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Non-linear dynamic problems governed by ordinary (ODE) or partial di!erential
equations (PDE) are herein approached by means of an alternative methodology.
A generalized solution named WEM by the authors and previously developed for boundary
value problems, is applied to linear and non-linear equations. A simple transformation after
selecting an arbitrary interval of interest ¹ allows usingWEM in initial conditions problems
and others with both initial and boundary conditions. When dealing with the time variable,
the methodology may be seen as a time integration scheme. The application of WEM leads
to arbitrary precision results. It is shown that it lacks neither numerical damping nor chaos
which were found to be present with the application of some of the time integration schemes
most commonly used in standard "nite element codes (e.g., methods of central di!erence,
Newmark, Wilson-�, and so on). Illustrations include the solution of two non-linear ODEs
which govern the dynamics of a single-degree-of-freedom (s.d.o.f.) system of a mass and
a spring with two di!erent non-linear laws (cubic and hyperbolic tangent respectively). The
third example is the application of WEM to the dynamic problem of a beam with non-linear
springs at its ends and subjected to a dynamic load varying both in space and time, even with
discontinuities, governed by a PDE. To handle systems of non-linear equations iterative
algorithms are employed. The convergence of the iteration is achieved by taking n partitions
of ¹. However, the values of ¹/n are, in general, several times larger than the usual �t in
other time integration techniques. The maximum error (measured as a percentage of the
energy) is calculated for the "rst example and it is shown that WEM yields an acceptable
level of errors even when rather large time steps are used.

� 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

A generalized solution named whole element method (WEM) which has been previously
developed and applied to boundary value (BV) problems [1}4] is used here to solve initial
conditions (IC) and/or boundary conditions (BC) problems, linear or not, governed by
ordinary or partial di!erential equations. Traditionally, the variational methods such as
Ritz have been applied to the spatial domain in BV problems [5, 6]. When dealing with the
0022-460X/02/$35.00 � 2002 Elsevier Science Ltd. All rights reserved.
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time variable, the methodology may be seen as a time integration scheme. Its performance
in solving a pair of non-linear ordinary di!erential equations is evaluated in comparison
with other commonly used time integration schemes, which were previously assessed by Xie
[7]. A previous work by Low [8] also reported a similar study. Also, another application is
the solution of a non-linear initial conditions}boundary value (IC}BV) problem using the
variational method in both the spatial and the temporal variables. In both cases, WEM
behavior is excellent and it lacks neither numerical damping nor chaos, which may be
present when some equations under certain conditions are solved, as will be shown. This is
particularly true with some of the time integration schemes most commonly used in the
standard "nite element codes (extensive references on the subject may be seen for instance in
reference [9]).

In this work, an alternative technique which arises from a direct variational method "rst
developed by the authors for BV problems [1}4] is employed. Such a method may be
extended to the solution of initial conditions problems governed by an ordinary di!erential
equation (ODE) as reported in reference [10] and of IC}BV problems governed by partial
di!erential equations (PDE) [11, 12]. The usage of this formulation as a time integration
scheme is not traditional. For instance, in the relevant book by Reddy [13], the IC}BV
problems are approached with the variational formulations in the space variable and the
usual time integration techniques (central di!erences, Newmark, and so on) when dealing
with the temporal variable. WEM, in this case, does not require very small steps to yield
accurate results. In particular, when non-linear (though simple) di!erential equations are
addressed, as shown in reference [7], some di$culties may arise with various time
integration schemes. Instead, WEM yields convergent results for various IC even using
rather large steps. The other schemes may lead to non-convergent solutions or give
meaningless results with such steps. It should be noted that WEM represents not
an approximation but a theoretic exact solution (arbitrary precision results) in each
time step.

As mentioned before an application of WEM to an IC}BV problem is also shown: the
forced vibration of beams with a dynamic distributed load discontinuous both in space and
time and supported at its ends by non-linear springs. In this problem it was also possible to
obtain convergent solutions.

