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Abstract Alzheimer’s disease (AD) is the most common

form of dementia among older persons. Pathognomonic

hallmarks of the disease include the development of amy-

loid senile plaques and deposits of neurofibrillary tangles.

These changes occur in the brain long before the clinical

manifestations of AD (cognitive impairment in particular)

become apparent. Nicotinic acetylcholine receptors (ACh-

Rs), particularly the a7 subtype, are highly expressed in

brain regions relevant to cognitive and memory functions

and involved in the processing of sensory information.

There is strong evidence that implicates the participation of

AChRs in AD. This review briefly introduces current

strategies addressing the pathophysiologic findings (amy-

loid-b-peptide plaques, neurofibrillary tangles) and then

focuses on more recent efforts of pharmacologic inter-

vention in AD, specifically targeted to the a7 AChR.

Whereas cholinesterase inhibitors such as donepezil, gal-

antamine, or rivastigmine, together with the non-competi-

tive N-methyl-D-aspartate receptor antagonist memantine

are at the forefront of present-day clinical intervention for

AD, new insights into AChR molecular pharmacology are

bringing other drugs, directed at AChRs, to center stage.

Among these are the positive allosteric modulators that

selectively target a7 AChRs and are aimed at unleashing

the factors that hinder agonist-mediated, a7 AChR channel

activation. This calls for more detailed knowledge of the

distribution, functional properties, and involvement of

AChRs in various signaling cascades—together with the

corresponding abnormalities in all these properties—to be

able to engineer strategies in drug design and evaluate the

therapeutic possibilities of new compounds targeting this

class of neurotransmitter receptors.

Key points

Alzheimer’s disease (AD) is the prevalent form of

dementia in older persons.

A wealth of evidence supports the notion that the

neuronal nicotinic acetylcholine receptor is involved

in the pathophysiology of AD.

Nicotinic acetylcholine receptors constitute an

important pharmacologic target for therapeutic and

possibly prophylactic intervention in AD.

1 Introduction

Alzheimer’s disease (AD) is a chronic disease with a very

long asymptomatic period characterized by progressive and

extensive brain atrophy. Typical neuropathologic findings

in postmortem brains of AD patients are the senile amyloid

plaques, mainly composed of deposits of the 39–42 amino

acid amyloid b-peptide (Ab), and neurofibrillary tangles,

composed of hyper-phosphorylated tau protein. The former
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result from cleavage of the amyloid precursor protein

(APP), a type I transmembrane protein coded by a single

multiexonic gene located in chromosome 21, by the

enzymes b and c secretases. Interestingly, of the total Ab
pool in the brain, there seems to be a misbalance between

the ratio of two predominant polypeptides of human Ab,

Ab40 and Ab42, in patients with AD. In these patients,

Ab42 levels are much higher than in healthy individuals,

leading to highly fibrillogenic and toxic effects on neurons

[1]. Although Ab42 differs from Ab40 by only two resi-

dues, Ab42 is much more prone to aggregation and more

toxic to neurons than Ab40. Transgenic rat and mouse

animal models present deficits in synaptic transmission and

plasticity even before amyloid plaque accumulation is

detected [2–4], suggesting that tau hyper-phosphorylation

and its deposition as neurofibrillary tangles are downstream

events to aberrant processing of APP. In brief, the two

pathognomonic markers of AD, namely Ab-peptide

deposits and neurofibrillary tangles, are the consequence of

neuronal death, preceded, in turn, by deterioration of syn-

aptic transmission and plasticity.

Nicotinic acetylcholine receptors (AChRs) are members

of the superfamily of ligand-gated ion channels (LGICs), a

collection of neurotransmitter receptors that also includes

GABA-A, GABA-C, glycine, 5-HT3, and glutamate receptors

and ATP-gated channels. The natural ligand of all AChRs is

acetylcholine (ACh), a small-molecular-weight neurotrans-

mitter that triggers the opening of the channel upon binding

to the receptor. AChRs are composed of five polypeptide

subunits organized pseudo-symmetrically around a central

pore [5, 6]. Each subunit contains an extracellular domain,

four hydrophobic transmembrane segments arranged in the

form of three concentric rings around the pore [7], and a short

extracellular carboxy-terminal domain [5, 6].

