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Abstract The loss of biodiversity in productive

ecosystems is a global concern of the last decades. The

Rolling Pampas of Argentina is an intensively cropped

region that underwent important land use and land-

scape change, with different impacts on biodiversity of

both plants and animals. Land use type and habitat

complexity are hypothesized to be the most important

factors determining species richness in agro-ecosys-

tems. But it is not easy to define these attributes in an

unambiguous fashion, or determine their interactions

at different spatial scales. A fuzzy logic approach

allows overcoming some of these problems by using

linguistic variables and logic rules to relate them and

formulate hypothesis. We constructed fuzzy logic

models to study how bird species richness in the

Rolling Pampas is related to land use and habitat

complexity, and how these variables interact at two

spatial scales. Results showed that at the local scale,

landscape complexity is the most important factor

determining species numbers; trees and bodies of

water are the most influential complexities. The effect

of local scale landscape attributes was modified

depending on the context at broader scales, so that

agricultural sites were enriched when surrounded by

more favorable landscapes. There was a high disper-

sion in the predicted/observed value relationship,

indicating that landscape factors interact in more

complex ways than those captured by the models we

used. We suggest that the fuzzy logic approach is

suitable for working with biological systems, and we

discuss the advantages and disadvantages of its use.

Keywords Agroecosystem � Biodiversity � Fuzzy

logic � Pampas region � Argentina

Introduction

The loss of biodiversity in agroecosystems led to the

recognition of the necessity to develop management

tools to counteract this trend (Sala et al. 2000).

Management tools applied in EU countries have proven

to have an idiosyncratic effect, as their effectiveness

depends on landscape context (Tscharntke et al. 2005;

Concepción et al. 2008; Batáry et al. 2010). As a

consequence, extrapolation of results would not be the
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best option to develop new management tools for other

regions. This is most relevant in novel ecosystems, like

the Pampas (Argentina) agro-ecosystem where new

combinations of species and abiotic conditions make

the outcome of management even less predictable

(Hobbs et al. 2006; Seastedt et al. 2008). For that

reason, we need to improve our understanding on how

landscape factors affect biodiversity in this region.

The most common hypothesis is that land use

intensity and landscape heterogeneity are two of the

most important factors that determine biodiversity in

agroecosystems. Intensive land use, which is related to

high levels of disturbance, agrochemicals and human

appropriation of net primary production, exerts a

negative impact on species (Matson et al. 1997; Flynn

et al. 2009). Alternative land uses or managements,

such as pastures or organic agriculture, offer better

habitat conditions (Bengtsson et al. 2005; Cingolani

et al. 2008; Kragten and Snoo 2008). In the argentine

Pampas, bird diversity and abundance is generally

negatively correlated with the percentage of land used

for intensive human activity, in the landscape at local

and regional scales (Filloy and Bellocq 2007; Codes-

ido et al. 2008; Schrag et al. 2009; Cerezo et al. 2011).

Conversely, habitat heterogeneity or complexity,

considered as compositional and configurational het-

erogeneity rendered by different cover types and

elements of the landscape (Fahrig et al. 2011),

enhances biodiversity by providing resources and

refuge for a wide arrange of species (Benton et al.

2002; Dauber et al. 2003; Bennett et al. 2006).

There is a growing recognition that land use

intensity and landscape heterogeneity interact in

complex ways at different spatial scales to determine

local species numbers (Levin 1992; Beever et al.

2006). For example, intensive farming has a negative

effect on weed species numbers, but only in simple

landscapes (Roschewitz et al. 2005). A similar pattern

was found for vascular plants, butterflies and carabids,

in Swedish agro-ecosystems (Weibull and Östman

2003). The larger pool of species of complex land-

scapes can compensate local management through

colonization and mass effects. Mass effects are the

occurrence of species outside their core habitats,

increasing alpha diversity while decreasing beta

diversity (Schmida and Wilson 1985). The interaction

between scales should be taken into account in studies

that aim at elucidating the relevance of landscape

attributes to determine biodiversity.

Assessing the combined effects of land use intensity

and landscape complexity also sets a series of meth-

odological challenges. First of all, these terms have to

be defined in an unambiguous fashion to facilitate the

communication and comparison of results. The myriad

of indices used to describe landscape complexity

makes this task difficult (Liebhold and Gurevitch

2002; Turner 2005). Moreover, many attributes of the

landscapes cannot be combined in a single mathemat-

ical index, such as the physiognomic complexity

rendered by landscape features like hedgerows, trees,

bodies of water and human settlements. When faced

with this problem, the most common statistical

approach is multivariate analysis like CCA or multiple

regression (see for example Cueto and Casenave 1999;

Schrag et al. 2009; Cerezo et al. 2011). These methods,

though widely accepted and used, have still the

problem of integrating and interpreting the results

beyond the mathematical formalisms. Instead, the

description of landscape complexity by means of its

component features is better attained in a natural

language for which available indices are not com-

pletely suitable.