2. TRANSFORMATION OF THE IC}BV PROBLEM IN A BV PROBLEM

Since the WEM method has been developed for BV [1}4] problems, a previous
transformation [10}12] will be performed as follows. WEM makes uses of extremizing
sequences, which linearly combine functions belonging to a complete set in the domain
D[0, 1] in n-dimensions. Then in problems with semi-in"nite domain (t*0), an arbitrary
interval ¹ (¹*t*0) of interest (in which the response is of interest) is introduced.
A change of variable is now obtained as

�"t/¹, (1)

where 0)�)1 is the non-dimensionalized time. Let us deal with an IC}BV problem
governed by the PDE of solution uL "uL (x, t):

AHuL "f H(x, t) in D (2)
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being �D :0)x)1, t*0� (in one, two or three spatial dimensions), and the following
conditions apply:

IC"�
uL (x, 0)";

�
(x),

�uL /�t(x, 0)"<
�
(x),

B.C. in x"0, 1. (3, 4)

AH is the di!erential operator, f H is, at least, a square integrable function, x is the spatial
non-dimensional variable, and t is time (in general). Now problem (2) with conditions (3)
and (4) is transformed into

Au"f (x, �), (5)

where u"uL (x, t)"uL (x, ¹�)"u (x, �). In what follows, and without loss of generality, we
will accept homogeneous BC. A is changed so that it takes into account that

�uL
�t

"

�u
��

1

¹

. (6)

The IC are written as

IC"�
u (x, 0)";

�
(x),

�u/��(x, 0)"¹<
�
(x).

(7)

The problem then will be handled as a boundary value one, both in the spatial (x) and
temporal (originally t, transformed in �) variables so that WEMmay be applied. Let us now
introduce a function

�"� (x, �)"[;
�
(x)!;

�
(x)]�#;

�
(x), (8)

which is the most simple function that satis"ed � (x, 0)";
�
(x) and � (x, 1)";

�
(x) and

where ;
�
,u(x, 1). Obviously, ;

�
(x) is known with the problem statement but this is not

the case with ;
�
(x). With function (8) we de"ne

w"w (x, �)"u (x, �)!� (x, �), 0)x)1, 0)�)1 (9)

which veri"es w(x, 0)"w (x, 1)"0. In conclusion, we have transformed an IC}BV problem
into a BV one with homogeneous BC. At the same time the di!erential equation is

A (w#�)"f (x, �). (10)

If the problem has only IC (i.e., governed by an ODE), only variable t (� after being
transformed) will be involved and the problem is reduced to

A(w#�)"f (�), w"w(�)"u(�)!� (�),

�(�)"(;
�
!;

�
)�#;

�
, w (0)"w(1)"0.

(11)

The IC related to the "rst derivative is �u/��(0)"¹<
�
"�w(0)/��!(;

�
!;

�
) from which

the unknown ;
�
is eliminated as ;

�
";

�
!¹<

�
#�w/��(0).
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3. WHOLE ELEMENT METHOD (WEM) DESCRIPTION

Since WEM is a direct variational method, the generalized solution of a boundary value
problem arises from the extremization of an ad hoc functional. Among the features of this
method it is worth mentioning the systematic statement of extremizing sequences for diverse
problems and domains and the theoretical foundation of the methodology. Rosales has
demonstrated [4] that the usual procedure of extremizing a functional is equivalent to
"nding the solution of equations of the type

[A (w
��

#�)!f, �w
��

]"0, (12)

using integration by parts whenever possible and where ( f, g),��
�
f (	) g (	) d	 denotes an

internal product in the space dimension of the problem. This equation is a pseudo virtual
work statement using w

��
(the extremizing sequences used in WEM). Having the

di!erential equation there is no need to state a functional. �
��

denotes the "rst variation of
w
��

w.r.t. the unknowns. After integration by parts one "nds a statement that gives the tool
for the practical application of WEM.

The extremizing sequences to be used in WEM are systematically stated in any
dimension. It has been shown that only the essential conditions may be satis"ed by the
sequence (not in general by each co-ordinate function). The systematic generation
procedure of these trigonometric extended series may be read in references [2, 4]. Let us just
show an example of one of the in"nite combinations that give rise to an extremizing
sequence that veri"es uniform convergence (UC) towards a continuous function� (x, y) in the
domain R� �D :0)x)1, 0)y)1�:

�
��

(x, y)"
�
�
���

�
�
���

A
��
s
�
s
�
#x �a�#

�
�
���

A
��
s
��#y �b�#

�
�
���

A
��
s
��

#A
��
xy#

�
�
���

b
�
s
�
#

�
�
���

a
�
s
�
#k

�
, (13)

where s
�
,sin 


�
x, s

�
,sin 


�
y, 


�
"n� and with which

��
��

!��P0 asM, PPR, ∀x, y3D. (14)

As may be observed the statement is not immediate. The underlined part may be interpreted
as the (not apparent) enlargement of an elementary Fourier series with convergence in ¸

�
.