Historically, the availability of high amounts of AChR

protein from the electric organ of the Torpedo species [8]

and the isolation and characterization of the competitive

cholinergic antagonist a-bungarotoxin from the snake

Bungarus multicinctus [9, 10] are considered to be the

landmark findings that contributed to making the AChR the

prototype for the LGIC superfamily. In more recent times,

the cryoelectron microscopy elucidation of the Torpedo

AChR structure at 4 Å resolution [11] and the crystal

structure of the receptor homolog, the molluscan ACh-

binding protein by X-ray diffraction techniques [12, 13],

have also had an important impact on our understanding of

LGIC structure. These structural findings, in turn, have

provided a useful framework to understand and in some

cases reinterpret the mechanisms of ligand binding, gating,

and blockage of the AChR in molecular detail [14].

Muscle-type AChRs are expressed in the peripheral

nervous system (PNS) and neuronal-type AChRs in both

the PNS and the central nervous system (CNS), as well as

in other non-neural tissues such as immune cells, lym-

phocytes, lung epithelium, and others [15–17]. In the CNS,

the AChR is present in two principal forms: the hetero-

pentameric receptor formed by a4 and b2 subunits and the

homopentameric receptor formed exclusively by a7 sub-

units [15].

The a7 AChR exhibits certain functional properties that

distinguish it from other nicotinic receptors: (a) fast

desensitizing kinetics, (b) unusually high Ca2? perme-

ability, and (c) high affinity for binding a-bungarotoxin

[18, 19]. The a7 AChR is found presynaptically, where it

modulates neurotransmitter release, and postsynaptically,

where it generates postsynaptic currents [20, 21]. In addi-

tion, the perisynaptic presence of the receptor has also been

demonstrated, where it modulates neuronal activity, pre-

sumably by an unconventional mechanism involving dif-

fusion of the natural neurotransmitter and binding to non-

synaptic sites [22]. The a7 AChR is highly expressed in the

hippocampus, a region particularly affected in AD [15]. It

is involved in cognition and has been associated with

pathologic states other than AD, such as schizophrenia

[23–29]. Furthermore, and most relevant to this review, it

has been reported to interact with amyloid b-peptide (Ab).

Immunocytochemical studies on human sporadic AD

brains have shown that a7 AChR is present in amyloid

plaques and binds with high affinity to Ab [30]. Methods

based on immunocytochemical techniques have their

shortcomings and flaws and should be interpreted with

extreme caution, because not all antibodies have been

carefully characterized in terms of receptor selectivity [31].

Nevertheless, the link between Ab and a7 AChR is beyond

doubt, as established by multiple studies [32, 33]. How-

ever, the consequences of this interaction are still a matter

of debate, varying from activation to inhibition of a7

AChR, according to the type, concentration, state of

aggregation of the Ab, and the experimental system

employed [32, 33]. Indeed, in postmortem human AD

brain, the interaction between a7 AChR and fibrillar Ab
exerts neurotoxic effects mediated partly through a block-

ade of a7 AChRs, whereas the interaction with oligomeric

Ab may in fact activate a7 AChR [34]. In addition, it was

reported that Ab oligomers acting through a7 AChR induce

tau phosphorylation [35]. Because Ab levels and the state

of aggregation of the amyloid peptide change as AD pro-

gresses, it is possible that a7 AChR plays different roles in

AD pathology depending on the phase of development of

the disease.

Among the most common psychological and clinical

observations in AD are the loss of attention and episodic

memory impairment [36–38]. As previously stated, several

lines of evidence link brain nicotinic AChRs, the a7 in

particular, to the development of AD [30, 39–41]. The

greater the magnitude of depletion of cholinergic neurons
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and associated cholinergic pathways in cognitive-associ-

ated brain areas such as the neocortex and hippocampus the

more severe the associated dementia, suggesting a rela-

tionship between the clinical manifestations and the level

of cholinergic decline [42–44]. Because cholinergic path-

ways are associated with learning and memory, nicotinic

agonists and cholinomimetics in general provide symp-

tomatic improvements in cognitive impairment [45, 46]

and this constitutes the basis of therapeutic approaches

aiming at a7 AChR activation with selective agonists.

