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The von Neumann linear analysis, restricted by a heuristic selection of wave-number 
vectors was applied to the search of explicit lattice Boltzmann schemes which exhibit 
more stability than existing methods. The relative stability of the family members of quasi-
incompressible collision kernels, for the Navier–Stokes equations in confined flows, was 
analyzed. The linear stability analysis was simplified by assuming a uniform velocity level 
over the whole domain, where only the wave numbers of the first harmonic normal to the 
flow direction were permitted. A singular equilibrium function that maximizes the critical 
velocity level was identified, which was afterwards tested in particular cases of confined 
flows of interest, validating the resulting procedure.

© 2015 Elsevier Inc. All rights reserved.

1. Introduction

Since its introduction in the 1980s the lattice Boltzmann method (LBM) has overcome several refinements and extensions, 
and has become a promising numerical scheme for simulating complex fluid dynamics in the most varied applications. For 
instance, LBM was successfully applied to the modeling of homogeneous turbulence and multi-phase flows in porous media 
[1–3], blood flow in macro vessels [4–8] and micro vessels [9–11].

Differing from the conventional methods, based on a direct discretization of continuum macroscopic Navier–Stokes equa-
tions, LBM is a mesoscopic particle-based method derived from the Lattice-Gas Cellular Automata [12] and the Boltzmann 
Equation [13]. Its basic idea consists in building a simplified kinetic model in such a way that the average properties of the 
system are governed by a certain set of field equations.

A key point for the stability of this method is the collision process of the particles, associated to an equilibrium distri-
bution that is constructed with the macroscopic variables. Most approaches use the BGK scheme for the collision process. 
Based on this model, previous works have studied the stability of the model. Sterling and Chen [14] report some stability 
results for a subset of the parameter space for BGK in hexagonal, square and cubic lattices, finding a critical velocity that 
increases monotonically with the relaxation parameter until a saturation value is reached. Worthing et al. [15] extended the 
linear analysis to address the destabilizing role of background shear, finding the stability criterion N < Re0.56, where N is 
the number of mesh points in the shearing direction and Re is the Reynolds number. Tosi et al. [16] studied the non-linear 
stability properties of entropic schemes comparing them with positivity-enforcing schemes in a two-dimensional cavity 
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flow, showing that both methods achieve substantial stability enhancements over the standard single-time relaxation LBM. 
Brownlee et al. [17] studied the interplay between stability and accuracy in LBM, identified the main instability mechanisms 
and proposed simple recipes for stabilization, such as the addition of local artificial dissipation to control the positivity and 
local blowup. Servan-Camas and Tsai [18] analyzed the stability of the BGK scheme and found that non-negativity of the 
equilibrium distribution function is a sufficient condition for linear stability and a necessary condition when the relaxation 
time is very close to 0.5. Rheinländer [19] discussed the stability structure of LBM from the perspective of matrix analysis 
and applied the results to different collision operators. Ricot et al. [20] proposed the use of spatial filters in order to stabilize 
LBM. El-Amin et al. [21] studied the stability of a finite-difference based LBM-BGK scheme, finding ranges of the parameter 
space that have stable solutions.

More recently, the stability of the second and third order schemes were compared showing that as expected the latter 
presents increased stability ranges [22–24]. Derivations of third-order LBM schemes using different procedures where pro-
posed by Shan et al. [25], Philippi et al. [26], Siebert et al. [27], Shan [28] and Mattila et al. [29]. In any case, even to the 
present most engineering applications apply the second-order BGK scheme for the collision process [30–38]. As Montessori 
et al. [23] recently pointed out: “Indeed, the LBGK has known a very rapid surge of popularity and still holds the lead 
among the various LB variants available today, notwithstanding a number of limitations. Among others, the loss of numer-
ical stability at low viscosity (high-Reynolds) appears particularly constraining for a number of engineering applications... 
LBGK is also (over) criticized for being inaccurate, even though such an inaccuracy often amounts to a few percents. While 
unacceptable for accurate and systematic convergence studies, this is certainly viable for most applications exposed to many 
additional sources of physical and numerical inaccuracy. Hence, in many instances, there are definitely no apologies to be 
offered for using LBGK and variants thereof”. Nevertheless, it should be stressed that increasing the order of the equilibrium 
distribution model towards improved lattice Boltzmann equations benefits both stability and accuracy.

