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Abstract We develop a theory of relative Kähler differentials for Lie algebras. The main
result is that the functor of relative differentials is representable, and that the universal object
which represents it behaves properly with respect to étale base change. We illustrate how our
construction yields a detailed analysis of the structure of derivations of multiloop algebras
which is needed for the construction of Extended Affine Lie Algebras.
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Faithfully flat descent
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1 Introduction

Let g be a Lie algebra over a field k (which we will assume for simplicity in this Introduction
to be algebraically closed and of characteristic 0). The k-derivations of g with values in
a g-module M are used to define the first Lie algebra cohomology. More importantly, the
derivations with values in g itself are an infinitesimal approximation of the automorphism
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942 J. Kuttler, A. Pianzola

group of g, hence give information about both, g and its automorphisms. This infinitesimal
approximation applies, mutatis mutandi, if k is an arbitrary commutative ring.

Many Lie algebras arising in important applications are not just Lie algebras over k,
but over some k-algebra R. An example of paramount importance which arises in infinite
dimensional Lie theory are the twisted forms of the R-Lie algebra g ⊗k R, where R is a
Laurent polynomial ring. Affine Kac-Moody theory falls within this framework. Assume
L is such a Lie algebra. It seems a natural idea, developed and analyzed by Neher and the
second author in [13], to connect the R-derivations and the k-derivations in a meaningful
way. Since every R-derivation is a k-derivation, the interesting problem here is to describe
those k-derivations that are not R-derivations (see Remark below). The main result of [13]
in this context is that, given an R − L-module M , there exists an exact sequence

0 → DerR(L,M) → Derk(L,M) → Derk
(
R,CR(M)

)
→ 0 (1)

where CR(M) is an R-module constructed naturally out of the Lie algebra L and M . In
many interesting cases this sequence is split as a sequence of R-modules.

There is a very good reason for why the understanding of the k-derivations of L is impor-
tant: The most interesting Lie algebras are constructed by taking a central extension of L
and adding to this a suitable space of derivations. This is already the case for the affine
Kac-Moody Lie algebras, and their natural generalizations, namely Extended Affine Lie
Algebras (or EALAs, for short). EALAs where first conceived by physicists. A rigorous
definition of these algebras and some of their important invariants and properties was given
in [1]. One of these invariants is the centreless core of an EALA (often called the bottom
algebra; these are the algebras L that we had in mind in the previous paragraph). E. Neher
conceived a beautiful theory in which a set of axioms is given for the Lie algebras that can
constitute the centreless core of an EALA, and a precise procedure of how to build any
EALA by adding to a bottom algebra L a centre and a space of derivations. This is the
“modern” approach to EALAS, and will be explained in some detail below. See [9–11],
and [12].

Another promising application of our work is to the classification of differential super-
conformal algebras. The motivation comes from the theory of differential conformal
superalgebras developed in [7] which was used to explain the family of N = 2, 3, 4 super-
conformal Lie algebras described in [15]. The classification of differential superconformal
algebras using non-abelian cohomology methods (torsors. See [3]) would require, out of
first principles, a complete functorial understanding of the space of derivations of certain
algebras given by étale descent. The methods that we develop in the present paper are
perfectly suited for this purpose.

Many of our results can be “interpreted” in the language of [13] applied to the special
case of the universal derivation d : L → !R,L/k we will define. There are, however, two
distinct advantages to our approach here. First, it allows to treat all derivations at once,
regardless of the specificR-module in question. Second, for perfect Lie algebras, it provides
for a way of sheafification, that is, the module of differentials gives rise to a quasi-coherent
sheaf defined for any scheme over k (see Remark 5.5 below).

For k-algebras, derivations and Kähler differentials behave nicely under étale ring exten-
sion. The exact sequence in Eq. 1 is established first for Lie algebras of the form g ⊗k R,
and then by descent for twisted forms. Since the twisted forms we are interested in are split
by étale extensions, the present approach to the study of derivations of Lie algebras seems
to be, not only philosophically correct, but also useful.
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Differentials for Lie Algebras 943

Remark The “relative” R/k setting mentioned above is crucial. The motivation comes
from infinite dimensional Lie theory (e.g. affine or extended affine Kac-Moody Lie
algebras). This are infinite dimensional Lie algebras L over k, and understanding the
structure of derivations of these algebras with coefficients in certain modules (e.g.
L∗) is central to the theory. The ring R appears naturally (as the centroid of L).
By descent considerations one has perfect understanding about the structure of the
derivations of L as a Lie algebra over R. The full picture is completed by describ-
ing the “defect” between R and k-derivations. This is the approach that we shall
take.

Note that since every L-module (over R) is also a module for the universal enveloping
algebra UR(L) of L over R, and since there is a well-developed theory of differentials for
associative algebras, it is tempting to try and connect this theory for the enveloping algebra
to the derivations of L. However, it is unclear to us, how this could work, mainly because a
derivation of L with values in some module M is not a derivation of UR(L) with values in
M in any natural way. While the theory of differentials for associative algebras will play a
role, it is not connected to the one of the enveloping algebras.

2 Preliminaries

In this section we introduce the setup that we will be working with. Throughout k will
denote a (commutative, unital) ring; later on, we will require k to be a field. We assume that
k is fixed throughout our discussions. It is referred to as the base ring. A k-algebra will be
a commutative unital ring R together with a fixed ring homomorphism k → R. If R is a k-
algebra, anR-Lie algebra, or Lie algebra overR, is anR-module together with anR-bilinear
product [ , ] such that [x, x] = 0 for all x and for which the Jacobi identity is satisfied. If L
is an R-Lie algebra, it is of course also a Lie algebra over k, and an L-module is a k-module
M with compatible L-action. To be precise, the action (x , m) %→ xm is given by a k-linear
map L ⊗k M → M such that xym − yxm = [x, y]m for all x, y ∈ L and m ∈ M . If M
is also an R-module, then M is an R − L-module if in addition, x(rm) = (rx)m = r(xm)

for all r ∈ R, x ∈ L, m ∈ M , i.e., the action map factors through L ⊗R M . If M , N are
R − L-modules, HomR−L(M,N) denotes the set of L-equivariant R-module maps. This
has a natural R-module structure given by (rf )(m) = rf (m). If R = k, we simply write
HomL(M,N).

Remark Of course an R − L-module is nothing but a (left-) UR(L)-module where UR(L)

denotes the universal enveloping algebra of the R-Lie algebra L. The R − L-equivariant
maps between such modules then become simply the UR(L)-linear maps.

2.1 Derivations

Let L be a Lie algebra over k, and M an L-module. A k-derivation of L with values in M

is a k-linear map δ : L → M satisfying

δ([x, y]) = xδ(y) − yδ(x).