2 Therapeutic Targets in Alzheimer’s Disease

Several pharmacologic compounds that target Ab-peptide

metabolism have been studied in clinical trials, although

the results to date have not been auspicious. Most of the

compounds effectively reduce cerebrospinal Ab-peptide

levels and amyloid senile plaques but the expected clin-

ical outcome, cognitive improvement, is not observed

[47–49]. These results are consistent with observations

based on neuropathologic studies and in vivo imaging of

Ab plaques by positron emission tomography showing

that brain amyloid plaque levels do not necessarily cor-

relate with cognitive status [50–52]. Moreover, Ab-pep-

tide oligomerization and deposition is a slow process and

may take up to two decades or more to achieve pathologic

levels. In addition, it has been suggested that soluble

oligomers are the relevant toxic form of Ab, showing a

better correlation with synaptic dysfunction than senile

plaques [52]. Thus, targeting Ab-peptide deposition and/

or removal may prove to be too simplistic and not the

ideal therapeutic approach, at least with patients with

mild-to-moderate AD. Whether this strategy could be

beneficial at earlier asymptomatic stages of the disease

remains to be determined. Nonetheless, these results raise

the fundamental question of whether increased Ab-pep-

tide is a primary cause in AD, or whether AD is more

likely to be associated with or a consequence of other

pathologic processes [53].

Because neurofibrillary tangles are indeed correlated

with cognitive status, other possibilities emerge for tar-

geting the tau pathway. In this regard, several inhibitors of

tau deposition or aggregation are currently being devel-

oped, though only limited clinical trials have so far been

undertaken. Inhibiting tau phosphorylation with lithium

chloride or sodium valproate effectively reduces cerebro-

spinal fluid phospho-tau, but is apparently not accompanied

by an improvement in cognition in patients with mild-to-

moderate AD [54–57]. It therefore appears that when the

disease is clinically established, it is unlikely to be reverted

by these two means, suggesting that neuronal circuits

damaged as a result of neuronal loss are not restored simply

by reducing toxic levels of tau. However, neurodegenera-

tion may be slowed down if anti-Ab or anti phospho-tau

therapy is applied at pre-symptomatic stages [53, 58].

Although biomarkers for AD are available and imaging

technology is able to detect some of the signs of asymp-

tomatic stages, these are not routinely included in clinical

practice, probably owing to the lack of disease-modifying

therapies [59]. However, this is most likely to change in the

near future because cerebrospinal fluid and imaging

Fig. 1 The cholinergic synapse

as a therapeutic target of drugs

in Alzheimer’s disease.

Pharmacologic treatments target

different stages of cholinergic

transmission, usually with a

view to gain of function, i.e.,

enhancing the efficacy of

transmission. Thus, ST-101

stimulates release of the natural

neurotransmitter, acetylcholine;

cholinesterase inhibitors

increase the effective

concentration of ACh at the

synaptic cleft; orthosteric

agonists activate AChR ion

channel and downstream

signaling, and PAMs potentiate

AChR responses. ACh

acetylcholine, AChE

acetylcholinesterase, AChR

acetylcholine receptor, PAM

positive allosteric modulator
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biomarkers are currently being incorporated into revised

diagnostic guidelines for AD [60–64].

The third accepted player in AD is the process of cho-

linergic synaptic transmission proper. This is rooted in the

fact that cholinergic system dysfunction is an early and

salient feature of AD. Thus, enhancing cholinergic signaling

emerges as a primary strategy for improving cognition.

Cholinergic dysfunction can be overcome by different means

(Fig. 1). Based on the general philosophy of improving

AChR synaptic efficacy, the therapeutic strategies vary from

increasing the synaptic ACh level to improving agonist-

mediated AChR transduction, or attempting to decrease the

agonist-mediated desensitization phenomenon. However,

the development of therapeutic compounds that can act

selectively on different subtypes of AChRs in different brain

locations is an extremely complex goal. In simple terms, the

theoretically ideal case in drug design terms would be the

production of a drug that interacts with a specific receptor

subtype, in a selective manner, and with the same potency

and timing as the endogenous agonist. The sections that

follow discuss possible therapeutic targets aimed at

improving cholinergic signaling.

3 Cholinesterase Inhibitors

The pharmacologic repertoire currently approved for AD

treatment comprises the N-methyl-D-aspartate (NMDA)

receptor agonist, memantine, and the cholinesterase

inhibitors (galantamine, tacrine, donepezil, and rivastig-

mine). Therapeutic approaches acting on NMDA receptors

are beyond the scope of this review and will not be dealt

with here. By prolonging the time spent by ACh at the

synapse, cholinesterase inhibitors procure to alleviate the

deficit of AChRs at postsynaptic neurons that preclude or

hamper cholinergic transmission in AD [65]. However,

cholinesterase activity not only modulates cholinergic

transmission by hydrolyzing ACh, but also stimulates

amyloid plaque formation. Thus, inhibiting the latter

increases ACh availability and reduces Ab deposition [66].