A number of variations of the second-order BGK scheme with improved performance were also proposed [39–41]. Also 
several regularization procedures of the equilibrium distributions have been proposed to increase the stability range of LBM 
schemes. Latt and Chopard [42] proposed regularized distribution functions that suppress non-equilibrium modes, which 
increased the stability in numerical tests of 2D lid-driven cavity flows. Montessori et al. [23] corroborated these findings 
and showed that the stabilizing effects extend to 3D cavity flows. Zhang et al. [43] showed other regularizations achieved 
by means of Hermite polynomials. Chen et al. [44] proposed a regularization by aleatory rotations of the discrete velocity 
set, although in this case some procedure for associating the solutions in rotated grids is needed.

In the present article, the results of a thorough exploration of the stability of a general class of quasi-incompressible 
LBM schemes are presented. Differing from other approaches, these LBM schemes maintain the single relaxation approach 
with small changes in the equilibrium distribution. Furthermore, an analytical guiding criterion is derived from a restricted 
linear stability analysis (taking into account the confinement of the flows), which afterwards is tested in three numerical 
simulations of confined flows to verify the stability improvements for a wide range of numerical parameters.

2. Incompressible lattice Boltzmann schemes

From the numerical perspective, LBM can be seen as an explicit method to solve transport equations using more variables 
than those strictly necessary to characterize the macroscopic phenomena. It is based on the movement and collision of 
particles described by the lattice Boltzmann equation:

f i(�x + �ei�x, t + �t) = f i(�x, t) − 1

τ

[
f i(�x, t) − f e

i (�x, t)
]
, for i = 0, . . . , �, (1)

where f i(�x, t) represents the particles distribution density at position �x and time t , undergoing a displacement �ei�x in a 
time step �t , τ is the relaxation parameter and � is the number of non-null lattice directions.

Vectors �ei form a finite set of directions that restrict the movement of the particles among the points of space where 
the solution is computed. In what follows the so called D2Q9 model will be used, which is given by the set:

�e0 = (0,0); �e1 = (1,0); �e2 = (0,1); �e3 = (−1,0); �e4 = (0,−1);
�e5 = (1,1); �e6 = (−1,1); �e7 = (−1,−1); �e8 = (1,−1). (2)

For simplicity, from now on, we will assume that the index i varies from 0 to 8.
Using an asymptotic expansion, it has been demonstrated that the lattice Boltzmann equation (1) approximates the 

Navier–Stokes equations, provided that the so called equilibrium function f e
i (�x, t) satisfies a set of constitutive conditions 

related to the moments of f i(�x, t) with respect to �ei . Comprehensive reviews of this procedure can be found elsewhere 
[2,45,46]. A popular scheme complying with these conditions is the classical BGK:

f e
i (�x, t) = wσ ρ

[
1 + 3

(v�ei · �u)

v2
− 3

2

u2

v2
+ 9

2

(v�ei · �u)2

v4

]
, (3)

where v = �x/�t is the particle speed and u2 = �u · �u. The macroscopic quantities:

ρ =
∑

f i(�x, t) and �u = 1

ρ

∑
v�ei f i(�x, t) (4)
i i
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are the particle-number density and average velocity. The index σ is 0 for the resting particles, and 1 and 2 for the particles 
moving in the Cartesian and diagonal directions, respectively. The corresponding weight coefficients are w0 = 4/9, w1 = 1/9
and w2 = 1/36. In such case, the relaxation parameter τ is related to the kinematic viscosity of the fluid by [45]:

υ = (2τ − 1)�x2/(6�t) (5)

and the pressure is calculated using the isothermal equation of state:

p = ρ
v2

3
. (6)