If L is an R-Lie algebra and M is an R − L-module, it makes sense to talk about R-
derivations, that is, derivations that are also R-linear. We will write DerR(L,M) for the
space of R-derivations with values inM .
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944 J. Kuttler, A. Pianzola

Below we will also encounter the derivations of R with values in a bimodule M . Here
a bimodule of R is always a bimodule where k acts centrally, i.e., it is just a left R ⊗k R-
module. A k-derivation of R with values in such a bimodule is a k-linear function δ : R →
M with the property that δ(rs) = rδ(s) + δ(r)s. We write Derbk(R,M) for the set of all
such derivations. It is well known that the functor M ! Derbk(R,M) on the category of R-
bimodules is represented by the ideal of the diagonal in R ⊗k R, that is, the kernel !b

R/k of
the multiplication map R ⊗k R → R. Being an ideal, it is an R-bimodule in our sense. Any
R-module M is naturally an R-bimodule if we put (r, s)m = rsm.1 Then any R-bimodule

map !b
R/k → M factors through !b

R/k/
(
!b

R/k

)2
≃ !b

R/k ⊗R⊗kR R, which is canonically
isomorphic to the module !R/k of Kähler differentials of R over k, and, restricted to the
category of R-modules, Derbk(R, ·) is represented by !R/k .

It is clear that Derk(L,M) is an R-module via (rδ)(x) = rδ(x). The assignment M !
Derk(L,M) is clearly a functor from the category of R − L-modules to the category of
R-modules. As mentioned in the introduction, our main goal is to show that this functor is
representable, and to describe the representing R − L-module. Note that L is a Lie algebra
over R andM is an R−Lmodule (this is the relative set up mentioned in the Introduction).
The notation Derk(L,M) hides R, and we at times use DerR/k(L,M) instead to emphasize
the presence of R.

Definition 2.1 Let L be an R-Lie algebra. A module of R/k-differentials for L is an R−L

module !R,L/k representing the functor DerR/k(L, ·).

By Yoneda’s Lemma, !R,L/k is unique up to canonical isomorphism, if it exists.
Similarly, the identity map in HomR−L(!R,L/k,!R,L/k) corresponds to a derivation
dR,L,k : L → !R,L/k which we will refer to as the universal derivation. It is characterized
by the fact that any derivation δ : L → M corresponds to a unique R − L-homomorphism
σδ : !R,L/k → M such that σδ ◦ dR,L,k = δ.

2.2 Change of Rings

An extension of R is a homomorphism R → S of k-algebras. If M is an R-module, and
R → S an extension, we often writeMS for the S-moduleM⊗R S. Since S/R will be fixed
within a given discussion, this notation will not lead to confusion. The tensor product with
respect to our base ring k will be denoted by ⊗k to avoid any possible misunderstanding.

Suppose L is an R-Lie algebra, and M is an R − L-module. If R → S is any extension,
thenMS = M⊗R S is canonically an S−LS-module. If L is an S-Lie algebra and R → S is
an extension, then L will be viewed as an R-Lie algebra in the natural way. Note, however,
that in this case if M is an R − L-module, then MS is not, in general, an S − L-module.
Indeed, xm ⊗ s may not equal (sx)m ⊗ 1 for example. To remedy this, we define

T (M, S) = (M ⊗R S)/U

where U is the S-submodule generated by all (sx)m ⊗ t − xm ⊗ st for s, t ∈ S, m ∈ M ,
and x ∈ L. We can generalize this picture by replacing S by an arbitrary S − L-module N .
In this case (M ⊗R N)/U is an S − L-module if U is the R-submodule generated by all
(sx)m⊗n−xm⊗ sn, where s ∈ S, x ∈ L,m ∈ M , and n ∈ N . If we denote (M ⊗R N)/U

1Or (r ⊗ s)m = rsm in the tensor product interpretation of our bimodules.
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Differentials for Lie Algebras 945

by T (M,N), then T (− , N) is a functor from the category ofR−L-modules to the category
of S − L-modules (playing a similar role as ⊗RN does on the category of R-modules).

Let A be an S-module that is also an L-module (but not necessarily an S − L-module).
Given an S−L-module B, we still write HomS−L(A,B) for the set of S- and L-equivariant
maps from A to B.

Lemma 2.2 On the category of S − L-modules, T (M,N) represents the functor P %→
HomS−L(M ⊗R N,P ).

Proof The assignment in question is a functor from the category of S − L-modules to the
category of S-modules. Since every S − L map M ⊗R N → P factors uniquely through
T (M,N) the Lemma is clear.

The main application of this concept in our context is the case when S = R⊗k R. This S
is an extension ofR in two obvious ways. Clearly anyR-Lie algebra L is also anR⊗kR-Lie
algebra, if we give L the canonical bimodule structure.

We will be mostly interested in (twisted) forms of Lie algebras over k.

Definition 2.3 Ler R be a k-algebra which we assume is fixed in our discussion. Let L and
L′ be Lie algebras over R. We say that L is a form of L′ if L ⊗R S ≃ L′ ⊗R S as S-Lie
algebras for some faithfully flat an0d finitely presented extension S/R. The given S is said
to split L, and we also say that L is an S/R-form of L′.

Finally, if g is a Lie algebra over k, we say (by a harmless abuse of language) that L is a
form of g if L is a form of g ⊗k R.

Arguably the most important examples are forms of loop algebras, which are a major
building block of interesting families of infinite dimensional Lie algebras: here k is typically
C, but can be any algebraically closed field of characteristic zero, g is a (finite dimensional)
simple Lie algebra over k, and R = k

[
t±1
1 , · · · , t±1

n

]
is a Laurent polynomials ring or the

field k((t1)) · · · ((tn)) of iterated Laurent series over k. In these cases, any form of g⊗k R is
split by an étale (in fact, Galois-) extension of R,2 which will make the discussion of étale
base change below relevant. Details about the “torsor” approach to these algebras can be
found in [4, 6] and [14]. The case n = 1 appears in the theory of affine Kac-Moody-Lie
algebras, while the general case in the theory of Extended Affine Lie Algebras (EALAs).

Remark 2.4 The purpose of this remark is to point out a useful “finiteness” property of
forms that has not been recorded in the literature Let g, R and k be as above. Assume that g
is finite dimensional, and consider the algebraic group G := Aut(g). The forms of g ⊗k R

are classified by the pointed set H 1
fppf(R,GR). Since G is smooth, we may replace the fppf

topology by the étale topology.
The claim is the following. IfL is a form of g⊗kR, then there exists a Noetherian subring

R′ of R containing k, and a Lie algebra L′ over R′ such that L ≃ L′ ⊗R′ R. The Lie algebra
L′ is a form of g⊗kR

′. Furthermore, L′ is unique in the sense that if L′′ is anR′′-Lie algebra
with similar properties, then there exists a Noetherian subring R′′′ of R containing both R′

and R′′ such that L′ ⊗R′ R′′′ and L′′ ⊗R′′ R′′′ are isomorphic Lie algebras over R′′′.

2For Laurent polynomials, this follows for the Isotriviality Theorem of [5].
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946 J. Kuttler, A. Pianzola

To see this writeR as a direct limit of Noetherian subrings (Rλ)λ∈% where% is a partially
ordered set and each Rλ contains k. There is no loss of generality in assuming that % has
a minimal element 0 and that R0 = k. For λ ∈ % consider the Rλ-group scheme Gλ =
G ×Spec(k) Spec(Rλ). By a theorem of Grothendieck-Margaux (see Theorem 2.1 of [8]) the
natural map

lim−→
λ∈%

H 1(Rλ,Gλ) → H 1(R,GR)

is bijective. The claim follows easily from this fact.
We finish the present remark by pointing out that the same consideration holds if g is an

arbitrary finite dimensional algebra over k.