Even when having a single mathematical index of

landscape complexity, ecologists face the problem of

discerning different degrees of this attribute. The

characterization of landscape heterogeneity by means

of metrics leads to a continuum of situations from no

heterogeneity (i.e. homogeneity) to high heterogeneity

(Li and Reynols 1995) with no clear-cut distinction

among them. Is there a point where a landscape stops

being simple and starts being complex? As well as for

many other landscape attributes, there does not seem

to be a threshold that separates different levels of

landscape complexity.

The last problem we point out here is that in many

cases the information needed to parameterize land-

scape models is either lacking, scarce, or found as

expert knowledge that is not formalized or quantified.

Traditional methods are not capable of incorporat-

ing the uncertainty and ambiguity of this kind of

information.

The problems described so far can be overcome

using logic and fuzzy reasoning (Zadeh 1965; Dubois

and Prade 1996). Logic rules allow combining state-

ments expressed in a natural language using linguistic

variables. This approach allows us to compute the

information with words rather than numbers, using a

means by which ecologists easily communicate among
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themselves and transmit knowledge (Zadeh 1996). On

the other hand, most ecological states, for instance,

sustainability, do not have the properties of classic set

theory. That is, where an element belongs to a set with

full membership (an element is either A or B,

‘‘sustainable’’ or ‘‘not sustainable’’). Rather, there is

a continuum in the membership to different sets like

‘‘low’’ and ‘‘high’’ sustainability. Fuzzy theory is a

methodology capable of taking into account the

uncertainty of membership of elements to the different

sets, by assigning a partial membership to each set.

Fuzzy logic was developed for control systems in

engineering, but proved to be useful as well in soft

systems such as biology, sociology and economics

(Center and Verma 1998). This approach was suc-

cessfully applied in sustainability assessment (Ducey

and Larson 1999; Phillis and Andriantiatsaholiniaina

2001), landscape description (Liu and Samal 2002;

Rocchini and Ricotta 2007) and environmental impact

analysis (Ferraro et al. 2003; Lu et al. 2006). The aim

of this paper is to explore the influence of landscape

use and complexity on bird diversity of Pampas agro-

ecosystems, and their interaction at different scales

using a fuzzy logic approach. We will analyze the

advantages and limitations of this method compared to

more traditional statistical analysis.

The fuzzy inference process

A fuzzy inference process consists of four steps, which

we will describe briefly in this section. The reader is

advised to consult the available bibliography for

deeper explanations on fuzzy set theory and method-

ology (e.g. Dubois and Prade 1996; Zadeh 1996;

Center and Verma 1998).

Definition of input and output variables

The output variable is that over which predictions of

the model will be made; for instance, landscape

complexity. The input variables represent the physical

domain in which elements are measured, and their

degree of membership relative to the output variable is

determined. For example, two input variables of the

output variable ‘‘landscape complexity’’ could be land

use richness (measured as number of different land use

types) and vegetation physiognomic heterogeneity

(measured as number of vegetation strata).

Definition of linguistic values and membership

functions

In order to compute with words, variables need to take

linguistic values, such as ‘‘simple’’, ‘‘medium’’,

‘‘complex’’ and ‘‘very complex’’ for landscape com-

plexity, ‘‘low’’ and ‘‘high’’ for land use richness and

‘‘few’’ and ‘‘many’’ for vegetation strata. Each of these

linguistic values represents a fuzzy set. The member-

ship functions will determine the degree to which an

element X belongs to each variable. It is in this step

that fuzzy logic differs from crisp logic, in which an

element is either a member of the set ‘‘low’’,

‘‘medium’’ or ‘‘high’’. In fuzzy logic, the transition

between two sets is gradual, so elements can be

members of any set with a difference of degree. This

degree of membership is expressed as a 0–1 interval

(1 represents full membership). Membership func-

tions, lA(x) and lB(x), can take any shape depending

on the nature of the variable; but when the knowledge

of the system is poor, triangular or trapezoidal

functions are usually the best choice to reduce overall

error (Pedrycz 1994) (Fig. 1). This step is one of the

most important and difficult of the fuzzy inference

process, as some criterion must be chosen. Fuzzy logic

allows incorporating a wide array of information

sources—even ambiguous, uncertain or subjective

ones. The construction of the membership function

then can rely on previous information, empirical data

or expert knowledge. The flexibility of fuzzy logic also

allows modifying the shape and parameters of the

functions as new data or knowledge becomes available.

Application of fuzzy rules

The input variables are combined through logic rules

to determine a value in a set of the output variable.

This is another crucial step in the fuzzy inference

process for the same reasons as explained above.

Furthermore, in this step, hypotheses and predictions

of the models are made explicit and translated in

mathematical terms.

A fuzzy rule consists of a precedent part expressed

in the form of an ‘‘IF…’’ statement. Many precedents

can be combined to give a consequent expressed in the

form of a ‘‘THEN…’’ statement. Fuzzy rules must

cover all possible combinations of values for the input

variables. In our example rules could be as follows:
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(1) IF land use richness is low and IF vegetation

strata are few, THEN landscape complexity is

low.