There are many other possible relations between f e
i (�x, t) and f i(�x, t) that lead to the same differential limit. One of 

the main differences between all these alternatives is the numerical stability of the resulting scheme, which is a crucial 
characteristic in LBM, being an explicit, and therefore conditionally stable, method. For instance, for the stability prob-
lems encountered in LBM implementations when dealing with special applications in hemodynamics see Golbert et al. [8]. 
A particularly interesting and useful scheme was proposed by He and Luo [45], as a more stable extension of BGK, which 
approximates the quasi-incompressible Navier–Stokes equations, namely:

f e
i = wσ

{
ρ + ρ0

[
3
(v�ei · �u)

v2
− 3

2

u2

v2
+ 9

2

(v�ei · �u)2

v4

]}
, (7)

where ρ0 is the constant density level. The macroscopic quantities are recovered as in Eq. (4), but ρ is replaced by ρ0 when 
recovering the velocity (�u).

Taking the form of Eq. (7) as a reference, one can define a family of equilibrium functions, given by:

f e
i = Aσ ρ + ρ0

[
Bσ

(v�ei · �u)

v2
+ Cσ

u2

v2
+ Dσ

(v�ei · �u)2

v2

]
, (8)

where Aσ , Bσ , Cσ and Dσ is the family of parameters.
In order to approximate the incompressible Navier–Stokes equation, f e

i should satisfy [45]:

∑
i

f e
i = ρ, (9)

∑
i

f e
i ei,α v = ρ0uα, (10)

∑
i

f e
i ei,αei,β v2 = v2

3
ρδαβ + ρ0uαuβ, (11)

∑
i

f e
i ei,αei,βei,γ v3 = v2

3
ρ0(δαβuγ + δγαuβ + δβγ uα), (12)

where the term ei,α is the projection of �ei on the α-axis (α = x or y).
By applying the equilibrium distribution of Eq. (8) to Eqs. (9)–(12) only two free parameters are left, which are chosen 

to be A2 and C2. The other parameters are given by the following relations:

A1 = 1

6
+ 2A2, (13)

A0 = 1 − 4 (A1 + A2) , (14)

B1 = 1

2
− 2B2, (15)

C1 = −2 (D2 + C2) , (16)

C0 = −4 (C1 + C2 + D2) − 2D1. (17)

The remaining parameters are B2 = 1/12, D1 = 1/2 and D2 = 1/8. He and Luo [46] scheme corresponds to A2 = 1/36
and C2 = −1/24, while Yeomans [46] proposed the scheme A2 = 1/24 and C2 = −1/16.

In this work, the velocity boundary conditions are imposed using the method proposed by Guo et al. [47], and the 
pressure boundary conditions with the method proposed by Zou and He [48].

The rest of the paper is dedicated to perform an exploratory search of a pair of parameters A2 and C2 that leads to an 
LBM scheme which is more stable than schemes published in previous works. A remarkable point here is that modifications 
of the parameters A2 and C2 are very simple to be implemented and can have great influence in the numerical stability.
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3. Stability analysis

Let us consider a case of a flow for which there exists a steady state f̃ i(�x) satisfying:

f̃ i(�x + �ei�x) = f̃ i(�x) − 1

τ

[
f̃ i(�x) − f̃ e

i (�x)]. (18)

To study the stability of the steady-state, the distribution function is written as the sum of the steady-state f̃ i(�x) and a 
time-dependent perturbation, that is:

f i(�x, t) = f̃ i(�x) + δ f i(�x, t). (19)

Replacing Eq. (19) in Eq. (18) and linearizing the equilibrium distribution f e
i (�x, t) around the steady-state gives:

δ f i(�x + �ei�x, t + �t) = δ f i(�x, t) − 1

τ

[
δ f i(�x, t) −

∑
j

J i j(�x)δ f j(�x, t)

]
, (20)

where

J i j(�x) = ∂ f e
i

∂ f j
. (21)

Using the following results:

∂ρ

∂ f j
= 1, (22)

∂

∂ f j
(v�ei · �u) = v�ei · ∂ �u

∂ f j
= v�ei · v�e j

ρ0
, (23)

∂

∂ f j
(�u · �u) = 2�u · ∂ �u

∂ f j
= 2

(�u · v�e j)