3 The Construction

The goal of this section is to show the existence of the R − L-module !R,L/k and gain
preliminary insights into its structure.

Recall that the universal enveloping algebra of an R-Lie algebra L is defined as

UR(L) = TR(L)/⟨x ⊗ y − y ⊗ x − [x, y]|x, y ∈ L⟩
where TR(L) = ⊕

p L
⊗p is the tensor algebra of L over R. We will write ML,R for the

augmentation ideal of UR(L), namely the ideal of UR(L) generated by the image of L in
UR(L).3 We have the canonical map UR(L) → R having the augmentation ideal as kernel.
Let dL,R : L → UR(L) be the canonical map x %→ x (this last x is of course an abuse of
notation. In all the cases we are interested the map is injective, so that the abuse of notation
is harmless). It is an R-derivation into the R − L-moduleML,R , where L acts onML,R by
left-multiplication.

Lemma 3.1 Let δ : L → M be an R-derivation where M is some R − L-module. Then
there is a unique R − L-linear map ϕδ : ML,R → M , such that δ = ϕδ ◦ dL,R .

Proof This is straightforward: first let T +
R (L) = ⊕

p>0 L
⊗p , and define ϕ′ : T +

R (L) → M

to be the unique k-linear map satisfying

ϕ′(x1 ⊗ x2 ⊗ · · · ⊗ xp) = x1x2 · · · xp−1δ(xp).

The elements of the ideal defining UR(L) are finite sums of elements of the form

u = f (x ⊗ y − y ⊗ x − [x, y])g
where f and g are pure tensors. If g is not in R, then ϕ′(u) = 0 by the defining property of
a Lie algebra action on M . Otherwise, g may be absorbed into f , and

ϕ′(f (x ⊗ y − y ⊗ x − [x, y]) = f xδ(y) − fyδ(x) − f δ([x, y]) = 0

because of the defining property of a derivation. It follows that ϕ′ factors through ML,R ,
with the latter viewed naturally as a quotient of T +

R (L). The resulting map ϕ = ϕδ is
as desired. Any R − L-linear map from ML,R to M is also UR(L)-linear. Since as an
UR(L)-module, ML,R is generated by dL,R(L), the map ϕ is necessarily unique.

3Note thatML,k is also meaningful. The base ring will always be made explicit.
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Corollary 3.2 The functor M %→ DerR(L,M) from the category of R − L-modules to the
category of R-modules is represented by ML,R .

Proof This is now clear: any R − L-linear map ϕ : ML,R → M , when composed with
dL,R : L → ML,R results in a derivation.

Of course, the structure of ML,R is not necessarily much simpler than the structure of
L itself, so for example if R = k, this may not be that helpful information. As we will
see however, if R and k are different, and L is “reasonable” as an R-Lie algebra, then
this approach may give information, mainly on those derivations that are k- but not R-
linear. The relevance of this point comes from infinite dimensional Lie theory as already
lauded to. More precisely. EALAs, of which the affine algebras are examples, are of the
form

L ⊕ Z ⊕ D.

The Lie algebra L is a multi loop algebra4, so that its centroid R is a Laurent polynomial
ring, and L is a form of g ⊗k R for some unique g. L ⊕ Z is a central extension of L (the
universal one in the affine case), while D is a Lie algebra of derivations (one dimensional
in the affine case) of L with values on L∗. Understanding the Lie algebras D that give
place to EALA structures is quite delicate. A detailed and conceptual knowledge of the
relevant derivations is essential.5 It is here that the “relative” set up is crucial. One needs
to exploit that L has a natural R-Lie algebra structure which splits after an étale extension
S/R. Perhaps it is pertinent to draw an analogy with the usual Kähler differentials to put
the present work in perspective. Our intention is not to create a Lie analogue of !R/k ,
but rather of a concept of relative Kähler differentials which for lack of better notation
can be thought of as !S/R/k . This is the object that is of use in infinite dimensional Lie
theory.

Proposition 3.3 Let L be an R-Lie algebra. Then the functor from the category of R − L-
modules to the category of R-modules given by M %→ DerR,k(L,M) is represented by
T (ML,k, R).

Proof We know that on k − L-modules, M %→ Derk(L,M) is represented by ML,k . The
rest of the assertion is just the universal property of T (ML,k, R) according to Lemma 2.2.
To be precise, if ϕ : ML,k → M is any k − L-map, then we have seen it induces a
unique map (ML,k ⊗k R)/U = T (ML,k, R) → M . Conversely any such map gives
rise to a derivation when composed with the natural map L → T (ML,k, R) coming from
x %→ dL,k(x) ⊗ 1.

It follows from our definition of relative Lie differentials that that !R,L/k =
T (ML,k, R), and that the universal derivation dR,L,k : L → !R,L/k is given by x %→
dL,k(x) ⊗ 1. Note that !R,L/k is generated as an R − L-module by the image of L. While
this follows from the construction we gave above, it is also a immediate consequence of
the universal property because the submodule generated by L would also be a representing
module.

4Assuming a technical condition on the EALA which is irrelevant to the present discussion.
5The reader is referred again to Neher’s work for a beautiful description of this construction.
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948 J. Kuttler, A. Pianzola

If R → S is any ring extension, and L is an S-algebra, the map dS,L,R : L → !S,L/R is
a k-derivation into an S − L-module and hence induces a map !S,L/k → !S,L/R . As both
modules are generated by the image of L, it is a surjection and we obtain an exact sequence

0 → 'S,L/k,R → !S,L/k → !S,L/R → 0.

For us the most interesting case is when S = R. We then simply write 'R,L/k instead of
'R,L/k,R , and we get the fundamental exact sequence

0 → 'R,L/k → !R,L/k → !R,L/R → 0. (2)

We will show that this sequence is split as a sequence of R −L in the cases that interest us,
which is the analogue for differentials of Proposition 3.3 in [13]. The R−L-module 'R,L/k

is called the defect module of R/k derivations of L.
By Corollary 3.2 we know that !R,L/R is isomorphic toML,R . It is unrealistic to expect

being able to say much about ML,R in general. As already mentioned, the case which is
of most interest to us is when L is a form of some Lie algebra g over k, and in this setting
ML,R may be understood by understanding Mg,k

4 The Structure of !R,L/k

In this section, we will describe 'R,L/k in terms of the Kähler differentials of R over k, at
least for “reasonable”Lie algebras.

To begin with, we note the following.

Lemma 4.1 'R,L/k is the R − L-submodule of !R,L/k generated by all

dR,L,k rx − rdR,L,k x (x ∈ L, r ∈ R). (3)

Proof LetM be the R −L-submodule generated by all the elements in Eq. 3, and consider
! = !R,L/k/M . Note that M ⊂ 'R,L/k . Let d̄ : L → ! be the map induced by the
universal derivation dR,L,k . It is clear that d̄ is a k-derivation. However, by the structure
of M , it is also an R-derivation. Hence there exists a map σ : !R,L/R → ! such that
σ ◦ dR,L,R = d̄ . Moreover σ is a section of the canonical projection ! → !R,L/R since σ

maps dR,L,Rx to d̄(x) for all x ∈ L. For the same reason, it is surjective, and thus σ is an
isomorphism. But that meansM = 'R,L/k .