In an analogous way series for any dimensional domain may be generated.
Finally, the authors have demonstrated that using these series, along with eventual

¸agrangian multipliers, the application of WEM yields uniform convergence solutions of
the essential functions and exact eigenvalue. The theoretically exact results are found as
arbitrary precision numbers in the numerical algorithm. Here we name essential functions
as those involving functions of order )k, with 4k being the largest derivative in the
di!erential equation (the authors have extended the methodology also for odd equations).
For instance, in the problem of a vibrating beam, the displacement and the slope are
essential functions.

4. APPLICATIONOFWEMTOTWONON-LINEAR IC PROBLEMSGOVERNEDBYODEs

Two illustrations of WEM application to non-linear ODEs will be shown in this section.
Both may be thought of as modelling the dynamics of an s.d.o.f. system of a mass and spring
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with di!erent non-linearity laws in each case. The equations are

v(#kM tanh v"0, v(#kM
�
v#kM

�
v�"0 (15, 16)

with v"v (t), 0)t(R and kM , kM
�
, kM

�
are proportional to the spring elastic properties. Dots

denote derivative with respect to the time variable. In each the IC, v
�
,v(0) and vR

�
,vR (0),

are also given. Equation (16) is the well-known Du$ng model without damping.

4.1. WEM SOLUTION FOR EQUATION (15)

The change of variable (1) and the introduction of a function � as suggested in
equation (8) and in particular in equation (11) lead to the transformed equation and its BC:

u
#k tanh(u#�)"0, u(0)"u(1)"0 (17)

with u"u (�) and k,kM ¹�. The prime denotes the derivative with respect to �. Let us
introduce the WEM sequence as sequences with uniform convergence

u�
�
(�)"

�
�
���

A
�
c
�
#A

�
, u

�
(�)"

�
�
���

A
�
s
�

�
�

#A
�
x#B

�
, (18, 19)

where A
�
are unknowns, s

�
,sin(


�
�), c

�
"cos(


�
�) and 


�
"i�. The ful"llment of BC (17)

yields A
�
and B

�
null. The application of statement (12) to equation (17) gives place to

!(u�
�
, �u�

�
)#k tanh(u

�
#�), �u

�
"0 (20)

from which

A
�
"2kH

�
, (21)

where

H
�
"[tanh(u

�
#�), s

�
] (22)

and ;
�
!;

�
"¹<

�
!S

�
, S

�
"�

�
A

�
. The value of ¹, the interval of interest, is arbitrary

though "xed for each numerical experiment. In general, it is found convenient to solve
equation (21) with an iteration algorithm thus avoiding the manipulation of rather large
systems of non-linear equations. On the other hand, a limitation to the interval of interest
¹ is introduced. In e!ect, such a limit exists above which ¹ conduces to a divergent
algorithm. So as to overcome this behavior, n partitions of ¹ are taken. The values of ¹/n, in
all the analyzed cases, are larger than the usual �t of the most popular numerical
integration schemes (e.g., method of central di!erence, Newmark method, Wilson-�
method, etc.). Let us show a numerical example by setting kM "100 (softening spring) in
equation (15) and the initial conditions v

�
"4 and vR

�
"0. This oscillator is known to have

a period of

¹
�
"4 �

�

�

du

�661)43!200 ln[cosh(u)]
, (23)

which yields ¹
�
"1)14 s. The exact solution of u may be found using analytical methods as

described in reference [14]. The authors have found it by using algebraic series. Xie [7]
reported results found with various numerical schemes and most of them added strong



Figure 1. Phase plane of the equation v(#100 tanh v"0, v
�
"4 and vR

�
"0. Time duration of the experiment

¹"114 s. (a) M"10, N"10, ¹/n"0)25 s, (b) M"20, N"20, ¹/n"0)125 s.

Figure 2. Time}displacement of equation v(#100 tanh v"0, v
�
"10 and vR

�
"0. M"10, N"10,

¹/n"0)75 s.
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numerical damping when a step �t"¹
�
/20"0)057 s was used. Figure 1 shows the phase

diagram found using WEM and a fairly large step ¹/n"0)25 s. In Figure 1(a), M"10
(number of terms in the WEM series) andN"10 (numerical integration terms forH

�
). The

result is further improved by taking M"20. A similar result may also be achieved by
decreasing the step to 0)125 s. The resulting phase plot is shown in Figure 1(b), in which
M"20, N"10 and ¹/n"0)125 s.