ρ0
, (24)

∂

∂ f j
(v�ei · �u)2 = 2

ρ0
(v�ei · v�e j)(v�ei · �u), (25)

the Jacobian can be written as:

J i j = Aσ + Bσ
(v�ei · v�e j)

v2
+ 2Cσ

(v�e j · �u)

v2
+ 2Dσ

(v�ei · v�e j)(v�ei · �u)

v4
. (26)

Following the von Neumann analysis performed by Sterling and Chen [14], let us evaluate the Jacobian J i j at a fixed 
constant value U of the steady-state velocity, and write the perturbation δ f i(�x, t) as:

δ f i(�x, t) = e− 2πι
�x (�k·�x) Fi(t), (27)

where ι = √−1.
Combining Eqs. (20) and (27) gives:

Fi(t + �t) =
∑

j

�i j F j(t), (28)

where

�i j = e2πι(�k·�ei)
[(

1 − τ−1)δi j + τ−1 J i j
]
. (29)

Eq. (28) is a set of 9 linear difference equations whose general solution can be written as a linear combination of terms 
proportional to qn

i , where n is the number of time steps and qi are the eigenvalues of �i j , which in general are complex. 
The linear stability condition is ensured by:

r = max
i

|qi| ≤ 1. (30)

The spectral radius r depends on the wave number vector �k, the velocity level U , the relaxation parameter τ , and the 
parameters of the equilibrium distribution Aσ , Bσ , Cσ and Dσ . The goal of the present analysis is to find the combination 
of such parameters that improves the stability of the scheme by increasing the critical velocity level (Ucrit) for which r
approaches unity.

It should be noted that this is a very special case, for J i j in general depends on �x and δ f i(�x, t) is actually a combination 
of many terms with different �k. However, the study of Eq. (28) can be considered as a sufficient condition for linear stability, 
and we propose here to use it in order to guide the assessment of the relative degree of stability of different LBM schemes 
[14,15]. Based on the results of this assessment, subsequent numerical tests of particular cases will be performed to confirm 
the spectral results.
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Table 1
Parameters of the four analyzed equilibrium distributions (see Eq. (8)). For the BGK scheme, replace ρ0 for ρ in Eq. (8).

LBM scheme A0 A1 A2 B1 B2 C0 C1 C2 D1 D2

BGK 0 2/9 1/36 1/3 1/12 −2/3 −1/6 −1/24 1/2 1/8
He and Luo [45] 0 2/9 1/36 1/3 1/12 −2/3 −1/6 −1/24 1/2 1/8
Yeomans [46] −1/6 1/4 1/24 1/3 1/12 −3/4 −1/8 −1/16 1/2 1/8
Present scheme 0.0798 0.2089 0.0211 1/3 1/12 −0.5719 −0.214 −0.018 1/2 1/8

Fig. 1. Diagram of the heuristic search of more stable LBM schemes, guided by the spectral radius r and a selection of perturbations.

4. Results

This section starts with a description of the methodology performed to find more stable schemes for a general class of 
quasi-incompressible lattice Boltzmann equations, Eq. (8). Here a new scheme is presented, as an optimized choice of the 
parameters Aσ , Bσ , Cσ and Dσ for a certain class of confined flows.

In the sequence, the numerical stability of the new scheme is compared with other schemes in cases of interest where 
the numerical solutions or known analytical solutions can be used to assess the error. More specifically, we compare the 
results obtained in plane Poiseuille and Couette flows and in a Driven Cavity (all in equal geometries of aspect ratio 2 × 1), 
varying the relaxation parameter τ (τ = 0.5 + 0.5/n, n = 1, . . . , 12), the number of points in the transversal direction 
(L y/�x = 10, 15, 20, 30, 40, 60) and the Reynolds number, by the four LBM schemes detailed in Table 1.

Over 100 000 simulations were performed on a Bull Cluster at the National Laboratory for Scientific Computation (LNCC, 
Brazil), consisting of 100 blades with 36 GB of RAM and 2 Intel Xeon X5550 processors of 2.67 GHz each.