The following lemma is as special case of Proposition 2.1 in [13]. We include a short
proof for the reader’s convenience.

Lemma 4.2 Let δ : L → M be any k-derivation into an R − L-module. Then for each
r ∈ R, the map L → M defined by x %→ δ(rx) − rδ(x) is L-equivariant.

Proof Let x, y ∈ L. Then

δ(r[y, x]) − rδ([y, x]) = δ([y, rx]) − rδ([y, x])
= yδ(rx) − (rx)δ(y) − r(yδ(x))+ rxδ(y)

= y(δ(rx) − rδ(x)).

The above allows us to obtain a stronger version of Lemma 4.1.
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Corollary 4.3 'R,L/k is generated as an R-module by the elements of the form dR,L,k rx−
rdR,L,k x (x ∈ L, r ∈ R).

Proof We know that these elements generate 'R,L/k as an R −L-module. By the previous
lemma, the R-module span of these elements is L-stable. The corollary follows.

We will write CR(M) for the set of R − L linear maps L → M , i.e., CR(M) =
HomR−L(L,M). For any R − L-module M , Ck(M) is naturally an R-bimodule, with
(r, s)ϕ = rϕs. A k-derivation R → Ck(M) is then a k-linear map δ : R → Ck(M) such
that

δ(rs) = rδ(s)+ δ(r)s.

For any R-bimodule M we write Derbk(R,M) for the set of such derivations. The most
general observation we can make about 'R,L/k is the following:

Proposition 4.4 There is a canonical injective natural transformation

HomR−L('R,L/k, ·) → Derbk (R,Ck(·))
on the category of covariant functors from the category of R − L-modules to the category
of R-modules.

Proof Let M be an R − L-module, and σ ∈ HomR−L('R,L/k,M). We define δ : R →
Ck(M) as follows:

δ(r)(x) = σ (dR,L,k(rx) − rdR,L,k(x)).

By Lemma 4.2, δ(r) ∈ Ck(M), so it remains to verify that δ is a derivation. For simplicity
we write d instead of dR,L,k .

δ(rs)(x) = σ (d(rsx) − rsd(x)) = σ (d(rsx) − rd(sx)+ rd(sx) − rsdx)

= δ(r)(sx)+ rδ(s)(x).

If σ ̸= 0, then not all δ(r) can be equal to zero, as the elements drx − rdx generate 'R,L/k

we conclude that δ ̸= 0.
To verify that σ %→ δ is functorial inM is straightforward.

By definition of !b
R/k we have Der

b
k(R,Ck(M)) = Hom(R,R)(!

b
R/k, Ck(M)).

If A,B are R-bimodules, i.e. S = R ⊗k R-modules, we write A "R B for the tensor
product of the right R-module A and the left R-module B. It is again an S-module, acting
as (r, s)a ⊗ b = ra ⊗ sb = ras ⊗ b. If we give L the canonical R-bimodule structure,
it becomes a Lie algebra over S = R ⊗k R. S is an extension of R in two obvious ways,
so let us fix R → S as r %→ 1 ⊗ r .6 Then for any S-module A, with trivial L-action,
T (L,A) = (A"R L)/U where U is the S-module generated by all

a ⊗ [(rxs), y] − ras ⊗ [x, y] (4)

with r, s ∈ R, x, y ∈ L, and a ∈ A (which is just the k-span of all these elements). We
think of T (L,A) as an R-module by means of the left R-action on A. For any R − L-
module M , then, HomL(L,M) is an R-bimodule, and so Hom(R,R)(A,HomL(L,M)) is

6Using the map r %→ r ⊗ 1 leads to an equivalent theory.
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an R-bimodule as well. Finally, if HomR−L

(
T (L,A),M

)
is an R-bimodule as well, if we

define the right action by means of (ϕr)(a ⊗ x) = ϕ(ar ⊗ x).

Lemma 4.5 There is a canonical isomorphism of R-bimodules

Hom(R,R)(A,HomL(L,M)) → HomR−L(T (L,A),M).

Proof Let ϕ ∈ Hom(R,R)(A,HomL(L,M)). We then define β : A × L → M as

β(a, x) = ϕ(a)(x).

Clearly, β is a k-bilinear map. It also satisfies β(ar, x) = β(a, rx) by the definition of the
right action of R on HomL(L,M) and the fact that ϕ is an (R,R)-linear map:

β(ar, x) = ϕ(ar)(x) = ϕ(a)(rx) = β(a, rx).

We obtain a k-linear map σ : A"R L → M . In fact, σ is R-linear:

σ (r(a ⊗ x)) = σ (ra ⊗ x) = ϕ(ra)(x) = rϕ(a)(x) = rσ (a ⊗ x).

Moreover, σ maps any element of the form Eq. 4 to 0:

σ (a ⊗ [(rxs)y]) = ϕ(a)([(rxs)y]) = (rx)ϕ(a)(sy) = x(rϕ(a)(sy))

= xϕ(ras)(y) = ϕ(ras)([x, y]) = σ (ras ⊗ [x, y]).
Thus, σ factors through an R-linear map σϕ : T (L,A) → M . It is also L-equivariant by
construction, and hence R − L-linear.

Conversely, suppose σ : T (L,A) → M is an R − L-linear map. The projection A "R

L → M then gives rise to a k-linear map A "R L → M , also denoted σ . For a ∈ A, let
ϕσ (a) : L → M be defined as

ϕσ (a)(x) = σ (a ⊗ x).

ϕσ (a) is k-linear, and L-equivariant:

ϕσ (a)([x, y]) = σ (a ⊗ [x, y]) = xσ (a ⊗ y) = xϕσ (a)(y).

Thus, ϕσ (a) ∈ HomL(L,M). We obtain a k-linear map ϕσ : A → HomL(L,M). It is also
(R,R)-linear, since for each x ∈ L

ϕσ (ras)(x) = σ (ras ⊗ x) = rσ (a ⊗ sx) = rϕσ (a)(sx) = ((r, s)ϕσ (a))(x).

Now σϕσ = σ and ϕσϕ = ϕ.

It is clear that the isomorphism of the lemma is functorial onM . The natural transforma-
tion of Proposition 4.4 then translates into a natural transformation

HomR−L('R,L/k, ·) → Hom(R,R)(!
b
R/k, Ck(·)) ≃ HomR−L(T (L,!

b
R/k), ·)

which of course is the same as an R − L-equivariant map T (L,!b
R/k) → 'R,L/k . Chasing

diagrams we see that this map sends the equivalence class of

dr ⊗ x to dR,L,k(rx) − rdR,L,k(x). (5)

This shows that the induced map T (L,!b
R/k) → 'R,L/k is always surjective.