It is known that some time integration schemes are unconditionally stable when dealing
with linear problems. This is not the case when they are applied to non-linear equations. Xie
[7] reported another example with kM "100, v

�
"10, vR

�
"0, and a step �t"0)225 s. Its

period is ¹
�
"1)8 s. Even the 
-method, which proved to yield moderate numerical

damping, renders an unstable solution (the amplitude raised to a value of 400 in 180 s).
When WEM is applied to this case with M"10, N"10 it was necessary to increase the
step to ¹/n"0)75 s. (40% of the period) in order to obtain a clue regarding non-stable
behavior as shown in Figure 2 (the amplitude is less than 20 in 180 s).

4.2. WEM SOLUTION FOR EQUATION (16)

The application of WEM to equation (16) is totally analogous to the procedure described
in section 4.1 above. Thus the time variable transformation and introduction of the function



Figure 3. WEM solution of the phase plane of equation v( #100v (1#10v�)"0, v
�
"1)5 and vR

�
"0. Time

duration of the experiment ¹"15 s. M"10, N"10, ¹/n"0)02 s.
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� give rise to

u
#k
�
(u#�)#k

�
(u#�)�"0, u (0)"u (1)"0, (24)

with u"u (�), k
�
"kM

�
¹� and k

�
"kM

�
¹�. Let us introduce the WEM sequences (18) and

(19). The application of statement (12) to equation (24) yields

!(u�
�
, �u�

�
)#[k

�
(u

�
#�)#k

�
(u

�
#�)�], �u

�
"0, (25)

A
�
"2[(S

�
!¹vR

�
)k

�
¸
��

!k
�
v
�
¸

��
!k

�
H

�
], (26)

where

S
�
,

�
�
���

A
�
, ¸

��
"

1!(!1)�


�
�

, ¸
��

"

(!1)���


�
�

, H
�
,

[(u#�)�, s
�
]


�
�

.

Let us analyze equation (16) choosing kM
�
"100, kM

�
"1000 with v

�
"1)5 and vR

�
"0.

WEMwas applied usingM"10,N"10 and ¹/n"0)02 s. The period ¹
�
may be found by

solving

¹
�
"4

���
�
�

du

�2756)25!100u�!500u�
"0)151 s. (27)

The analytical solution for u is found by the same means as the previous equation. The
phase portrait of Figure 3 shows an excellent convergence of the result. Unlikely, as shown
in reference [7], strong numerical damping was introduced by some of the methods
(Newmark with �"0)3025, �"0)6; Wilson-� with �"1/6, �"�/2"1)4; Houbolt;

-method with 
"!0)1, �"0)3025, �"0)6) and with a rather small step
�t"¹

�
/20"0)0075 s. It should be mentioned that the Newmark method with �"0)25

and �"0)5 as well as with �"0 and �"0)5 [7] yields a phase plane similar to Figure 3.
Then a similar plot was obtained using WEM but with a step 2)7 times larger.



TABLE 1

Maximum percentage error of=EM found with equation (28) varying M and N. Solution of
v( #100v(1#10v�)"0, v

�
"1)5 and vR

�
"0. ¹ime duration of the experiment ¹"15 s,

¹/n"0)02 s

N (partitions in numerical integration)
M

(terms in sequence) 10 20 30 40

10 2)9 2)9 2)9 2)9
20 0)5 1)4 1)4 1)4
30 1)7 0)8 0)9 0)9
40 4)9 0)3 0)7 0)7

TABLE 2

Idem ¹able 1. ¹/n"0)01 s

N (partitions in numerical integration)
M

(terms in sequence) 30 40 50 60

30 1)2 1)2 1)2 1)2
40 0)8 0)9 0)9 0)9
50 0)6 0)7 0)7 0)7
60 0)1 0)5 0)6 0)6
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In order to observe a certain measure of WEM e$ciency the maximum error percentage
as a ratio of the energy di!erence

Max. error"�
E!E

�
E

�
��100 (28)

is depicted in Tables 1 and 2 for di!erent values of M and N. The energy 2E"vR �#

kM
�
v�#kM

�
v�/2 is calculated at each instant and E

�
using the same expression but at t"0.

Table 1 was calculated for ¹/n"0)02 s and Table 2 for ¹/n"0)01 s. As may be observed in
the tables, the error converges to the right of the diagonal. This is due to the fact that
M represents the number of terms in the extremizing sequence, i.e., the maximum number of
semi-waves in the solution. On the other hand, N is the number of partitions in the
numerical integration algorithm. Then it is necessary that N*M in order to obtain
acceptable results. The error remains unchanged in a row right of the diagonal. In e!ect, for
a "xed value of M an increment of N (larger than M) does not improve the results.