(2) IF land use richness is low and IF vegetation

strata are many, THEN landscape complexity is

medium.

(3) IF land use richness is high and IF vegetation

strata are few, THEN landscape complexity is

high.

(4) IF land use richness is high and IF vegetation

strata are many, THEN landscape complexity is

very high.

For a particular measurement the membership

values have to be calculated for all rules that are

activated. As an example, a landscape, that has two

different cover types and five vegetation strata,

activates rules 2 and 4 (Fig. 1). The degrees of

membership are: land use richnessHigh = 0.33, land

use richnessLow = 0.66, vegetation strataMany = 1,

vegetation strataFew = 0. The fuzzy operator ‘‘and’’

is translated as min[lA(x);lB(x)], which represents

the truth value of element x for the output set activated

by the rule (complex, in this case). The truth value is

calculated for all output sets. If two or more rules have

the same consequent, the fuzzy operator is max. As a

result, we get the partial memberships of the mea-

surement to each output set.

Defuzzification

The membership of an element to multiple and

different sets is more realistic than a full membership

to any one of them, but it is not useful for subsequent

statistical treatment of the data. So the last step of the

fuzzy inference process consists in ‘‘defuzzifying’’ the

results, to give a single output value (so-called ‘‘crisp’’

Fig. 1 General method of a

fuzzy inference process
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value). This final value can be used as an input to any

traditional statistical analysis like Anova, correlation

or multivariate analysis. There are two main defuzzy-

fication methods, called Mamdani and Sugeno. Here,

we used Sugeno, which considers output membership

functions as constant, and is recommended because it

is better suited for mathematical analysis, and is

computationally efficient (Van Leekwijck and Kerre

1999). The final output value is a weighted average of

all activated output functions:

Final output ¼
Pn

i¼1 xiliPn
i¼1 li

ð1Þ

where xi is the value in the output variable and li is the

membership value for rule i. In this way, the output

variable covers the range of 0–1, and the output value

can be any number between them. In our example,

Landscape complexity is 0.667 (Fig. 1). This repre-

sents a situation where the landscape is closer to a

definition of complex than simple, but it is not

completely one or the other.

Methods

Study area

This study was carried out in a 23.296 km2 area of the

Rolling Pampa (Fig. 2). The Pampas region was

originally a temperate, mesic grassland, characterized

by the absence of trees and generally flat topography

(Soriano 1991). Since the mid 1800’s, this region has

been severely transformed by agricultural and grazing

activities (Ghersa and León 2001). European coloni-

zation also introduced changes in the physiognomy of

the vegetation. Woody species were planted to provide

shade and delimitate properties. Some of these

species, like Gleditsia triacanthos, Morus alba, Melia

azedarach, Broussonetia papyrifera and Ligustrum

lucidum adapted well to local conditions and invaded

roadsides, wastelands and grassland relicts (Ghersa

et al. 2002). In the last 20 years, the introduction of

no-till cropping systems and GM crops replaced the

mixed grazing–cropping system with permanent agri-

culture with an increase in the soybean area (Baldi

and Paruelo 2008). Cattle operations are nowadays

restricted mainly to the Flooding Pampas region,

where agriculture is restricted by hydrology and soil.

Some of the bird species of the region were negatively

affected by the reduction in grassland area (Gabelli

et al. 2004) or pesticide use (Goldstein et al. 1999),

while others colonized from the surrounding ecore-

gions, favored by the introduction of trees (Compar-

atore et al. 1996, Sarasola and Negro 2006).

Landscape classification

We divided the study area with a grid of 8 9 8 km

cells (hereafter, facets sensu Zonneveld 1989). We

used supervised classified Landsat TM images of

four cropping years (2002/03, 2004/05, 2006/07

and 2008/09) following the method described by

Fig. 2 Study area in the Rio

de la Plata Grasslands of

South America. This study

was carried out in the

Rolling Pampas region (1)
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Guerschman et al. (2003). This classification identified

seven land use types: water, lowlands, pastures, maize,

soybean, wheat, and urban. In each facet we measured

landscape indices for each land use type: % cover area,

number and size (in ha) of patches, effective mesh area

(a fragmentation index that simultaneously considers

the patch size and the level of dissection, (Jaeger

2000), total border (in km). With these variables we

ran a cluster analysis using the Sorensen distance and

farthest neighbor group linkage method to classify the

landscape at the facet scale. We obtained seven

groups, characterized by their main cover type, that

were ranked in a landscape transformation level

gradient: water, lowlands, pasture, mixed pasture,

mixed agriculture, agriculture and urban (Table 1).

We randomly selected 39 facets in which we placed

field sampling points 1 km apart (3–8 points per facet,

n = 260) along secondary dirt roads (Fig. 2).

Development of fuzzy models

We developed three fuzzy models to explore the effect

of landscape characteristics on bird species numbers.

The first two models relate variables at the local scale,

while the third explores the interaction of variables at

local and facet scales.