Remark Of course one could use Formula (5) to define the map T (L,!b
R/k) → 'R,L/k

directly. However, it seems that the effort in then proving that it is a well-defined map is
about the same as the more conceptual detour we took.
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Proposition 4.6 Suppose the natural transformation of Proposition 4.4 is an isomorphism.
Then

'R,L/k ≃ T (L,!b
R/k).

Proof This is clear by Yoneda considerations.

Suppose that L is flat as an R-module.7 Then after applying"RL (on the right) the exact
sequence

0 → !b
R/k → R ⊗k R → R → 0

becomes
0 → !b

R/k "R L → R ⊗k L → L → 0

where the right hand map is simply scalar multiplication. So !b
R/k "R L is the kernel of the

k-linear map R ⊗k L → L satisfying r ⊗ x %→ rx. As a submodule of R ⊗k L this kernel
is spanned (as a left R-module, or even as an abelian group) by all elements of the form

r ⊗ x − 1 ⊗ rx.

By definition T (L,!b
R/k) is the quotient of that submodule by the submodule spanned by

all
r ⊗ [(sx)y] − 1 ⊗ r[(sx)y] − sr ⊗ [x, y] + s ⊗ r[x, y]

(to see this use (4) above). In general we do not knowwhether one can say more, either about
the structure of T (L,!b

R/k) or of 'R,L/k . By Corollary 4.3, 'R,L/k is contained in the R-
moduleM generated by the image dR,L/kL of L in !R,L/k . We now attempt to describeM ,
but let us now add the assumption that L admits a faithful R −L-module. Equivalently, the
canonical map L → UR(L) is injective. This is for example true if L is a finitely generated
projective R-module.8 So dR,L,R , hence also dR,L,k , are injective.

M ⊂ !R,L/k is in general not L-stable. However, much as it happens for Uk(L), there
is a second action (by commutator) which makes M an L-module (however, not an R − L-
module, as we shall see). Essentially, the idea is to define the action of x on dR,L,ky by
x as dR,L,k[x, y]. Now M is the image of the map ϕ : R ⊗k L → !R,L/k defined by
r ⊗ x %→ rdR,L,kx. R ⊗k L carries the natural L-action, so to get an action onM , all that is
needed is to show that the kernel of ϕ is L-stable. So let

ϕ

(
∑

i

ri ⊗ xi

)

= 0.

Composing with the projection to !R,L/R , we see that this means
∑

i rixi is in the kernel
of dR,L,R . By our assumption this kernel is trivial, and therefore

∑
i rixi = 0. Now for a

given y ∈ L,

ϕ

(
∑

i

ri ⊗ [yxi]
)

=
∑

i

ridR,L,k[yxi] = y

(
∑

i

ridR,L,kxi

)

−
(

∑

i

rixi

)

dR,L,ky = 0.

Thus, the kernel of ϕ is L-stable, and we obtain an L-action on M . Moreover, note that
the kernel of ϕ is contained in K , the kernel of the multiplication R ⊗k L → L. As an L-
module, R ⊗k L decomposes as K ⊕ L, where we identify L with 1 ⊗k L. Similarly, M

7Which is the case for all the Lie algebras we are interested in.
8The map is injective if L is free by [2] I §2.7 Cor. 2. The finitely generated projective case follows by
faithfully flat descent since the construction of the enveloping algebra commutes with base change.
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decomposes asM = 'R,L/k ⊕dR,L,kL. In both cases the summand isomorphic to L is only

a k- but not an R-submodule. The map R ⊗k L → M factors through T
(
L,!b

R/k

)
⊕ L.

From the foregoing discussion we have.

Proposition 4.7 Suppose L is flat as an R-module, and that dR,L,R is injective. Then the
R-moduleM generated by dR,L,kL is isomorphic to 'R,L/k ⊕L as an L-module (where the
action on M is the quotient action coming from R ⊗k L).

In two cases, however, more precise information is available.
First, consider the situation where L is perfect. That is, if the submodule spanned by all

[x, y] is equal toL. In this case anyL-equivariant k-linear map fromL into anR−L-module
M is actually R-linear: indeed, if ϕ : L → M is L-equivariant, then

ϕ(r[x, y]) = ϕ([(rx), y]) = (rx)ϕ(y) = r(xϕ(y)) = rϕ([x, y])
and since commutators span L, we see that R-linearity holds.9 Note that this means that
Ck(M) = HomL(L,M) = HomR−L(L,M) = CR(M). In particular, the left- and right-
module structures on CR(M) coincide, any derivation δ : R → Ck(M) is a derivation of the
left-module Ck(M). As an immediate consequence, we see that the map !b

R/k → Ck(M) =
CR(M) actually factors through !R/k , the module of Kähler differentials of R over k.

Proposition 4.8 Suppose L is perfect. Then T
(
L,!b

R/k

)
≃ !R/k ⊗R L.

Here, the right hand side is the usual tensor product of left-R-modules, and the
isomorphism is an isomorphism of R-bimodules.

Proof !R/k is canonically isomorphic to the “restriction of !b
R/k to the diagonal,” i.e.

!R/k ≃ !b
R/k ⊗R⊗kR R, where R is an R ⊗k R-extension by means of the multiplication

map R ⊗k R → R.
Next, recall that the kernel of !b

R/k "R L → T
(
L,!b

R/k

)
is spanned by all

rωs ⊗ [x, y] − ω ⊗ [(rxs)y] = rωs ⊗ [x, y] − ω ⊗ (rs)[x, y].
As L is perfect, this is precisely the span of all

rωs ⊗ x − ω ⊗ rsx = rω ⊗ sx − ωr ⊗ sx.

So the quotient is !b
R/k ⊗R⊗kR L ≃ !b

R/k ⊗R⊗kR R ⊗R L = !R/k ⊗R L.

In this situation we see that 'R,L/k is a quotient of !R/k ⊗R L, a module that seems not
too hard to understand. In general, we have no good understanding about the nature of this
kernel.

The second situation, where we can say more, is the case whereL is isomorphic to g⊗kR

for some Lie algebra g over k.

Proposition 4.9 Let L = g ⊗k R. Then the natural transformation of Proposition 4.4 is an
isomorphism.

9This result is a special case of Lemma 1.10 in [13]
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Proof We will show that if L = g ⊗k R, then 'R,L/k ≃ T
(
L,!b

R/k

)
.

For this, consider the map δ : L → !b
R/k "R L defined on pure tensors as

δ(x ⊗ r) = dr ⊗ (x ⊗ 1)

This is actually a k-derivation since

δ([x, y] ⊗ rs) = d(rs) ⊗ [x, y] ⊗ 1 = rds ⊗ [x, y] ⊗ 1+ (dr)s ⊗ [x, y] ⊗ 1

= (x ⊗ r) ⊗ y ⊗ 1 − (y ⊗ s)dr ⊗ x ⊗ 1.

Note that this uses the fact that !b
R/k "R L is a tensor product over R. Combining this

with the projection to T
(
L,!b

R/k

)
we end up with a derivation L → T

(
L,!b

R/k

)
, also

denoted δ, and hence an R − L linear map σ : !R,L/k → T
(
L,!b

R/k

)
. By definition σ

restricted to 'R,L/k is a section of the surjective map T
(
L,!b

R/k

)
→ 'R,L/k: indeed, the

generator dR,L,k(x⊗ rs)− rdR,L,k(x⊗ s) is mapped to the equivalence class of dr ⊗x⊗ s,
which is mapped back to dR,L,k(x ⊗ rs) − rdR,L,k(x ⊗ s). The section being R − L-
linear it is surjective as the elements of the form dr ⊗ (x ⊗ s) generate !b

R/k "R L as an
R − L-module.