At present, three acetylcholinesterase (AChE) inhibitors

are available for the treatment of AD, namely donepezil,

rivastigmine, and galantamine. Rivastigmine is an inhibitor

of AChE and butyrylcholinesterase with a pseudo-irrevers-

ible mode of action [67]. Furthermore, it is the only cholin-

esterase inhibitor that produces sustained inhibition without

increasing the expression of the target enzyme [68]. Galan-

tamine is a selective, rapidly reversible, competitive AChE

inhibitor and it can also act as a positive allosteric modulator

(PAM) of the AChR (see below) [68, 69]. In fact, donepezil

and galantamine have been shown to increase the density of

AChRs, as measured by nicotine binding in old rat brains

[70]. More importantly, whereas rivastigmine produces an

increase in nicotine binding in patients with mild AD, gal-

antamine does not, although both drugs inhibit cholinester-

ase activity and improve attentional tasks [71, 72]. Thus,

AChE inhibition may not be the only mechanism operative in

the observed pharmacologic effects.

Phenserine and huperzine A are among the cholines-

terase inhibitors under study. Phenserine is a reversible and

selective AChE inhibitor in phase III trials. However, there

are no data to date on AChE expression and inhibition

available for phenserine in the cerebrospinal fluid of

patients with AD. Huperzine A is a quinolizidine-type

alkaloid isolated from Huperzia serrata (Thunb) Trev, a

traditional plant used in China for the treatment of swell-

ing, strains, schizophrenia, myasthenia gravis, and orga-

nophosphate poisoning [73, 74]. Huperzine A has been

described as a reversible and selective AChE inhibitor with

oral bioavailability that can cross the blood–brain barrier

and exhibits a prolonged half-life [75]. Studies have also

demonstrated that this compound has a more potent effect

in increasing cortical ACh levels than either donepezil or

rivastigmine. Furthermore, huperzine A has been shown to

display higher AChE inhibition in vivo [76]. Controver-

sially, phase IV clinical trials conducted in China produced

different results from phase II clinical trials conducted in

the USA. In the former case, huperzine A caused signifi-

cant improvements in memory shortages in older persons

with benign senescent lack of memory and in patients with

AD, with minimal adverse effects and toxicity [77, 78]. In

contrast, in the American studies huperzine A showed no

beneficial cognitive effect in patients with mild-to-moder-

ate AD [79]. Further study is therefore required to resolve

the controversy over the efficacy of this compound.

All in all, the use of cholinesterase inhibitors appears to

have a beneficial impact on behavioral and psychiatric

symptoms; however, there is no proof of superiority of one

particular drug over another with respect to cognitive,

behavioral, or functional clinical outcomes [80, 81].

4 Nicotinic Receptor Agonists

An additional approach to enhance ACh signaling between

neurons is the use of cholinergic agonists to improve per-

formance in learning and memory tasks (for a review, see

[82]). Increasing attention is being paid to developing

selective AChR agonists, with the capacity to enhance

cognition without causing adverse effects associated with

pan activation of AChRs (or muscarinic acetylcholine

receptors). This line of thought is based on the fact that

nicotine, a cholinergic agonist lacking selectivity for most

AChRs, has been shown to improve attention, learning, and

memory through interaction with neuronal AChRs [83].

Moreover, a recent study reported that nicotine can protect
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from both early postsynaptic impairment and late presyn-

aptic damage caused by Ab oligomers [84]. This protection

is apparently effected through the activation of a7AChR

and the downstream cascade of the phosphatidylinositol-3-

kinase signaling pathway. This pathway, in turn, cross-

talks with the Wnt signaling pathway and both should be

explored as potential therapeutic targets for AD. Further-

more, in a recent work by Lu and collaborators [85] this

year, a protein called repressor element 1 silencing tran-

scription factor (‘‘REST’’), normally expressed at low

levels in the neurons of young healthy human brains, is

reported to be markedly reduced in patients with mild

cognitive impairment and AD. Interestingly, the authors

report that stress can increase Wnt signaling, which in turn

induces REST expression.

An important disadvantage of the use of agonists in AD

is the fact that agonist treatment probably leads to non-

physiologic receptor activation. Furthermore, cholinergic

agonists bind to extracellular sites, the orthosteric agonist

sites, located at the interface between two a subunits [86,

87]. Although the potency of the agonist may not be

exactly the same for different AChR subtypes, the pro-

longed presence of the ligand at the agonist site leads to the

desensitized state of the receptor, and this thermodynami-

cally end state driven by the agonist decreases the expected

effect of the surrogate agonist [88]. Thus, the resulting

compounds do not produce an ‘‘either/or’’ effect: activation

and desensitization of AChRs both contribute to pharma-

cologic behavior, as is dramatically clear in the case in

nicotine addiction and mood disorders [88]. However,

desensitization may be compensated by the up-regulation

of AChRs observed after long-term agonist treatment.