4.1. Stability maps

The standard incompressible BGK model proposed by He and Luo [45] was taken as reference from which alternative 
schemes are explored in what follows.

The searching procedure of more stable LBM schemes, with an equilibrium distribution as in Eq. (8), is depicted in 
Fig. 1. For a given τ and a set of perturbations K , the spectral radius of the matrix �i j can be calculated as a function of 
the velocity level U , for each set of parameters of the equilibrium function (Aσ , Bσ , Cσ and Dσ , which are determined 
by A2 and C2 as shown in Eqs. (13)–(17). The stability margin is then determined by the condition r(�k, U ) = 1. With 
this information, particular equilibrium distributions can be selected and their stability influence verified with numerical 
simulations. The eigenvalues of �i j were calculated numerically using the FORTRAN subroutine DEVCCG of the IMSL Library 
in double precision.

Since the wave number is a vector, in principle the whole range of values of kx and ky would need to be swept in 
the interval (−1, 1). For example, assuming the He and Luo [45] scheme, τ = 0.5001 and setting �k parallel to the flow 
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Fig. 2. Map of the spectral radius (r) of He and Luo [45] scheme when the wave number vector is parallel to the steady-state flow (τ = 0.5001). (For 
interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 3. Map of the spectral radius (r) of He and Luo [45] scheme when all the wave number components normal to the flow, ky , are tested (τ = 0.5001). 
(For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

results in the r-map shown in Fig. 2. The most dangerous wavenumber is k = 0.73 (modulus of �k), which corresponds to a 
critical velocity Ucrit = 0.33 (in units of �x/�t). However, in principle there can be a more unstable wave-number vector �k not parallel to the velocity. Testing for the whole range of allowed transversal wave numbers (ky ), for each pair (kx, U ), 
leads to the map showed in Fig. 3. The critical velocity decreases in this case to 0.1. The form of the contour lines as they 
approach the stability boundary, r = 1, shows that different values of ky contribute triggering different instability modes, 
producing “fingers” that decrease the critical velocity. Other authors [15,20] studied approximate solutions to the complete 
eigenvalue problem, which involves the spatial dependence of the matrix �i j , finding that the boundary conditions in the 
transversal direction influence the stability. For the purpose of an explorative analysis, aimed at identifying more stable LBM 
schemes in particular cases of interest, it can be assumed that there is a fixed confinement in the transversal direction. This 
confinement is always present in internal flows and restricts the values of ky to a discrete set consistent with standing 
waves confined in a finite length L y , that is [15,20]:

ky = 1

n
; 1 ≤ |n| ≤ L y

�x
. (31)

Since usually the lowest mode is the dominant, in order to simplify the heuristics we propose to analyze relative vari-
ations of the stability margin assuming ky = �x/L y (n = L y/�x). The resulting critical velocity would hopefully provide a 
guide to the search of more stable LBM schemes on this particular domain of geometries (see Fig. 1).

Fig. 4 shows the stability thresholds of the schemes suggested by He and Luo [45] and Yeomans [46], for τ = 0.501
and confinement ratio L y/�x = 10. It can be seen that the Yeomans [46] scheme is unconditionally unstable. In order to 
identify a more stable scheme, a comprehensive search was performed over a large range of parameters A2 and C2 (see 
Eq. (8)). Fig. 5 shows the critical velocity level calculated for each pair (A2, C2) setting L y/�x = 10 and τ = 0.501. The 
maximum critical velocity Ucrit (i.e., the most stable pair) corresponds neither to the scheme proposed by He and Luo 
[45] nor by Yeomans [46]. Similar maps are found for other ratios L y/�x. Fig. 6 shows the combined map of Ucrit , with 
L y/�x ranging between 10 and 60. The maximum critical velocity, Ucrit = 0.25, corresponds to the pair A2 = 0.0211242 and 
C2 = −0.0179776. The stability threshold of this scheme is compared in Fig. 4 with the previous schemes, which confirms 
that the proposed scheme is in effect more stable.