The first model was designed to provide a measure

of landscape complexity at the local scale. We

considered complexity as a structural complexity,

rendered by the different cover types and elements

present in the landscape. Following this criterion, and

based on a literature review and interviews of experts,

we defined six input variables potentially relevant to

determine bird diversity in agroecosystems at this

scale: roadside vegetation complexity, trees as wood-

lots and tree lines, cover type richness, presence of

scattered trees, houses and water bodies (Fig. 3,

Appendix 4 in supplementary material). We hypoth-

esized that the landscape complexity rendered by

roadsides depends on the contrast between the vege-

tation and the main land use in the matrix, and whether

or not there are similar ecotopes in the landscape

(Appendix 1 and 2 Supplementary material). We also

considered that the relevance of the roadside would

depend on its width. So, we built an intermediate fuzzy

rule base to weigh the importance of the width of the

roadside and obtained a final variable, which is the

complexity rendered by the roadside. The complexity

rendered by woody vegetation depends on the

combination of presence/absence of tree lines and

simple (monospecific) or complex (multispecific with

some secondary succession) woodlots. The landscape

complexity increases when more of the latter elements

are present (Appendix 3 in supplementary material).

The last three variables (water bodies, trees and

houses) are non fuzzy as they can only take the values

0 (absence) or 1 (presence). But fuzzy logic allows

combining fuzzy and crisp variables in a model

(Dubois and Prade 1996). Bodies of water are

temporary or permanent ponds found across the

landscape or in depressed surfaces along roadsides.

We considered only inhabited houses and not other

buildings like store houses, sheds and silos.

We constructed the fuzzy rule bases and member-

ship functions to relate these variables to the final

landscape complexity based on theoretical expecta-

tions, and tested them with empirical data.

In order to get this data we carried out field surveys

in two consecutive years (2007 and 2008), during the

southern hemisphere bird reproductive season

(November–December). At each point we measured

landscape variables in a 350 m radius (hereafter, local

scale) by visual inspection: cover area for each land

use type, roadside vegetation condition (spontaneous,

grazed, spayed, cultivated, stubble, ploughed, ditch),

presence of trees (woodlots, tree lines, scattered trees),

bodies of water and inhabited houses. Bird surveys

were carried out using the point count method (Ralph

et al. 1995). Each point was visited once during the

reproductive season of each year. Surveys were done

in the first hours after sunrise (6:00–10:30 a.m.) in

good weather conditions and all birds seen or heard

during 5 min in the 350 m radius were counted. This

radius was determined based on the field observer

ability to detect individuals and identify the species

(Rocha ‘‘personal communication’’). Species richness

was calculated as the number of species detected in the

sampling point.

We started with a parsimonious model, having the

fewest possible number of membership functions and

similar weight of the input variables to determine

landscape complexity (the weight was determined by

the logic rules). We then correlated the output values

with the observed species number.

A second model explored the interaction between

landscape complexity and land use (agricultural vs.

pasture), to predict species numbers (Appendix 5 in

supplementary material). The output variable of model
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Table 1 Summary of landscape attributes for each land cover type in each facet (mean±SD). MPS: mean patch size