The authors have found that for a "xed value of ¹/n (for instance ¹/n"0)02 s in Table 1)
the increase ofM above 40 (and N correspondingly) does not contribute towards lowering
the error, i.e., the minimum error (0)7%) for ¹/n"0)02 s is attained within this
methodology.

In Table 2, the value of ¹/n is halved. The same behavior is observed. Now the minimum
error is 0)6% forM*60. One concludes that the smaller the time step is, the largerM and
N should be taken in order for the error to converge to a minimum.



TABLE 3

Maximum error. Comparison of di+erent methods for v(#100v(1#10v�)"0, v
�
"1)5 and

vR
�
"0. ¹ime duration of the experiment ¹"15 s�

Methods

Newmark Runge}
Average Central �"0)305 Wilson Houbolt 
 Kutta

Time step WEM accel. [7] di!. [7] �"0)6 [7] [7] [7] [7] [7]

0)01" 3)7 (10, 10) 7)1 7)7 99)8 93)9 98)8 67)8 44)5
¹

�
/15 0)6 (60, 60)

0)0075" 3)8 (10, 10) 4)1 4)3 99)6 87)6 97)3 49)2 18)4
¹

�
/20 0)5 (80, 80)

�Note: The numbers between parentheses in WEM denote (M,N).

Figure 4. WEM solution of equation v(!0)5v(1!v�)"0, v
�
"0)5 and vR

�
"0. Time duration of the

experiment ¹"2500 s. M"20, N"10, ¹/n"2)5 s.
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Finally, Table 3 shows a comparison of the maximum error found using WEM with
di!erent values of M and N and the ones reported by Xie [7] obtained with the standard
time integration techniques.

In general, various problems arise when large steps are used in numerical integration
schemes. Let us solve equation (16) with kM

�
"!0)5; kM

�
"0)5 with v

�
"0)5 and vR

�
"0.

The period is 7)3 s. As reported in reference [7], when the step was chosen to be
�t"2)5 s+¹

�
/3, the average acceleration method rendered a chaotic solution

jumping between two static equilibrium points v"1 and !1. Central di!erence
and Runge}Kutta methods failed to yield a convergent solution and the other
methodologies (Newmark, Wilson-�, Houbolt and 
- methods) introduced so much
numerical damping that the results had no resemblance with the exact solution. In
this hard test the WEM solution is reproduced in Figure 4 with an excellent agreement with
the exact solution. It should be noted that the WEM solution with M"10 was not
convergent but M"20 with a very small increment in the computational time gives the
appropriate results.
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5. APPLICATION OF WEM TO A NON-LINEAR PROBLEM GOVERNED BY A
NON-HOMOGENEOUS PDE

Classically, the vibrational behavior of a beam subjected to dynamic forces is carried out
after a separation of the spatial and time variables by means of, for example, Galerkin's
method. That is, a proper set of approximating functions, which should satisfy all the
boundary conditions*at least in the traditional approach*of the problem for all t is
replaced in the di!erential equation. The residual error is then minimized. The result is an
s.d.o.f. equation that may be solved by various means, according to the complexities
involved.

Here the dynamics of a Bernoulli beam supported by non-linear springs at its ends and
subjected to a load varying both in space and time is addressed with WEM. This vibration
problem was also solved before using WEM but only regarding the space domain [15].
Here, instead, the two involved variables*space and time*are included in the WEM
approach. Only a brief description is contained in this section. For more details see
reference [16]. The space variable is non-dimensionalized with the length of the beam.
Regarding the time variable, an interval of interest, ¹, is chosen. Although the problem is
governed by a PDE with IC and BC a suitable transformation yields a BV problem in
a two-dimensional domain.

The dynamics of a uniform beam are governed by the following partial di!erential
equation:

v

#a�vNN "q(x, �),

IC�
v(x, 0)";

�
(x),

vN (x, 0)"<
�
(x),

BC �
v(0, �)"v(1, �)"0,

v
(0, �)"�
�
f
�
(v�(0, �)),�

�
f
�
(�),

v
(1, �)"�
�
f
�
(v�(1, �)),�

�
f
�
(�),

(29)

where

a�,

�A¸�

EI¹�
, q"q (x, �)"q

�
(x) cos(� ¹�), ( ) )�,

� ( ) )
�x

, ( ) ),
� ( ) )
��

, (30)

in which x is the non-dimensional space variable (x"X/¸, 0)x)1), ¸ is the length of the
beam, � is the non-dimensional time (�"t/¹, 0)�)1), ¹ is a time interval of interest, E is
the modulus of elasticity, I is the moment of inertia of the cross-section of the beam, � is the
mass density, A is the cross-section, q (x, �) is the load (square integrable, it may be
discontinuous both in space and time), �

�
and �

�
are spring constants f

�
and f

�
analytical

functions of the slope (in general, non-linear) and v"v (x, �) is the transverse displacement.
Let us now introduce �"� (x, �) as in equation (8) and the new function w"w (x, �)

(recall equation (9)). With these de"nitions and denoting p"p(x, �),q!�

, PDE (29)
can be written as

w

#a�wNN !p"0 (31)

with conditions

w (x, 0)"w(x, 1)"w (0, �)"w(1, �)"0. (32)
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Thus, a boundary-value problem in two dimensions is obtained. To apply WEM we should
introduce an extremizing sequence as stated in equation (13). Due to conditions (32) it yields

w
��

(x, �)"
�
�
���

�
�
���

A
��
s
�
s
�
. (33)

Consequently, statement (12) yields

(w

��

, �w

��

)!a�(wN
��

, �wN
��

)!(p, �w
��

)

#�
�
( f

�
, �w�

��
(0, �))�#�

�
( f

�
, �w�

��
(1, �))�"0. (34)

Notation (F, G) stands for double integration. Instead the parentheses with subscript
� denote integration w.r.t. this variable. The following expression is obtained for the
unknowns A

��
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Recall that;
�
(x) (unknown) may be eliminated from the equations stating the IC related to

the "rst time derivative, as mentioned after expression (11).

5.1. NUMERICAL EXAMPLE

Let us assume a beam carrying a load q (x, �)"q
�
x cos(� ¹�) distributed along the

length ¸ of the beam and Du$ng-type end springs, f
�
( ' )"f

�
( ' )"( ' )�. Also, let us suppose
Figure 5. Displacement of the beam at x"0)75 as a function of �"t/¹. ¹"4 s, ¹/n"4 s. M"P"20,
N"400, q

�
"10, �"5 rad/s; a�"10/¹�; �

�
"�

�
"15. 00, Beam with non-linear springs; ))))))))))), beam

without springs.



Figure 6. Idem Figure 5. Phase diagram of the beam at x"0)75.
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that the system starts its movement undeformed and at rest, i.e., ;
�
(x)"<

�
(x),0. Using

the above-described procedure the results may be plotted as shown in Figures 5 and 6.N is
the number of steps for the Simpson algorithm.

It was veri"ed that the solution of the beam without springs is coincident with the
superposition modal solution. The authors "nd that the problem of non-linear boundary
conditions would not be easily accessible by many methodologies. The present method
permits its study in a systematic way and the adjustment of various parameters such as
M, N and ¹/n, allows for a convergence of the solution.

6. CONCLUSIONS

An alternative analytic-numerical method based on a generalized solution and named
WEM is used in the present work to solve ordinary and partial di!erential equations
governing the behavior of "nite d.o.f. or distributed in"nite d.o.f. systems. It was originally
developed by the authors to solve boundary value problems and afterwards extended to
initial condition and mixed problems. Theorems and corollaries previously demonstrated
assert the uniform convergence of the results. The method applies to linear or non-linear
problems. A pseudo virtual work stated in certain types of extended series is the main feature
of the technique. Both spatial as well as temporal variables are dealt with in a similar
fashion. When dealing with time the method may be seen as a time integration scheme.

In the "rst part of the work, an application to the solution of a pair of non-linear ordinary
di!erential equations is shown and some examples are solved numerically. A very good
performance of the method is shown even when using time steps larger than the usual ones.
A previous work of Xie [7] permits a comparison with other time integration techniques.
WEM may be adjusted to yield arbitrary precision results. This is done by increasing the
number of terms in the series (M). Another adjusting parameter isN (numerical integration
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terms).N"10 was su$cient to attain acceptable results in the problems governed by ODE.
Additionally, a measure of the error is computed to assess the e$ciency of the method.

The third application is the solution of a non-linear partial di!erential equation. WEM is
used to "nd the dynamic displacement of a beam subjected to a load varying, in general,
with x (space) and t (time) and supported by non-linear springs. The adjustment of M, P,
N and ¹/n permits the convergence of the solution and the possibility of "nding arbitrary
precision results.
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