The optimum set of parameters is given in Table 1. It is interesting to observe in Fig. 7 the spectral-radius map of the 
proposed scheme resulting from the complete sweep of possible values of the transversal wave number ky . Surprisingly, if 
any value of ky is allowed, this scheme is unstable for all velocity levels. An unstable mode around kx ∼ 0.55 is possible, 
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Fig. 4. Stability margins for τ = 0.501, ky = 2π/L y , L y/�x = 10. He and Luo [45] (black), Yeomans [46] (blue), proposed scheme (red). (For interpretation 
of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 5. Map of critical velocities (in units of �x/�t) in the space of two-parameters incompressible LBM schemes (τ = 0.501, ky = 2π/L y , L y/�x = 10). 
Points 1, 2 and 3 correspond to Yeomans [46], He and Luo [45] and the present schemes, respectively. (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)

Fig. 6. Map of critical velocities (in units of �x/�t) in the space of two-parameters incompressible LB schemes (τ = 0.501, ky = 2π/L y , L y/�x ranging 
from 10 to 60). Points 1, 2 and 3 correspond to Yeomans [46], He and Luo [45] and the present schemes, respectively. (For interpretation of the colors in 
this figure, the reader is referred to the web version of this article.)

which seems to be damped by the confinement in the transversal direction when the confinement ratio L y/�x is lower 
than 60, as we will verify in the numerical experiments that follow.

The stability of the optimum scheme (A2 = 0.0211 and C2 = −0.018) is compared with the stability of the standard 
incompressible BGK-D2Q9 scheme and with the third order D2Q9 scheme proposed by Siebert et al. [22]. Fig. 8 displays this 
stability analysis. While the third order scheme from [22] allows higher Reynolds numbers for most values of τ , remarkably, 
the model derived in the present study features better stability for τ very close to 0.5 (i.e., very low viscosities).

4.2. Poiseuille flow between parallel plates

Numerical simulations for the Poiseuille flow in a channel between parallel plates, with aspect ratio 2 × 1, driven by 
a fixed pressure gradient were carried out using the LBM schemes listed in Table 1. In all cases no-slip conditions were 
applied at the walls (top and bottom) and constant pressure values at the inlet (pin) and the outlet (pout). The density at 
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Fig. 7. Map of spectral radius of the present scheme testing all transversal wavenumbers ky (τ = 0.501). (For interpretation of the colors in this figure, the 
reader is referred to the web version of this article.)

Fig. 8. Dependence of the critical fluid velocity with the viscosity parameter τ . Black: BGK, blue: third order scheme [22], red: D2Q9 scheme with optimized 
coefficients (A2 = 0.0211 and C2 = −0.018). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.)

the channel outlet is constant and taken as the system density level (pout = p0 = ρ0 v2/3). The calculation initiates with a 
channel inlet pressure (pin) slightly higher than the exit (pout), that is:

pin = pout + �p = ρ0 v2

3
+ �p. (32)

The pressure drop (�p) is chosen so that the theoretical Reynolds number Re (calculated with the maximum velocity) 
is 5, that is, from the analytical solution of the Poiseuille flow:

�p = umax8νρL = ν Re

D
8νρL = 40ν2ρL

D
, (33)

where D is the distance between the parallel plates.
The simulation stops when the following criterion for assessing steady state is reached (for some time instant tn ):√∑N P

j=1 ‖�u(�x j, tn) − �u(�x j, tn−1)‖2

N P umax
< 10−10, (34)

where N P is the total number of discretization points and ‖·‖ is the Euclidean norm.
If this criterion is reached in less than NT = 80 (N P − 1)2 / (τ − 0.5) time steps, then the inlet pressure is increased a 

quantity �p, umax is updated accordingly and the calculation continues until the steady-state criterion is reached again, and 
so on. If at certain point in the process the steady-state criterion is not reached after NT time steps, or there is an overflow 
in the calculation, the simulation stops and the flow is considered unstable. The critical Reynolds is then defined as the 
maximum velocity for which the convergence criterion given by Eq. (34) was achieved.