Class area (ha) # of patches MPS (ha) Effective mesh size

1. Water

Water 2,163 ± 486 13.3 ± 11.3 523 ± 687 6,995,592 ± 3,779,878

Lowlands 1,331 ± 388 227 ± 78 6.8 ± 3.6 926,240 ± 1,285,645

Pasture 1,095 ± 302 288 ± 108 4.5 ± 2.9 332,220 ± 340,945

Maize 400 ± 182 70 ± 45 6.5 ± 2.3 155,541 ± 310,553

Soybean 865 ± 341 146 ± 66 7.5 ± 5.3 283,017 ± 268,279

Soybean/wheat 417 ± 187 74 ± 56 7.1 ± 4.0 147,157 ± 266,264

Urban 83 ± 81 107 ± 68 0.7 ± 0.8 3,591 ± 8,995

Agriculture 1,683 ± 543

Non agriculture 2,426 ± 356

Total border (km) 676 ± 118

2. Lowlands

Water 110.5 ± 360 1.0 ± 1.4 34.1 ± 113 184,507 ± 680,397

Lowlands 3,648 ± 572 154 ± 45 25.8 ± 9.4 16,909,754 ± 6,858,181

Pasture 1,484 ± 572 433 ± 161 3.6 ± 1.4 717,834 ± 1,016,788

Maize 141 ± 216 44 ± 49 3.3 ± 5.1 17,697 ± 40,726

Soybean 574 ± 516 136 ± 66 4.9 ± 4.6 289,541 ± 755,316

Soybean/wheat 347 ± 223 135 ± 78 4.0 ± 4.1 37,570 ± 48,747

Urban 47 ± 77 66 ± 53 0.5 ± 0.6 969 ± 2,631

Agriculture 1,062 ± 817

Non agriculture 5,132 ± 958

Total border (km) 751 ± 133

3. Pasture

Water 1.9 ± 6 0.5 ± 1 0.8 ± 2.0 48 ± 223

Lowlands 796 ± 489 324 ± 111 2.3 ± 1.1 111,888 ± 283,351

Pasture 4,611 ± 450 80 ± 31 69 ± 33 32,827,172 ± 6,775,194

Maize 215 ± 199 96 ± 49 2.6 ± 1.9 12,141 ± 12,721

Soybean 494 ± 259 91 ± 39 5.7 ± 2.8 63,729 ± 59,051

Soybean/wheat 221 ± 199 65 ± 50 3.1 ± 2.0 46,615 ± 50,646

Urban 62 ± 72 53 ± 47 1.0 ± 0.6 777 ± 1,140

Agriculture 930 ± 423

Non agriculture 5,407 ± 454

Total border (km) 608 ± 109

4. Mixed pasture

Water 10.0 ± 66 4.3 ± 12.2 0.6 ± 1.8 5,534 ± 63,430

Lowlands 848 ± 466 270 ± 92 3.5 ± 2.4 362,053 ± 804,503

Pasture 2,968 ± 733 174 ± 68 20.7 ± 13.2 7,070,422 ± 6,221,718

Maize 514 ± 296 121 ± 72 5.4 ± 3.8 3,389,308 ± 8,722,125

Soybean 1,427 ± 494 170 ± 99 10.9 ± 6.5 924,929 ± 1,595,829

Soybean/wheat 523 ± 310 98 ± 57 6.3 ± 4.0 237,293 ± 377,813

Urban 87 ± 101 62 ± 52 14.7 ± 64.5 11,970 ± 46,375

Agriculture 2,465 ± 703

Non agriculture 3,817 ± 749

Total border (km) 721 ± 108
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#1 was used here as an input variable together with %

pasture cover (Fig. 4).

In the third model we explored how interactions

between land use and landscape complexity are

modified in different landscape contexts. We created

a variable at the facet scale, which is the landscape

transformation intensity, a degree of how much the

landscape has been transformed from the original

grassland. We assigned a value for each facet class in a

landscape transformation level gradient, from 1–7

(Table 1). We then integrated the values of each facet

for the 4 years analyzed (Fig. 5). In that way, a value

of 28, indicates that the facet was always classified as

Urban (value for urban facets = 7) and represents the

maximum possible value. A value of 4 indicates a

minimum level of transformation, where the facet was

classified as water in the 4 years. We integrated the

data of 4 years to avoid noise from variations due to

climatic conditions, which also augmented the error in

the satellite image classification. We averaged the

Table 1 continued

Class area (ha) # of patches MPS (ha) Effective mesh size

5. Mixed agriculture

Water 23.9 ± 105 4.5 ± 5.9 3.6 ± 15.9 11,510 ± 80,716

Lowlands 1,122 ± 667 504 ± 137 2.6 ± 2.4 780,621 ± 1,774,489

Pasture 1,405 ± 672 512 ± 163 3.5 ± 3.5 286,577 ± 737,265

Maize 750 ± 340 90 ± 47 9.7 ± 5.7 1,147,589 ± 2,791,670

Soybean 2,016 ± 614 284 ± 74 7.8 ± 3.7 1,959,403 ± 2,274,830

Soybean/wheat 1,023 ± 354 158 ± 63 7.8 ± 4.8 243,541 ± 232,337

Urban 58 ± 115 79 ± 72 5.8 ± 47 10,658 ± 77,149

Agriculture 3,789 ± 964

Non agriculture 2,527 ± 950

Total border (km) 941 ± 121

6. Agriculture

Water 5.1 ± 23 4.8 ± 17 1.5 ± 13.8 530 ± 5,296

Lowlands 524 ± 425 211 ± 118 2.9 ± 2.8 231,686 ± 626,596

Pasture 1,123 ± 548 267 ± 111 5.1 ± 3.9 543,858 ± 1,078,063

Maize 956 ± 388 108 ± 62 11.2 ± 6.8 258,910 ± 423,685

Soybean 2,740 ± 669 134 ± 60 26.1 ± 20.2 6,581,822 ± 6,531,884

Urban 73 ± 91 60 ± 41 5.1 ± 30.9 8,084 ± 42,709

Agriculture 4,673 ± 707

Non agriculture 1,648 ± 699

Total border (km) 653,337 ± 115,829

7. Urban

Water 1.9 ± 4 4.4 ± 9.3 0.5 ± 1.5 12 ± 51

Lowlands 961 ± 654 470 ± 189 2.1 ± 1.6 348,131 ± 1,118,584

Pasture 1,603 ± 722 478 ± 221 5.1 ± 6.3 424,292 ± 934,772

Maize 483 ± 289 230 ± 149 2.7 ± 1.9 1,450,120 ± 4,177,949

Soybean 1,911 ± 767 298 ± 154 9.0 ± 7.7 2,059,765 ± 2,963,654

Soybean/wheat 700 ± 319 197 ± 77 3.8 ± 1.7 618,739 ± 2,055,692

Urban 740 ± 587 158 ± 107 127 ± 320 981,403 ± 1,547,663

Agriculture 3,095 ± 983

Non agriculture 2,563 ± 928

Total border (km) 1,075 ± 206

Effective mesh size is calculated as 1
At

Pn
i¼1 Ai where At is total area of the region and Ai is the size of the patch
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species richness for points in the same facets to avoid

pseudoreplication. This model then has three input

variables, two at local scale and one at the facet scale

(Appendix 6 in Supplementary material, Fig. 6). We

used Fuzzy Logic Toolbox of Matlab 2006b to

construct all the fuzzy models.