Combining all of the above we obtain a complete description of 'R,L/k for a very
important class of Lie algebras.

Corollary 4.10 Suppose L = g⊗k R, where g is a perfect Lie algebra over k. Then 'R,L/k

is canonically isomorphic to !R/k ⊗R L = !R/k ⊗k g.

We conclude this section with an interesting consequence of Propositon 4.8.

Proposition 4.11 Suppose R is a finitely generated k-algebra, and that L is a perfect Lie
algebra which is finitely generated as an R-module.

Then 'R,L/k is a finitely generated R-module and !R,L/k is a finitely generated R −
L-module.

Proof By Proposition 4.8 have an exact sequence

!R/k ⊗R L → !R,L/k → !R,L/R → 0.

The claim now follows immediately from the fact that the left hand side and !R,L/R are
finitely generated R-modules, respectively, finitely generated R − L-modules. (This uses
the fact that !R,L/R ≃ ML,R is a finitely generated R − L-module.)

5 Base Change

Henceforth k will denote a field of characteristic 0. Our main interest lies in the situation
where L is an R-form of some finite dimensional Lie algebra g over k. Since the automor-
phism group of g is a smooth algebraic group over k, every form of g ⊗k R is split by a
faithfully flat étale extension of R. The goal of this section is therefore to see how !R,L/k

changes when passing from R to S and L to LS = L ⊗R S whenever S/R is étale. It
turns out that !R,L/k behaves as it should. The crucial role in understanding base change is
played by the defect module 'R,L/k .
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Let R → S be an arbitrary ring extension. Let L be an R-Lie algebra and M an S-
Lie algebra. View M as an R-Lie algebra by means of R → S. Let ϕ : L → M be any
homomorphism of R-Lie algebras. The derivation dS,M,k : M → !S,M/k combines with ϕ

to give a k-derivation L → !S,M/k and hence an R−L-linear map !R,L/k → !S,M/k . As
the right hand side is an S − M-module, we get an S − LS-linear map.10

dϕ : !R,L/k ⊗R S → !S,M/k.

Lemma 5.1 dϕ maps the image of 'R,L/k ⊗R S in !R,L/k ⊗R S to 'S,M/k

Note that since S/R is not assumed to be 'R,L/k⊗RS may not be viewed as a submodule
of !R,L/k ⊗R S.

Proof By definition, (dR,L,k(rx) − rdR,L,kx) ⊗ s is mapped to s(dS,M,k(rϕ(x)) −
dS,M,k(ϕ(x))) which is an element of 'S,M/k . Since these elements generate 'R,L/k ⊗R S

as an S − LS-module, this concludes the proof.

It follows that dϕ descends to the quotients, i.e. dϕ induces the map

dϕ : !R,L/R ⊗R S → !S,M/S.

(this map is dϕS,L,R/R using the full notation mentioned above). Right now this is mainly
interesting in caseM = LS , and ϕ : L → LS the canonical map.

Lemma 5.2 The canonical map dϕ : !R,L/R ⊗R S → !S,LS/S is an isomorphism.

Proof From the explicit construction of US(LS) (or by the universal property of the uni-
versal envelopling algebra) it follows that US(LS) ≃ UR(L) ⊗R S. Now UR(L), as an
R-module, is isomorphic to R ⊕ ML,R , whereas US(LS), as an S-module is S ⊕ MLS,S .
Since ML,R is a direct summand of UR(L), we see that ML,R ⊗R S is a submodule of
MLS,S , that is also a supplement of S. HenceML,R ⊗R S = MLS,S . The claim now follows
from the fact that !R,L/R = ML,R , whereas !S,LS/S = MLS,S .

Substantially more subtle is the question of passing from R to S for k-differentials. Here,
no general results can be stated unless we put restrictions on L and the extension R → S.
To avoid overly complex notation, we write r also for the image of r ∈ R in S, even if
R → S is not injective.

Lemma 5.3 (Étale base change) Let L be a perfect Lie algebra, and R → S an étale
extension. Then dϕ is an isomorphism.

The condition that L is perfect is necessary: if L is not perfect, there is generally no sim-
ple étale base change formula, even in the case where L is abelian. This is mainly due to
the fact that 'R,L/k in these cases is not isomorphic to !R/k ⊗R L. For abelian L (say, pro-

jective of finite rank over R), 'R,L/k ≃ T
(
L,!b

R/k

)
. Now this module does not localize

“nicely”: 'R,L/k ⊗R Rf ̸= 'Rf ,Lf /k for general f ∈ R. But of course R → Rf is étale.

10To avoid any confusion we should use the notation dϕS,L,R/k . This is cumbersome and we trust that the
reader will be able to identify which case we are on.
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Proof of Lemma 5.3 Recall that if L is perfect we have an exact sequence

!R/k ⊗R L → !R,L/k → !R,L/R → 0.

Also, since S/R is étale, (!R/k ⊗R L)⊗R S ≃ !S/k ⊗S LS (where the isomorphism is the
canonical one). LS is of course perfect as well, so dϕ (and the canonical map !R/k⊗RL →
!S/k ⊗S LS) gives rise to the following commutative diagram

where the bottom row comes from Proposition 4.8. By Lemma 5.2, the map ε is an isomor-
phism. Since the right vertical map is an isomorphism as well, it follows that the middle
map !R,L/k ⊗R S → !S,LS/k is surjective.

As for injectivity, we construct a section much like in the proof of Proposition 4.9. Define
δ : L ⊗k S → !R,L/k ⊗R S by

δ(x ⊗ s) = (dR,L,kx) ⊗ s + σε−1(ds ⊗ (x ⊗ 1)).

For x ∈ L and s ∈ S. For all r ∈ R,

δ(x ⊗ rs) = (dR,L,kx) ⊗ rs + σε−1(d(rs) ⊗ (x ⊗ 1))

= rdR,L,kx ⊗ s + σε−1((rds + sdr) ⊗ (x ⊗ 1))

= rdR,L,kx ⊗ s + σ (ε−1(ds ⊗ (rx ⊗ 1))+ sσε−1(dr ⊗ (x ⊗ 1))

= rdR,L,kx ⊗ s + σε−1(ds ⊗ (rx ⊗ 1))+ (dR,L,k(rx) − rdR,L,kx) ⊗ s

= δ(rx ⊗ s).

So δ, which is defined on L ⊗k S, factors through LS = L ⊗R S as a k-linear map which
we still denote by δ. This map is in fact a k-derivation. Indeed

δ([x, y] ⊗ st) = dR,L,k([x, y]) ⊗ st + σε−1(dt ⊗ [x, y] ⊗ s) − σε−1(ds ⊗ [y, x] ⊗ t)

= (x ⊗ s)δ(y ⊗ t) − (y ⊗ t)δ(x ⊗ r).