Indeed, up-regulation of a7 AChR protein levels in the

frontal cortex or hippocampus of mice was observed

in vivo with very low doses of AZD0328 and SSR180711,

two partial agonists of the receptor. Cognition was corre-

spondingly found to increase in this model system [89].

Up-regulation of different AChR subtypes with nicotine

was extensively studied in relation to tobacco addiction

[90, 91].

In addition, preclinical studies performed with the

selective a7 AChR agonist A-582941 in a mice model of

AD have shown that although pathologic findings such as

amyloid deposition and neurofibrillary tangles did not

change in treated mice, cognition was completely restored

to the level of age-matched non-transgenic wild-type

mice [92]. Moreover, the a7 AChR partial agonist

SSR180711 completely rescued early as well as late LTP

impaired by Ab42 oligomers in hippocampal slices,

whereas donepezil, a cholinesterase inhibitor, and TC-

1827, an a4b2 AChR agonist, did not [93]. These results

highlight the potential of a7 AChR as a therapeutic target

in AD.

A few AChR agonists aimed at the treatment of AD are

currently in developmental phases II and III. One such

compound is ABT-126 (AbbVie spun), a drug that at high

doses achieves similar cognitive gains to those reported for

donepezil, and the use of which improves scores on

memory tests in the Alzheimer Disease Assessment Scale-

Cognitive subscale compared with the placebo group.

Studies are currently being carried out on ABT-126

(AbbVie spun) to determine whether it provides additional

benefits in combination with the drug donepezil (pre-

liminary data can be found in http://www.alzforum.org/).

An additional drug in a phase III study, (R)-7-chloro-N-

quinuclidin-3-yl)benzo[b]thiophene-2-carboxamide (EVP-

6124 from EnVivo Pharmaceutical), was characterized as a

novel and selective partial agonist of the a7 AChR.

Prickaerts and colleagues [94] demonstrated that exposure

of a7 AChRs to EVP-6124 at a sub- to low nanomolar

range was responsible for its pro-cognitive effects through

a co-agonist type of mechanism. The findings have opened

up promising therapeutic possibilities in combination with

classical acetylcholinesterase inhibitors at lower than typ-

ically prescribed doses. The cognitive-enhancing effects

observed after EVP-6124 administration appear to occur at

concentrations in the brain below those causing desensiti-

zation of AChRs. Other agonists such as AQW051, TC-

5619 [95], and GTS-21 [96] have entered clinical-phase

stages more recently, but no results are available to date.

5 Positive Allosteric Modulators (PAMs)

Why allosteric modulators? Two compelling reasons are

that allosteric ligands offer the potential for greater

receptor subtype selectivity, because of higher sequence

divergence in allosteric sites across receptor subtypes rel-

ative to the conserved orthosteric domain, and, second,

because they can selectively modulate orthosteric ligand

actions at a given subtype of receptors to the exclusion of

others [87]. In the particular case of the AChR, develop-

ment of positive allosteric modulators (PAMs) shows

promise, for instance, in alleviating desensitization asso-

ciated with prolonged agonist exposure. PAMs bind to

distinct non-overlapping allosteric sites that are topologi-

cally differently located from the canonical (‘‘orthosteric’’)

agonist binding domains used by the natural neurotrans-

mitter, other conventional agonists such as nicotine or

carbamoylcholine, or competitive antagonists. PAM bind-

ing causes conformational changes in the receptor that

synergize and augment the natural signals elicited by co-

bound orthosteric ligands. In the case of the a7 AChR, the

orthosteric agonist-recognition sites are located in the

extracellular domain, at the interface between two a7

subunits, providing a total of five binding sites per receptor

AChR: New Drug Target in AD

Author's personal copy

http://www.alzforum.org/


oligomer [97]. Conventional orthosteric agonists increase

receptor activity [87]. Except for a few exceptional cases if

the agonist is not bound to the receptor’s orthosteric site,

PAMs do not produce AChR activation on their own [98,

99], but rather increase the action (affinity and/or efficacy

of the orthosteric agonist [87]). Several groups have stud-

ied whether PAMs have any effect on the equilibrium

binding of radiolabeled high-affinity agonists or antago-

nists of the a7 AChR in membrane preparations from

rodent brain or heterologous expression systems, confirm-

ing that PAMs bind at a site different from the canonical

agonist binding site [99–105]. Therefore, only in the pre-

sence of a full or partial agonist can PAMs facilitate ago-

nist-evoked responses by modifying energy barriers

associated with transitions between functional conforma-

tions [106]. In this way, in contrast with canonical or-

thosteric-site agonists, the temporal and spatial integrity of

neurotransmission is preserved.