We used the field data on bird surveys to validate

and at the same time improve the models. In each case,

we modified the rule base and membership functions

to improve the fit of the output variable. In model #1

we correlated the complexity value with observed

species richness and we seek to improve the r of this

correlation. In models #2 and #3, the output variable is

species richness. To test these models’ performance,

we used the mean absolute error (MAE), which is a

measure of how much predicted values deviate from

observed values. The membership functions and rules

were modified to reduce as much as possible the MAE

of the model. This is a method suitable for model

testing (Mayer and Butler 1993) and has been used in

Fig. 3 Membership

functions of the fuzzy model

describing landscape

complexity at the local scale
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fuzzy logic (Kampichler et al. 2000). In this paper, we

present only the final models after improvements have

been made.

To test the performance of the fuzzy logic method

we also analyzed our data with a more traditional

statistical method. We ran a stepwise multivariate

regression analysis using the six input variables for the

model of local complexity.

Results

We recorded a total of 107 bird species, which

represent approximately 40 % of cited species for the

region (Narosky and DiGiacomo 1993). The species

recorded correspond to common species found in the

area of study (Appendix 7 in Supplementary material).

Bird species numbers correlated positively with

landscape complexity at the local scale (Spearman

correlation r = 0.42; p \ 0.001). In the best model,

trees and bodies of water were the two most important

variables to generate a landscape complexity relevant

for birds (Appendix 3 in supplementary material).

Surprisingly, roadside vegetation did not have a

significant effect on species richness, nor in the fuzzy

model, or when we correlated species numbers with

this single variable (Spearman correlation r \ 0.001,

p = 0.98). Still, we kept this variable for the final

fuzzy model as it could interact with other variables.

Species numbers correlated positively with %

pasture cover at the local scale (Spearman correlation

Fig. 4 Membership functions for the fuzzy model relating landscape complexity and land use at the local scale

Fig. 5 Landscape transformation intensity in the whole time

period analyzed. Values represent the sum of the scores for

intensity according to Fig. 2. Low values represent low

transformation intensity levels
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r = 0.36, p \ 0.001). The data dispersion for both

landscape complexity and % pasture cover was very

high. This uncertainty could be reduced by exploring

the interaction between these two landscape attributes

in a single model.

The best model relating land use type to complexity

shows some interactions among these landscape

attributes (Fig. 7a). The model predicts that species

richness is lowest in simple agricultural landscapes.

Departing from this initial landscape type, if pasture

cover is increased, species numbers increases as well,

but reaches a plateau at intermediate (*50 %) levels

of pasture cover. If only complexity is increased by

adding trees and bodies of water, species numbers also

increases, but at a higher level. The highest number of

species is predicted by this model in complex pastoral

landscapes. When compared with observed species

richness, this model has a MAE of 2.98 and shows a

tendency to under estimate species numbers at low

predicted values, i.e. simple agricultural landscapes

(Fig. 7b).

Landscape transformation intensity correlated neg-

atively with bird species numbers (r = -0.55,

p \ 0.01). The fuzzy model that included this variable

along with the variables at local scale (fuzzy model

#3), predicts that only at very high levels of intensity is

there a negative effect on local species numbers

(Fig. 8a). This effect is only evident in agricultural

landscapes, while in pastures bird species number is

high regardless of the landscape context. The MAE of

this model is 3.07, meaning that there is not an overall

improvement in the fit of predicted versus observed

Fig. 6 Membership functions for the fuzzy model relating landscape complexity and land use at the local scale and landscape

transformation intensity at the facet scale
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values with respect to the local scale model (Fig. 8b).

However, predictions were slightly improved for low

richness values.

The stepwise multiple regression for the model of

local complexity kept all the variables except roadside

complexity (species richness = 1.68*[trees (ele-

ment)] ? 3.07*[trees (ecotope)] ? 0.4*(land use

richness) ? 3.14*(water) ? 1.41*(houses).

Discussion

Suitability of the method

Recent advances in landscape ecology have improved

the ability of metrics to describe landscape attributes

(Wu et al. 2002; Li and Wu 2004; Fahrig et al. 2011).

The focus in future research should not be put on

developing new metrics, but in trying to understand

their behavior in relation to relevant ecological

processes in real landscapes (Li et al. 2005; Cushman

et al. 2008). In order to do that, there are still

methodological issues that must be faced when

working with the existing indices and information

available. In this discussion, we will review some of

these problems and show how fuzzy logic and decision

rules can overcome them as seen in our study of

pampas agroecosystems.

