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Abstract In this article, we describe the synthesis of a small
library of short peptoids composed of four glycine residues
and acylated with a fatty acid that showed a remarkable
in vitro activity against two fungal plant pathogens. Their
straightforward synthesis implied two consecutive Ugi reac-
tions and can be efficiently extended to the construction of
highly diverse libraries.

Keywords Acylated peptoids · Multicomponent reaction ·
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Plants are constantly exposed to a variety of pathogenic
microorganisms present in their environments. Diseases
caused by pathogens, including bacteria, fungi, and viruses,
significantly contribute to the overall loss in crop yield world-
wide and constitute an emerging threat to the global food
security [1]. Many of the currently available antimicrobial
agents for agriculture are highly toxic and non-biodegrad-
able and cause extended environmental pollution [2].

Antimicrobial peptides (AMPs) (12–50 amino acids long),
known also as innate immunity host defense peptides or
innate defense regulators, are key components of the innate
immune system in all phyla, providing a fast-acting defense
against invading pathogens [3,4]. A subfamily of AMPs with
strong antimicrobial activity includes lipopeptides, which
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are produced non-ribosomally in bacteria and fungi. Lipo-
peptides consist of a short linear or cyclic peptide sequence
to which a fatty acid moiety is covalently attached at the
N terminus [5].

Recently, a new family of synthetic ultrashort lipopep-
tides (Fig. 1) composed of only four amino acid residues
conjugated to long-chain aliphatic acids has been reported.
These compounds have a broad spectrum of in vivo and in
vitro antimicrobial activity against human-pathogenic yeasts,
fungi, and bacteria [6], also affecting phytopathogenic fungi
and bacteria [7].

Peptoids are a class of oligomeric N-substituted glycines
that mimic the primary natural structure of peptides [8,9].
They are attractive non-natural molecules for drug discovery
approaches because of their many biological activities and
proteolytic stability. Many peptoids have been shown to be
capable of acting as protein ligands with high affinity [10].

The most common method for the preparation of peptoids
is the solid-phase submonomer procedure [11]. This method
involves an iterative acylation reaction, with an R-haloacetyl
moiety that is common to all backbone elongation processes
and an iterative amination reaction using the commercially
available primary amines, and has been recently employed
to synthesize peptoid mimetics of antimicrobial lipopeptides
[12]. An alternative approach involves the use of the Ugi four-
component reaction (U-4CR) [13], which is a versatile tool
for the construction of peptoid and mixed peptoid–peptide
backbones. Repetitive or consecutive Ugi reactions have been
used in the synthesis of peptide nucleic acid oligomers and in
one-pot macrocyclizations [14,15]. However, the assembly
of pure peptoid backbones in a consecutive fashion has not
been extensively explored [16,17].

In this article, we describe the synthesis of a small library
of N-substituted tetraglycines acylated with a long-chain
alkyl residue. The structures resemble those of the antifungal
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Fig. 1 A synthetic short lipopeptoid with antifungal activity (Ref. [6])

lipopeptides described by Makovitzki et al. [6], as they
have a tetrapeptide backbone acylated with a palmitoyl res-
idue, but are decorated with a more diverse set of side
chains. A preliminary study on the antifungal properties
of the new compounds against plant pathogens was carried
out.

Scheme 1 Synthesis of new
acylated peptoids
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Fig. 2 Amines selected for the construction of the library

The strategy used to construct the tetraglycine back-
bone involved two consecutive Ugi reactions, as depicted
in Scheme 1. The first Ugi reaction was performed using
hexadecanoic acid (1), an amine (benzylamine or isopropyl-
amine), formaldehyde, and ethyl isocyanoacetate. Thus, a
diglycine, N-acylated with the desired fatty acid moiety (2),
was obtained in one step. After completion of the reaction,
intermediate esters of general structure 2 were hydrolyzed in
situ without isolation to the resulting diglycines 3a, b which
were used in a subsequent Ugi reaction to give the acyl-
ated tetraglycines (12 compounds as ethyl esters of general

Fig. 3 Methylene signals (1H-NRM, 500 MHz) for compound 5c
showing a mixture of conformers. Spectrum a recorded at 25 ◦C. Spec-
trum b recorded at 50 ◦C

Scheme 2 Synthesis of
phosphonate analogs 7a and b
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Fig. 4 ESI MS/MS spectrum
of m/z 647 ([M+H]+ cation of
compound 5c (collision Energy
10 eV) and peptoid backbone
sequence ions

structure 4), in high yields (> 80% for the two steps). Inter-
estingly, one product was obtained as methyl ester (4l), which
was probably formed by transesterification during the reac-
tion (Scheme 1).

Both U-4CR took place smoothly and worked well with
a set of structurally diverse amines (Fig. 2). Some of the
amines were chosen to mimic the side chains of natural amino
acids (e.g., methylamine, benzylamine, or p-hydroxybenzyl-
amine, corresponding to alanine, phenylalanine, and tyro-
sine, respectively), while others, having additional functional
groups, were used to increase the diversity.