It follows that we have an induced map !S,LS/k → !R,L/k⊗R S. Since it maps dS,LS,k(x⊗
1) to dR,L,kx ⊗ 1, it is a section.

We can now recover one of the main results of [13].

Corollary 5.4 Let L be a perfect lie algebra over R and S/R an étale extension. For every
S−LS-moduleM , the canonical map DerS,k(LS,M) → DerR,k(L,M) is an isomorphism.

Proof The isomorphism !R,L/k ⊗ S → !S,LS/k induces an isomorphism

HomR−L(!R,L/k,M) = HomS−LS (!R,L/k ⊗ S,M) → HomS−LS (!S,LS/k,M).

The left hand side is DerR,k(L,M)whereas the right hand side is DerS,k(LS,M). It remains
to check that this isomorphism is the canonical map coming from restriction from LS to L.
But this is clear.
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Remark 5.5 Suppose S is a scheme over k, and L is a quasi-coherent sheaf of Lie algebras
on S, that is, a sheaf of Lie algebras over OS , such that for every open affine subset U ,
L|U is isomorphic to the sheaf associated to the OS(U)-Lie algebra L(U). If L is perfect
(that is, L(U) is a perfect Lie algebra for every open affine subset of S), the étale base
change lemma implies that there is a well-defined quasi-coherent sheaf !OX,L/k , such that
for each open affine subset U of S, !OX,L/k(U) ≃ !OS(U),L(U)/k . Indeed, for ever open
affine sub-scheme U , let !U be the sheaf associated to the OS(U)-module !OS(U),L(U)/k .
Because differentials localize nicely, the sheaves!U glue together to a global sheaf, denoted
!OS ,L/k . !OX,L/k is the sheaf associated to the pre-sheaf U ! !OS(U),L(U)/k . This sheaf
(together with the canonical map dOX,L,k : L → !OX,L/k) is then universal with respect to
k-derivations L → M, whereM is aOS −L-module (which meansM(U) is aOS(U)−
L(U)-module for every open subset U ⊂ S). A k-derivation L → M is a morphism of
abelian sheaves, that is over every open subset U ⊂ S a k-derivation for the Lie algebra
L(U). We leave the details to the reader.

6 Forms of Perfect Lie Algebras

Recall that k is a field of characteristic 0, and that R is a k-algebra. Let g be a finite dimen-
sional Lie algebra over k which we assume is perfect. We now proceed with our main
application of the étale base change lemma, namely to the case of R-forms of g.11 So far,
we have determined the structure of 'R,L/k if L is isomorphic to g⊗k R: in this case 'R,L/k

is isomorphic to !R/k ⊗R L. Using base change this translates to forms as well.

Proposition 6.1 Let L be a Lie algebra over R which is a form of g. Then L is perfect and
the canonical map

!R/k ⊗R L → 'R,L/k

is an isomorphism.

Proof That L is perfect is well-known (see the proof of Lemma 4.6 of [4]). The map is
surjective because of Proposition 4.8. It maps dR/kr ⊗ x to dR,L,krx − rdR,L,kx.

To see that it is injective, let S/R be a faithfully flat étale extension for which L⊗R S ≃
g ⊗k S.12 Tensoring the exact sequence !R/k ⊗R L → 'R,L/k → 0 by S over R, we get

!R/k ⊗R L ⊗R S → 'R,L/k ⊗R S → 0. (6)

On the one hand, 'R,L/k ⊗R S is canonically isomorphic to 'S,LS/k by Lemma 5.3. On the
other hand, !R/k ⊗R L⊗R S ≃ !S/k ⊗S LS, and on generators this isomorphism is given
by the map dR/kr ⊗ x ⊗ s %→ dS/kr ⊗ (x ⊗ s). Using these identifications, dS/kr ⊗ (x ⊗ s)

is mapped to
sdS,LS,krx ⊗ 1 − srdS,LS,kx ⊗ 1.

So on S-module generators of !S/k ⊗S LS our map coincides with the map dS/ks ⊗ x %→
dS,LS,ksx − sdS,LS,kx, and hence it is that map. But this map is an isomorphism by Corol-
lary 4.10. By descent of isomorphism under faithfully flat base change, (6) is left-exact as
well, and we are done.

11We remind the reader that “forms of g” stands for forms of the R-Lie algebra g ⊗k R.
12Recall that Aut(g) is smooth. We can thus replace the fppf by the étale topology.
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Corollary 6.2 If L is an R-form of a perfect Lie algebra g over k, the fundamental exact
sequence (2) becomes

0 → !R/k ⊗R L → !R,L/k → !R,L/R → 0.

As we will see now, this sequence is actually split in most cases of interest. First, let us
treat the case of a “split form” (which is also a consequence of Lemma 2.2 in [13]).

Lemma 6.3 Suppose L ≃ g ⊗k R. Then the sequence (2) is split as a sequence of R −
L-modules.

Proof There is no loss of generality is assuming that L = g ⊗k R. We then have ML,R =
!k,g/k ⊗k R. This is a consequence of the fact that UR(L) = Uk(g)⊗k R (cf. Lemma 5.2).

The canonical map !k,g/k ⊗k R → !R,L/k provides then the desired splitting. It maps
dx ⊗ 1 to d(x ⊗ 1), which is mapped to dx ⊗ 1 under the map !R,L/k → !R,L/R =
!k,g/k ⊗k R.

Remark This splitting is not canonical. It depends on the choice of isomorphism
L ≃ g ⊗k R.

The following theorem requires that R be of finite type over k. However, in light of
Remark 2.4, this may not be a severe restriction.

Theorem 6.4 Let R be a k-algebra of finite type, and let L be an R-form of a perfect, finite
dimensional Lie algebra g over k. Then (2) splits as a sequence of R − L-modules.

The proof requires some preparation. Recall the submodule M ⊂ !R,L/k generated
by dR,L,k(L), and that under these assumption, dR,L,k is injective. As a k-vector space
M = 'R,L/k ⊕ dR,L,k(L). Also, by construction rdx − dry ∈ 'R,L/k , so M/'R,L/k ≃
dR,L,R(L) ≃ L is a finitely generated R-module (assuming the hypotheses of the theorem).

Lemma 6.5 With the hypotheses of Theorem 6.4 on L and R, if N is an R − L-module,
finitely generated as an R-module, and S/R is a flat ring extension, the canonical map

HomR−L(!R,L/k, N) ⊗R S → HomS−LS (!R,L/k ⊗R S,N ⊗R S)

is an isomorphism.

Proof While the canonical map is indeed the one coming from commutative algebra, this is
somewhat subtle because the usual result for homomorphism groups under flat ring exten-
sions only applies if the source module is finitely presented, which is not true here (as an
R-module, anyway).

By the assumptions on R and L, and the remarks preceding this proof, we have that
'R,L/k ≃ !R/k ⊗R L, and these are finitely generated R-modules. Thus M is finitely
generated as an R-module, and hence finitely presented because R is Noetherian. But then
the canonical map HomR(M,N) ⊗R S → HomS(M ⊗R S,N ⊗R S) is an isomorphism.