The procedure described above was performed varying the relaxation parameter τ (τ = 0.5 + 0.5/n, n = 1, . . . , 12) and 
the number of points in the transversal direction (L y/�x = 10, 15, 20, 30, 40, 60). Fig. 9 shows the map of critical Reynolds 
numbers of the four LBM schemes, for each pair (τ , L y/�x). It can be seen that the present scheme is indeed more stable 
than He and Luo [45] scheme in a wide range of τ and grid resolutions. In this region the critical Reynolds number can 
be increased around 34% with respect to He and Luo [45] scheme. Also, classical BGK is less stable than the incompressible 
version (especially for higher τ values) and the Yeomans [46] scheme is much less stable in all tested cases.
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Fig. 9. Map of critical Reynolds number of the Poiseuille flow for the LBM schemes BGK (up-left), He and Luo [45] (up-right), Yeomans [46] (down-left) and 
present scheme (down-right). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

The accuracy of the solutions was assessed by comparison with the analytical solution (�uexact ) of the Poiseuille flow. The 
error is defined then as:

error = max j ‖�u(�x j, tn) − �uexact(�x j)‖
‖�umax‖ . (35)

Fig. 10 displays the map of the errors at the critical Reynolds number (in the same parameter space as Fig. 9), showing 
that the numerical accuracy of the new method is comparable to He and Luo [45] scheme. In turn, classical BGK and 
Yeomans [46] schemes are not as accurate.

4.3. Couette flow

The second case consists of numerical simulations of the Couette flow between parallel plates with aspect ratio 2 × 1, 
driven by the constant movement of the upper wall. No-slip conditions were applied at the walls (bottom and top), with 
a constant movement of the top wall (umax) and a fixed pressure at the inlet and the outlet, equal to the initial fluid 
pressure (p0).

The initial wall speed is chosen so that the theoretical Reynolds number is 5, that is:

u0 = ν Re

D
= 5ν

D
, (36)

which is maintained until the criterion for steady state of Eq. (34) is reached. As in the Poiseuille flow, if this criterion is 
reached in less than NT = 80 (N P − 1)2 / (τ − 0.5) time steps, the wall speed (umax) is increased by u0 and the calculation 
continues until the steady-state criterion is reached again, and so on. The critical Reynolds is defined as before. The range of 
the relaxation parameter τ and the number of cells in the transversal direction are also the same as in the previous section.

Fig. 11 shows the map of critical Reynolds numbers of the four LBM schemes for the Couette flow simulation. It can 
be seen that the present scheme is again more stable than He and Luo [45] scheme for a similar range of τ and grid 
resolutions. In this region the critical Reynolds number can be increased around 23% respect to He and Luo [45] scheme. 
While the BGK scheme presents results similar to He and Luo [45] scheme and the Yeomans [46] scheme is again less 
stable.

The accuracy of the solutions was assessed by comparison with the analytical solution of the planar Couette flow. The 
error is defined as in Eq. (35). Fig. 12 shows the map of the errors, showing that the numerical accuracy of the proposed 
scheme is similar to the other schemes in the regions of stability.
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Fig. 10. Map of the error with respect to the analytical solution of the Poiseuille flow for the LBM schemes BGK (up-left), He and Luo [45] (up-right), 
Yeomans [46] (down-left) and present scheme (down-right). In the white region there is no stable solution. (For interpretation of the colors in this figure, 
the reader is referred to the web version of this article.)

Fig. 11. Map of critical Reynolds number of the Couette flow for the LBM schemes BGK (up-left), He and Luo [45] (up-right), Yeomans [46] (down-left) and 
present scheme (down-right). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)
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Fig. 12. Map of the error with respect to the analytical solution of the Couette flow for the LBM schemes BGK (up-left), He and Luo [45] (up-right), Yeomans 
[46] (down-left) and present scheme (down-right). In the white region there is no stable solution. (For interpretation of the colors in this figure, the reader 
is referred to the web version of this article.)

4.4. Driven Cavity

The last case is the numerical simulation of the Driven Cavity flow, which amounts for simulating the flow of a fluid 
in a closed rectangular domain with an aspect ratio 2 × 1 with a no-slip condition at the walls and driven by a constant 
movement of the top wall (umax).