Some of the esters obtained were alternatively hydro-
lyzed to yield the corresponding acids (5, 11 compounds) or
treated with ammonia to give the amides 6 (10 compounds,

Scheme 1). On the other hand, the acyldiglycyl acids 3 were
used as substrates in an alternative U-4CR reaction which
used isocyanomethyl diethylphosphonate as the isocyanide
component, yielding the corresponding phosphonate analogs
7a, b (Scheme 2). In total, a small library of 36 members
was synthesized, and the compounds were purified by semi-
preparative reverse-phase HPLC. The detailed experimental
procedures are described in the Supplementary Material.

It is known that the nuclear magnetic resonance spec-
tra of peptoids are very complex due to the occurrence of
different conformations in solution. As an example, Fig. 3
shows the resonance assignment for the methylene adja-
cent to the carbonyl in compound 5c, where at least three
conformers are observed. The same spectrum was recorded
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Table 1 Antifungal activities of selected compounds

F. virguliforme a F.solani  a

3a 

O

N
N
H

O

COOH

4a 

O

N
N
H

O

O

N
N
H

COOEt

O

4b 

O

N
N
H

O

O

N
N
H

COOEt

O

F

5b 

O

N
N
H

O

O

N
N
H

COOH

O

F

5c 

O

N
N
H

O

O

N
N
H

COOH

O

OH

5d 

O

N
N
H

O

O

N
N
H

COOH

O

HN

6a 

O

N
N
H

O

O

N
N
H

CONH2

O

6b 

O

N
N
H

O

O

N
N
H

CONH2

O

F

7a 

O

N
N
H

O

O

N
N
H

P

O

OEt

OEt
O

32 > 100 

23 > 100 

7 38 

8 > 100 

8 > 100 

15 23 

16 24 

16 > 100 

7 > 100 

a Minimum inhibitory concentrations in µM. The MIC of the control (Benomyl, a commercial antifungal) is 2 µM for both fungi

at higher temperatures; the changes observed in the inten-
sities and chemical shifts for these resonances are linked
to a change in the conformer population, as previously
reported [18]. The complexity of the spectra precluded
their extensive use for the analysis of all new compounds.
Thus, only the structures of the selected compounds were
completely assigned by mono and bidimensional experi-
ments.

In order to obtain a complete and unambiguous char-
acterization of the library, we decided to perform a direct
analysis of the purified peptoids via high resolution elec-
trospray ionization mass spectrometry (HRMS ESI). In all
cases, main peaks were observed for [M+H]+, [M+Na]+,
and sometimes [M+NH4]+. Figure 4 shows a representa-
tive spectrum of peptoid 5c. The molecular formula was
shown to be C35H58N4O7 on the basis of its HRMS ESI
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(m/z 647.4388 [M+H]+, 664.4641 [M+NH4]+, and 669.4193
[M+Na]+. The sequence of the amino acids in the peptoids
was revealed by tandem mass spectrometry (MS/MS). For
example, in the case of 5c, the MS/MS of the [M+H]+
ion, used as a precursor, yielded product ions m/z 544.3723,
386.3051, 262.1409, and 205.1174. These product ions can
be assigned as ions b3, b1, y3, and y2 respectively, accord-
ing to the nomenclature previously proposed by Heerma
et al. [19], based on the Roepstorff nomenclature [20]. This
procedure was applied to all the new compounds to deter-
mine their structure unambiguously (Supplementary Mate-
rial).

Bioautography offers a rapid and convenient approach
to identify novel antifungal compounds and requires only
microgram quantities [21]. The new compounds were tested
in vitro using a bioautography method for their inhibitory
properties towards Fusarium virguliforme and F. lateritium.
Most of the new compounds showed a measurable anti-
fungal activity against either of the two fungi tested (See
the Supplementary Material).

The minimum inhibitory concentrations (MIC’s) of
selected compounds against F. virguliforme and F. solani
were assessed using a broth microdilution method [22], and
are depicted in Table 1. These fungi are the casual agents
of the sudden death syndrome, a disease of soybean that is
spreading in important production areas.

Intriguingly, even the acylated diglycines (for example,
3a) showed a remarkable activity, despite their simple struc-
ture.

Although this is a preliminary screening, the activity might
be species-specific. In general F. virguliforme seemed more
susceptible towards this family of compounds. On the other
hand, the antifungal potency of the active compounds lies in
the same range (6–50 µM) than those of the short synthetic
lipopeptides described by Makovitzki et al. [23].

Natural lipopeptides have a membranolytic mode of action
in fungi and bacteria [24], and the short synthetic analogues
seem to act via the same mechanism. Interestingly, only
cationic short lipopeptides exert inhibitory properties [23].
In contrast, the acylated peptoids described in this study are
in most cases neutral or anionic, suggesting that an alternative
mode of action might be operating.

In conclusion, we report on a new family of acylated
short peptoids which show promising activities as antifun-
gals against plant pathogens. Their straightforward synthesis
and analysis are amenable to be extended to the preparation
of larger and more diverse libraries.

Further study is under way to establish a structure–activity
relationship for these compounds and their possible mecha-
nism of action on fungal growth.
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