Why are PAMs particularly suitable for targeting a7

AChRs? This type of neuronal receptor exhibits distinctive

functional characteristics such as unusually high Ca2?

permeability, low probability of channel opening, and rapid

desensitization. Williams et al. [106] have pointed out that

these properties may limit the therapeutic usefulness of

ligands binding exclusively to the orthosteric agonist

binding sites. The use of PAMs may therefore prove a

stronger therapeutic option than that provided by conven-

tional agonists alone. However, when the integrity of

cholinergic neurons is compromised to the point where

ACh synthesis is also compromised, PAM treatment may

be ineffective; combining with an agonist may increase the

efficacy of this therapeutic approach in such cases.

PAMs aimed at the a7 AChR have been divided into

two classes, types I and II, based on the modulation exerted

on receptor function [107], and a third class grouping those

compounds having intermediate effects between those of

type I and II drugs. Tables 1 and 2 list a series of PAM

compounds that have been studied to date.

Upon application of an a7 agonist, type I PAMs increase

receptor sensitivity to the agonist, enhancing current

amplitudes and the empiric Hill coefficient, with minor or

no effect on the basic onset and decay kinetics or shape of

the ionic current response. However, only two compounds

(NS-1738 and 5-HI) need the extracellular domain of the

a7 AChR to potentiate the response, whereas others

(ivermectin and LY-2087101) do not. Ivermectin binds to

the transmembrane region of the AChR. Thus, the available

experimental data suggest that the potentiation profile of

type I PAMs involves more than one mechanism and site of

action. Type II PAMs affect cholinergic responses by

slowing the decay kinetics; they can even activate a7

AChRs that have been previously desensitized by the

agonist [103, 104, 107–109].

In addition, endogenous molecules acting as PAM have

been identified. Secreted mammalian Ly6/urokinase plas-

minogen activator receptor-related protein-1 is a small

protein that acts as an endogenous PAM of the a7 AChR

[110]. It increases AChR potency and the Hill coefficient

without affecting desensitization kinetics, thus mimicking

the type I PAM mode of action [110]. It is expressed in

spinal cord neurons, lymphocytes, and keratinocytes;

however, little is known about its expression or function in

the CNS [111–113].

6 Type I PAMs as Therapeutic Options

Among type I PAMs, we find compounds such as AVL-3288,

(N-4-chlorophenyl)-a-[[(4-chloro-phenyl) amino]methy-

lene]-3-methyl-5-isoxazoleacet-amide), also known as XY-

4083 and originally referred to as Compound 6 (CCMI), a

PAM used for the treatment of cognitive deficits in CNS

disorders such as schizophrenia and potentially AD and

attention-deficity hyperactivity disorder [114], currently in

human phase I trials. In rats, repeated treatment with AVL-

3288 showed improved social discrimination after 24 h,

although no effects were apparent in animals after a single

administration [115]. AVL-3288 also improved the perfor-

mance of a radial arm maze task in rats and normalized

sensory-gating deficits in the DBA/2 mouse [104]. However,

this compound also acts as a GABAA receptor PAM, thus

indicating its lack of selectivity [104].

As previously indicated, galantamine is a well-known

acetylcholinesterase inhibitor [116] used in clinical prac-

tice for the treatment of AD. It has also been reported to act

as an a7 AChR PAM, the latter effect being responsible, at

least in part, for its clinical efficacy [117, 118]. However,

galantamine lacks selectivity, because it can also modulate

other AChRs and even NMDA receptors [118, 119]. This

compound is charged under physiologic pH and some

authors suggest that this property could provide a unique

binding site near the AChR orthosteric agonist site [120].