The first issue is the nature of the landscape

attributes under consideration. Many of these attri-

butes, as well as many ecological concepts, do not
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Fig. 7 a Response surface of predicted species numbers for the

fuzzy model relating local landscape complexity and use (%

pasture cover). b Predicted vs observed species numbers of the

model. The line represents a 1:1 slope, where all predicted and

observed values should coincide
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Fig. 8 a Response surface of predicted species numbers for the

fuzzy model relating the landscape attributes at the two spatial

scales analyzed. Percent pasture cover is at the local scale.

b Predicted versus observed species number of the model. The

line represents a 1:1 slope, where all predicted and observed

values should coincide
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behave as binary variables with mutually exclusive

states. It is not simple to set arbitrary cutting points in

order to determine different levels of metrics, like

patch shape index, border width or fractal dimension.

Rather, continuity between different states is a more

realistic situation. Landscape complexity is clearly

one of these concepts. A conventional statistical

design would force us to define different states (e.g.

simple, complex) for which there is no clear cutting

point. This uncertainty is a problem in traditional

approaches, but is explicitly incorporated in fuzzy

logic. The ambiguity in the definition of the variable

states can be expressed mathematically through

membership functions to give a concrete answer

(Phillis and Andriantiatsaholiniaina 2001). At the

same time, fuzzy logic is flexible enough so that binary

variables can be incorporated as well. In our study, we

used a combination of fuzzy and binary variables,

depending on which approach was more appropriate,

according to their nature. In that way, we treated the

complexity of roadside vegetation as a continuum

from simple to complex. On the other hand, we

considered that the effect of inhabited houses would be

better attained by a binary (presence/absence) vari-

able, since we restricted our study sites to rural areas

and did not evaluate a gradient of urbanization. In

developing fields like sustainability assessment or

environmental impact analysis, where these concepts

cannot be defined unambiguously, fuzzy set theory

may also be particularly useful. Prato (2005) for

example, used fuzzy logic to define different levels of

regional income, biodiversity and water quality that

determine ecosystem sustainability. Setting thresholds

for the input variables would have been unrealistic,

and could lead to specific conclusions about manage-

ment decisions that do not take into account the

ambiguity and uncertainty of the input variables.

The information available to study landscape

attributes and metrics and build predictive models is

usually imprecise and incomplete. This is also very

usual in developing fields or in novel landscapes. In

these cases, expert knowledge and citizen science

(knowledge and data produced by non scientists)

become valuable (Chen and Mynett 2003; Yamada

et al. 2003; Dickinson et al. 2010). This information

must be managed by methods that reproduce natural

reasoning processes and incorporate vagueness and

imprecision. Decision rules and fuzzy inference are

probably the best way to deal with expert knowledge.

They are based in natural language, the way knowl-

edge is transmitted among ecologists and to the lay

person and decision makers. Experts do not need to

express their propositions with complex mathematical

formalisms that are sometimes beyond their capacity

but with words used in everyday communication. This

can be done with structured or semi-structured ques-

tionnaires and interviews (Yamada et al. 2003; Azadi

et al. 2009). It is the modeler who then translates these

propositions in a mathematical formalism for analysis.

By computing with words, it is also easier to integrate

dissimilar information in a single output variable. In

this aspect, multivariate methods cannot fully achieve

the possibilities of fuzzy logic and decision rules.

Although multivariate regression can deal with several

variables at a time, dropping non significant variables

and keeping informative ones, the output is a math-

ematical formalism that may still be difficult to

interpret. In our study, we compared the performance

of the first fuzzy model (local complexity) with a

multivariate regression using the same input variables.

Results did not vary with the method used since both

are congruent in their results, as they give similar

weights to the input variables as determinants of the

output variable, and both show that roadside com-

plexity was not relevant.

Fuzzy inference is a predictive method, which

represents an important advantage over some multi-

variate methods that are exploratory and non predic-

tive in essence, like redundance analysis or canonical

correspondence analysis (Legendre and Legendre

1998). Hypotheses and predictions of the fuzzy

models are made explicit through IF–THEN rules

and membership functions. In this way, a fuzzy

inference process allows controlling the relationship

between the input and output variables to suit the

knowledge of the system. Even more, in fuzzy logic

both an exploratory and a predictive approach can be

applied. The usual method is first to construct a model

and then modify and validate it with empirical data or

new information from experts (see for example Chen

and Mynett 2003; Adriaenssens et al. 2006). In our

study, we constructed a simple initial model with

predictions based on previous studies on the Pampas’

agroecosystem and informal interviews to experts.

The models were validated with data collected in the

field, and by modifying the parameters until the

maximum explanation was reached we obtained a final

model. As with any modeling method, there is a
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compromise between precision and generalization, or

precision and ecological interpretability. In fuzzy

logic, the modeler has control over the fitting process

and can stop at any time he/she considers it appropri-

ate. The alternative methods do not allow this process

to be done.

