

In vivo studies, including those using galectin-deficient
mice, have begun to provide relevant information on the
selective function of these endogenous lectins in microbial
invasion, tumor progression, and autoimmunity, suggesting
their potential use as adjuvants or antagonists in immuno-
therapeutic regimens. However, before galectin-based ther-
apeutic agents can be embraced, a more thorough
understanding of the mechanisms involved in galectin
functions is essential. In this regard, it will be critical to
evaluate the results of “side-by-side” studies of the
biological activities of different members of the galectin

J Clin Immunol (2011) 31:10–21 17



family and their regulated expression in healthy, infected, or
neoplastic tissue. Attention should also be focused to
understand the importance of natural anti-galectin autoanti-
bodies in sera from patients with autoimmune disorders
versus unaffected individuals [110]. Given the complexity
of galectin–glycan interactions and the multiple parameters
influencing these molecular contacts, further work is
required, involving multidisciplinary approaches, to achieve
a global comprehensive view of the role of endogenous
galectins and their specific carbohydrate ligands in host–
pathogen interactions and innate immunity.
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