5-Hydroxyindole (5-HI) is a serotonin metabolite [117]

that has low potency and low selectivity for AChRs,

Table 1 Acetylcholine receptor (AChR) agonists currently in clinical

phase trials

AChR agonist References

A-582941 [92]

SSR180711 [93]

ABT-126

EVP-6124 [94]

AQW051

TC-5619 [95]

GTS-21 [96]
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because it also potentiates 5-hydroxytryptamine 3 (5HT3)

receptors [121, 122]. Interestingly, although nicotine and

epibatidine were unable to elicit glutamate release, [123,

124] the presence of 5-hydroxyindole reverts this phe-

nomenon through a7 nicotinic AChR activation in rat

hippocampal and cortical synaptosomes [123]. However,

this compound is active at high micromolar to millimolar

concentrations, thus precluding its clinical applicability

[125].

Compound 2087101 ((2-amino-5-keto) thiazole) can

potentiate responses and the efficacy of an agonist when

acting on several AChR subtypes (a2b4, a4b2, a4b4, and

a7 AChRs) [126] in a concentration-dependent manner.

This potentiation is non-competitive and independent of

agonist concentration and may thus be operative in situa-

tions with low ACh release [126].

Genistein is a non-selective kinase inhibitor [127] that

has been shown to increase a7 AChR responses [107, 128,

129]. Although the mechanism of action of this drug could

involve tyrosine kinase inhibition, direct allosteric modu-

lation is not discarded because it is the only compound

among other kinase inhibitors studied (staurosporine, her-

bimycin A, PP2, or SU6656) that is able to increase a7

AChR-mediated ionic currents at concentrations showing

effective kinase inhibition [130, 131]. Furthermore, treat-

ments with tyrosine kinases inhibitors are not able to

abolish or attenuate the modulatory effect of genistein

[107].

NS-1738 (1-(5-chloro-2-hydroxy-phenyl)-3-(2-chloro-5-

trifluoromethyl-phenyl)-urea is an a7 AChR PAM that has

also been shown to inhibit the response of a3b4 and a4b2

AChRs, the former receptor being involved in the control

of bladder and cardiac function and the latter in the rein-

forcing effects of nicotine related to addiction (see review

by [132]). NS-1738 reversed scopolamine-induced water

maze learning and a social recognition memory task [105]

but has yet to be tested clinically.

Ivermectin is an antiparasitic (antihelminthic) agent that

enhances ACh-induced a7 AChR responses [133], and can

thus be classified as an a7 PAM. It exerts a range of actions

on diverse members of the Cys-loop receptor family and on

some other members of the LGICs. These targets include

both excitatory and inhibitory neurotransmitter receptors,

making this compound non-selective for a7 AChRs [134–

137].

BNC375 is a novel type I PAM acting on the a7 AChR

that has proved effective across a wide range of agonist

concentrations and has demonstrated efficacy in animal

models of episodic and working memory with a broad

therapeutic window. BNC375 matches the performance of

donepezil and is Bionomics’ and Merck clinical candidate

for AD [138].

7 Type II PAMs as a Therapeutic Alternative

Type II PAMs include PNU-120596 (1-(5-chloro-2,4-

dimethoxy-phenyl)-3-(5-methyl-isoxazol-3-yl)-urea),

which modulates the a7 AchR-desensitized state [109,

139]; it has no effect on ion selectivity and minor effects on

channel conductance [109], stabilizing the intrinsic states

of the channel. This drug has not been tested clinically.

However, PNU-120596 was shown to improve the auditory

gating deficit induced by amphetamine in rats [109] and

has been able to reverse scopolamine-induced deficits in

fear conditioning as well as in novel object recognition

tests in rats. Consistently, these effects were reversed by

the a7 AChR antagonist methyl-N-aconitine, indicating a7

AChR selectivity. In this study, sub-threshold doses of

PNU-120596 were shown to enhance the fear conditioning

effects of a low dose of nicotine, but active doses of PNU

120596 and nicotine retained the pro-cognitive effects

[140]. In a more recent study, PNU-120596 was shown to

attenuate the deficits induced by sub-chronic phencyclidine

treatment in the extra-dimensional shift phase of an

attentional set-shifting task [98, 115, 141].

4-(1-napthyl)-3a,4,5,9b-tetrahydro-3H-cyclo-

penta[c]quinoline-8-sulfonamide (TQS) has been shown to

significantly increase the apparent peak current response

and to reduce the current decay rate of a7 AChR channels

Table 2 Positive allosteric

modulators (PAMs) potentiate

the agonist-evoked response by

binding to a site distinct from

the agonist binding site. PAMs

lack intrinsic agonist activity

Type I without affecting

decay kinetics

Type II affecting receptor

desensitization kinetics

Type I/type II

intermediate

AVL-3288 PNU 120596 SB-206553

NS-1738 TQS JNJ-1930942

Galantamine A-867744

5-HI

Compound 2087101

Genistein

Ivermectin
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activated by ACh application [107], although the signifi-

cance of these data remains to be clarified.