Some problems in the methodological approach

were also evident and worth noting. In a fuzzy

reasoning process, the number of rules grows expo-

nentially with the number of variables and member-

ship functions (Chen and Mynett 2003). This is a

general drawback of the method and was particularly

evident in this study, in which the number of rules

(n = 164) was very high. This complicated the

process of tracking the most relevant variables and

tuning the membership functions to improve the fit of

the models. In our case, predicted values were

restricted in the lower bound, but enlarging the range

by modifying models’ parameters would have wors-

ened their fit. Some of the existing software to help to

automate the construction of the rule base and

membership functions, like neuro-fuzzy systems (Jang

1993; Salski and Holsten 2006), is not well developed

enough for input variables such as those used here. As

an alternative, intermediate models can be con-

structed, reducing total number of rules (Kampichler

et al. 2000). These limitations prevented us from

exploring more complex relationships among vari-

ables and improving the fit of the fuzzy models

developed. In spite of these disadvantages, fuzzy logic

reasoning permitted us to study a poorly explored

system and elucidate some of the important issues that

should be taken into account for management of the

Rolling Pampas’ agroecosystem.

To conclude, fuzzy logic, as applied in our study, is

a method that is suitable to obtain an objective

measure of landscape complexity integrating and

dealing with vague and ambiguous information. It

does not add a new metric of landscape characteriza-

tion, but instead works with existing indices with a

natural reasoning process. Neither has it necessarily

improved the performance of traditional statistical

techniques. In fact, we could use it alongside with

traditional statistical methods, when the information

was not suited to them. Fuzzy logic is a promising

methodology in landscape ecology which is increas-

ingly being applied in several areas (Ducey and Larson

1999; Ferraro et al. 2003; Lu et al. 2006; Rocchini and

Ricotta 2007).

Ecological insights

Bird species richness of the Pampas’ agroecosystem

was negatively affected by the high proportion of

annual crops in the landscape at the local scale, which

coincided with other studies in the same region (Filloy

and Bellocq 2007; Codesido et al. 2008; Cerezo et al.

2011). Landscape complexity proved to be a more

important factor to determine species richness,

though. Contrary to our predictions, roadside vegeta-

tion did not enhance bird species richness, though

several authors (Lakhani 1994; Goijman and Zaccag-

nini 2008; Di Giacomo and López de Casenave 2010)

conclude that hedgerows and non cultivated field

margins are important for providing habitat for birds in

agroecosystems. This may have been because we

considered the contribution of roadside vegetation to

complexity, but there may be only particular vegeta-

tion conditions that favor bird species, like spontane-

ously vegetated roadsides. In the Rolling Pampas,

these kind of roadsides are being removed for

cultivation before their effect on birds is evaluated.

This calls for a further and urgent focus on this aspect

in future studies.

Landscape complexity can compensate the nega-

tive effect of agricultural land use, showing that

different alternatives can be applied as management

policies for the region. In spite of this, in the Pampas’

agroecosystems much focus has been put in land use,

and little attention is given to the landscape elements

that can generate complexity, like trees and bodies of

water. Future research should study with more detail

these landscape elements and determine their conser-

vation value by evaluating which species are

benefited.

Models showed that landscape transformation

intensity at the facet scale was the most important

factor in determining species richness. It is not

surprising that coarser scales exert the highest effect

since species are affected by landscape characteristics

at the scale they perceive it (With 1994). As highly

mobile organisms, it is expected that birds are affected

primarily by coarse scales. Furthermore, the level of

transformation intensity modified the response of birds

to the local scale factors. Agricultural sites were

enriched when surrounded by a facet of low transfor-

mation intensity. This was probably due to coloniza-

tion of species from the regional pool through mass

effects (Schmida and Wilson 1985). The effect of
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landscape transformation intensity was only evident at

very high intensity levels. This may be due to the fact

that at intermediate levels, landscapes where hetero-

geneous enough to provide a suitable habitat for bird

species. The interaction between different spatial

scales is a very important issue that should be taken

into account when designing management tools to

conserve biodiversity. Local management actions will

not have the same effect in different landscape

contexts (Tscharntke et al. 2005; Concepción et al.

2008). To our knowledge, there are no studies in the

Pampas that have considered the interaction between

scales. There is an urgent need to include this aspect in

order to design and apply effective conservation tools

in a rapidly changing agricultural landscape.

The overall predictive power of the coarse-scale

fuzzy model did not improve compared to the model at

the local scale. This was the result of a balance

between improvements in the predictions for cer-

tain situations with the worsening in others, with no

clear general pattern. This rather surprised us, as there

is a growing recognition that analysis of landscape

effects on biodiversity at different spatial scales

improves the variance explained in biodiversity pat-

terns (Levin 1992; Beever et al. 2006). It is possible

that other biodiversity attributes rather than species

numbers are affected by landscape context. For

instance, the composition of bird assemblages could

vary in different landscape contexts while keeping

total species numbers constant (Weyland et al. ‘‘in

preparation’’). The outcome of different landscape

attributes combinations may not be the same and be

relevant for conservation purposes.
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