The initial wall speed is chosen so that the theoretical Reynolds number is 5, that is:

u0 = ν Re

h
= 5ν

h
, (37)

where h is the height of the cavity. As in the previous cases, if the criterion for steady state of Eq. (34) is reached in less 
than NT = 80(N P − 1)2/(τ − 0.5) time steps, the wall speed (umax) is increased by u0 and the calculation continues until 
the steady-state criterion is reached again, and so on. The critical Reynolds number, the range of the relaxation parameter 
τ and the number of cells in the transversal direction is also the same as in the previous sections.

Fig. 13 shows the map of critical Reynolds numbers of each scheme. Note that imposing only velocity boundary condi-
tions leads to achieving stable simulations for much higher Reynolds number (up to 8000) than in the previous cases (up to 
550). This is a consequence of the imposition of pressure boundary conditions, even using a method widely adopted in the 
literature. As this work is focused on the instabilities introduced by the equilibrium distribution, we will not focus on the 
analysis of methods for imposing boundary conditions. For this special kind of problem, the proposed equilibrium distribu-
tion presents improvements in the stability for the least refined meshes. In fact, the compressible and incompressible BGK 
[45] schemes are slightly more stable in most parts of the map, while the Yeomans [46] scheme is much less stable.

As there is no analytical solution for this problem, the accuracy of the solutions was assessed by comparison with a 
reference case, chosen as the numerical solution obtained with He and Luo [45] scheme. The error of the other schemes is 
defined, comparing its velocity field to the reference one (�uref ), at the maximum Reynolds number for which both schemes 
are considered stable, as:

error = max j ‖�u(�x j, tn) − �uref (�x j)‖
umax

. (38)

Fig. 14 shows the map of the errors in the same parameter space as Fig. 13, showing that the numerical solution of the 
proposed scheme is close to the one obtained using the He and Luo [45] scheme, in the regions of stability. In turn, classical 
BGK and Yeomans [46] schemes are not as accurate for the least refined meshes.
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Fig. 13. Map of critical Reynolds number of the Driven Cavity for the LBM schemes BGK (up-left), He and Luo [45] (up-right), Yeomans [46] (down-left) and 
present scheme (down-right). (For interpretation of the colors in this figure, the reader is referred to the web version of this article.)

Fig. 14. Map of the difference between the numerical solution, using the LBM scheme He and Luo [45], of the Driven Cavity and other LBM schemes, BGK 
(up-left), Yeomans [46] (down-left) and present scheme (down-right). In the white region there is no stable solution. (For interpretation of the colors in 
this figure, the reader is referred to the web version of this article.)
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5. Conclusions

The stability of a class of LBM schemes was explored using a heuristic technique guided by the von Neumann linear 
stability method and an educated selection of the wave-number vectors. The linear stability analysis was simplified by 
assuming a uniform velocity level over the whole domain, while only the wave numbers of the first harmonic normal 
to the flow direction were permitted. The relative stability of the members of a two-parameter family of LBM schemes 
aimed at incompressible flows was studied, identifying a singular equilibrium function that maximizes the critical velocity 
level. The candidate scheme was afterwards tested in particular cases of confined flows, which are of interest in numerous 
applications, like pipes and cavities. An important point is that the family of LBM schemes presented is very simple to be 
implemented and can have great influence in the numerical stability.

In all tested cases the proposed scheme is more stable than other schemes for a certain range of the relaxation parameter 
and mesh refinement (especially on the least refined meshes). Better results were obtained with this new scheme when 
pressure boundary conditions were imposed. Particularly, in the Driven Cavity flow (for which the Reynolds numbers are 
much higher), we clearly noticed that the Reynolds obtained with the least refined meshes was greater in the present 
scheme, while the other schemes obtain better results as the mesh is refined.

The proposed methodology can be also applied to other classes of LBM schemes, like regularized and higher order 
distribution functions. Finally, we remark that the results of the present study are concerned with the instabilities introduced 
by the equilibrium distribution. However, it is also known that the boundary conditions also influence the stability of the 
scheme. This can be the object of future investigations.
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