A-867744 is a prototypical type II PAM that not only

enhances the peak a7 AChR current evoked by nicotinic

agonists but also slows down the desensitization of agonist

responses. A-867744 was also demonstrated to dramati-

cally enhance Ca2? responses and ERK phosphorylation in

a concentration-dependent manner [103, 142]. Interest-

ingly, ERK1/2 phosphorylation in response to a7 AChR

agonists has been recently demonstrated in vitro [138–145]

and in vivo [146].

8 Type I/Type II Intermediate Compounds

Other a7 AChR PAMs with a structurally different

chemotype, i.e., structurally departing from other known

PAM compounds, have been characterized (type I/type II

intermediate compounds). 3,5-dihydro-5-methyl-N-3-pyr-

idinylbenzo[1,2-b:4,5-b’]-di pyrrole-1(2H)-carboxamide,

SB-206553, was shown by Dunlop and colleagues [101] to

potentiate the evoked a7 AChR-mediated calcium signal in

the presence of nicotine in GH4C1 cells and also to

potentiate ACh-induced currents in CA1 stratum radiatum

interneurons in rat hippocampal slices. However, SB-

206553 is essentially devoid of AChR subtype selectivity,

because it can also inhibit the response of a3b4 AChRs

[101] and can even function as an antagonist of 5-HT2B/C

[147] and 5-HT3 receptors [101]. 2-[[4-fluoro-3-(trifluoro-

methyl)phenyl]amino]-4-(4-pyridinyl)-5-thiazolemethanol,

JNJ-1930942, is a compound that enhances both the effi-

cacy and the potency of orthosteric cholinergic agonists

without directly activating the a7 AChR. JNJ-1930942

potentiates the choline-evoked rise in intracellular Ca2?

levels in the GH4C1 cell line expressing the cloned human

a7 AChR and does not act on a4b2, a3b4 AchRs, or the

5-HT3A channel. The mechanism of action of JNJ-1930942

results mainly from affecting receptor desensitization,

leaving activation and deactivation kinetics as well as

recovery from desensitization relatively unchanged [99].

The reduction of the fast desensitization step is responsible

for the enhanced current amplitude [99].

A different approach towards improving cholinergic

signaling is to stimulate ACh release. An example of a drug

in phase II development for AD that follows this concept is

ST-101(spiro[imidazo[1,2-a]pyridine-3,2-indan]-2(3H)-

one), also coded as ZSET1446 by Sonexa Therapeutics).

This compound is able to cross the blood–brain barrier and

activate T-type voltage-gated calcium channels. It has

shown effectiveness in restoring the learning and memory

capability of cognitively impaired animal models of AD

[118, 148]. Interestingly, a recent study suggests that co-

application of ZSET1446 and the NMDA receptor

antagonist memantine has a positive effect on cognitive

functions in mice and rats. An increase in the extracellular

levels of ACh in the hippocampus was observed upon

application of this compound [149, 150]. It was also

demonstrated that a7 AChR has a permissive role in

NMDA receptor action in the primate prefrontal cortex,

strengthening cognitive functions, thus suggesting a

promising combination therapy of these two compounds in

clinical settings [151].

9 Conclusions

It is unlikely that targeting a single factor at a time will

have sufficient impact on a multifactorial complicated

disease such as AD. Reinforcing neurotransmission could

be beneficial in attempting to ameliorate symptoms at early

stages of treatment, as demonstrated by the long-standing

success of cholinesterase inhibitors; however, without

removing the harmful potential of excess Ab and/or tau,

synaptic and dendritic damage will progress, eventually

leading to neuronal death. In contrast, removal of Ab and/

or tau appears to be a potential brake to neuronal damage,

but is most unlikely to lead to the recovery of injured

neurons and much less to the replenishment of lost neurons.

Efforts should be aimed at maximizing functional

specificity of targets at the molecular, cellular, and tissue

levels. It would be desirable to selectively target individual

classes of AChRs with drugs active only in particular

regions or nuclei of the brain. This is a daunting challenge,

perhaps even bordering on the utopian in terms of our

current state of knowledge. Identifying prodromic markers

of early physiopathologic stages of AD should also be a

major goal of current efforts, such that the selective drugs

can be aimed at ameliorating dysfunction or at least

delaying the onset of disease in genetically predisposed

subjects at asymptomatic stages.
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