Consider the restriction map HomR−L(!R,L/k, N) → HomR(M,N) with image U .
Since M generates !R,L/k as an R − L-module, this map is injective. Then ϕ ∈
HomR(M,N) is in U , if and only if ϕ ◦ dR,L,k is a k-derivation. For simplicity, throughout
this proof, we will denote dR,L,k simply by d . Then U is given by linear equations of the
form fx,y(ϕ) = ϕ(d[x, y]) − xϕ(dy)+ yϕ(dx) = 0 where x, y ∈ L.
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Now HomR(M,N)⊗R S is isomorphic to HomS(M⊗R S,N ⊗R S) = HomR(M,N ⊗R

S). Under this isomorphism U ⊗R S is mapped to the image U ′ of the restriction map
HomS−LS (!R,L/k ⊗R S,N ⊗R S) → HomS(M ⊗R S,N ⊗R S) (this uses the flatness of
S/R so that M ⊗R S is the S-module generated by the image of d(L) in !R,L/k ⊗R S): if
σ : !R,L/k → N is any R−L-map, it induces canonically a map !R,L/k ⊗R S → N ⊗R S,
whose restriction to M ⊗R S is exactly the image of the restriction of σ to M .

Let H = HomR(M,N), which is a finitely generated (and presented) R-module. Then
HomR(H,N) ⊗R S is isomorphic to

HomS(H ⊗R S,N ⊗R S) ≃ HomS(HomS(M ⊗R S,N ⊗R S),N ⊗R S).

All these isomorphisms are canonical. Now an element ϕ : M ⊗R S → N ⊗R S is an
element of U ′, if and only if ϕ ◦ (d ⊗ 1) is a derivation (where (d ⊗ 1)(x) = dx ⊗ 1).
Indeed, in this case we get an R − L-linear map !R,L/k → N ⊗R S and hence an S − LS-
linear map !R,L/k ⊗R S → N ⊗R S, which restricts to the original ϕ on M ⊗R S. Then
ϕ = ∑

i ϕi ⊗ si ∈ H ⊗R S is an element of U ′ if and only if when viewed as an R-linear
map M → N ⊗R S, for all x, y ∈ L,

0 =
∑

i

(ϕi (d[x, y]) ⊗ si − (xϕi (dy)) ⊗ si + (yϕi (dy)) ⊗ si =
∑

i

fx,y(ϕi ) ⊗ si .

Thus
U ′ = {ϕ ∈ H ⊗R S | (fx,y ⊗ 1)(ϕ) = 0 for all x, y ∈ L}

where we identify HomS(H ⊗R S,N ⊗R S) with HomR(H,N)⊗R S. Let V be the span of
all fx,y in HomR(H,N), and let f1, f2, . . . , fp be some generators as an R-module. Then
(f1, f2, . . . , fp) defines a map ψ : H → Np with kernel U . By the above, U ′ is the kernel
of ψ ⊗ idS : H ⊗R S → N ⊗R S (since the fi also generate V ⊗R S as an S-module). Since
S/R is flat, this is precisely U ⊗R S ⊂ H ⊗R S.

We will also need the following related result, which is an adapted version of the well
known base change results for flat ring extensions.

Lemma 6.6 LetM,N be R−L-modules withM finitely presented as an R-module, and L
finitely generated as an R-module. Let S/R be a flat ring extension, then the canonical map

HomR−L(M,N) ⊗R S → HomS−LS (M ⊗R S,N ⊗R S)

is an isomorphism of S-modules.

Proof Notice that HomR−L(M,N) = HomR(M,N)L, where L acts on HomR(M,N) by
x(ϕ) = xϕ − ϕx. By hypothesis, the natural map HomR(M,N) ⊗R S → HomS(M ⊗R

S,N ⊗R S) is an isomorphism. If we let act L trivially on S, L acts on HomR(M,N) ⊗ S,
and the action extends canonically to LS . The isomorphism is clearly LS-equivariant, so it
identifies LS-fixed points. It remains to see that these fixed points are precisely the elements
of HomR(M,N)L ⊗R S, which by flatness is a submodule of HomR(M,N) ⊗R S. The
assertion of the next lemma is precisely this statement in a more general context.

Lemma 6.7 LetM be any R −L-module, where L is finitely generated as an R-module. If
R → S is any flat ring extension, then the canonical map

ML ⊗R S → (M ⊗R S)LS

is an isomorphism.
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Proof For m ∈ M , we define m̃ : L → M as m̃(x) = xm (in fact, this is what is called
an inner derivation). As M is an R − L-module, m̃ is R-linear. Then ML is by definition
the kernel of the map M → HomR(L,M) defined by m %→ m̃. Thus, we obtain an exact
sequence of R-modules

0 → ML → M → HomR(L,M).

After applying ⊗RS, this sequence remains exact, so we have an exact sequence of S-
modules

0 → ML ⊗R S → M ⊗R S → HomR(L,M) ⊗R S.

Since L is finitely generated as an R-module, standard commutative algebra tells us that the
canonical map HomR(L,M) ⊗R S → HomS(LS,MS) is injective. Moreover, under this
map m̃⊗s is mapped to m̃ ⊗ s, where m̃ ⊗ s is defined in the obvious way as m̃ ⊗ s(x⊗t) =
(x ⊗ t)m ⊗ s. But this means the kernel of the map MS → HomS(LS,MS) defined by
m⊗ s %→ m̃ ⊗ s is precisely the image ofML ⊗R S inMS . By definition again, this kernel
is MLS

S .

With this preparation in place, we are ready to prove the main result of this section.

Proof of Theorem 6.4 The hypotheses imply that L and !R/k , and hence 'R,L/k are finitely
generated R-modules. In fact, they are finitely presented as R is Noetherian.

Let S/R be a faithfully flat extension splitting L. Let us apply the functor
HomR−L(·,'R,L/k) to the exact sequence

0 → 'R,L/k → !R,L/k → !R,L/R → 0

to obtain a left exact sequence

0 → HomR−L(!R,L/R,'R,L/k) → HomR−L(!R,L/k,'R,L/k) → EndR−L('R,L/k)

We need to show that this sequence is also right-exact, i.e. that

HomR−L(!R,L/k,'R,L/k) → EndR−L('R,L/k)

is surjective. Any preimage of the identity in EndR−L('R,L/k) provides the desired splitting.
By Lemmas 6.5 and 6.6 tensoring with S over R results in the canonical map

HomS−LS (!R,L/k ⊗R S,'R,L/k ⊗R S) → EndS−LS ('R,L/k ⊗R S)

which is surjective by base change (Lemma 5.3) and Lemma 6.3. Since S/R is faithfully
flat, the original map was onto as well.

We obtain one of the main results of [13], with the added benefit that we have no
condition on the splitting étale extension R → S.

Corollary 6.8 (of Theorem 6.4, see also Proposition 3.2 in [13]) Let L be an R-form of a
finite dimensional perfect Lie algebra g over k. Assume that R is of finite type over k.

Then for any R − L-module M we have an isomorphism of R − L-modules

Derk(L,M) ≃ DerR(L,M) ⊕ Derk
(
R,CR(M)

)
.
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