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Abstract
We report magnetoresistance measurements in Nb films having a periodic thickness modulation. The
cylinder shaped thicker regions of the sample, which form a square lattice, act as repulsive centers for the
superconducting vortices. For low driving currents along one of the axes of the square lattice, the
resistivity ρ increases monotonously with increasing magnetic field B and the ρ–B characteristics are
approximately piecewise linear. The linear ρ versus B segments change their slope at matching fields
where the number of vortices is an integer or a half integer times the number of protruding cylinders in
the sample. Numerical simulations allow us to associate the different segments of linear
magnetoresistance to different vortex-flow regimes, some of which are dominated by the propagation of
discommensurations (kinks).

(Some figures may appear in colour only in the online journal)

1. Introduction

The dynamics of driven superconducting vortices has been
the subject of intense theoretical and experimental research
during the past decade. This has been mainly fueled by the
technological interest in reducing the dissipation associated
with vortex motion and by the possibility of using vortex
matter as a model system with tunable parameters to study
static and dynamic phases and their transitions. In vortex
systems it is possible to control the driving force by applying
an electric current across the sample, to set the density through
an external magnetic field, and to tailor the potential landscape
using lithographic techniques.

The fact that the density of vortices in a sample can
be tuned, has allowed a number of studies that analyze
commensurability effects between the vortex lattice and an
underlying periodic potential. The typical matching signature
is the appearance of minima in the resistivity (or maxima
in the critical current) for magnetic fields such that the
number of vortices nV is a multiple (or a simple fraction
like 1/4, 1/2 and 3/4) of the number of minima nP in the

potential landscape. For this purpose, films having different
types of artificial pinning centers such as holes [1, 2]
magnetic [3, 4] or non-magnetic particles [5] in different
geometries [6–21], have been studied both experimentally and
theoretically [22–30].

Driven vortices in periodic potentials present a rich
variety of phenomena [31], including transitions between
different vortex-flow regimes. A prominent example is the rich
phase diagram predicted by Reichhardt et al [22, 23] for a
square pinning potential by means of numerical simulations,
which was later confirmed experimentally (see [32]).

A common feature in the general problem of interacting
particles in a periodic potential is the formation of
discommensurations in the particle lattice [33]. These
appear as a result of the competition between inter-particle
interactions, which favor a specific crystal structure, and
the external potential, which in general favors another. In
vortex systems these discommensurations have been predicted
in numerical simulations [23, 34, 35] and also visualized
experimentally [36], but their dynamics and the experimental
consequences of their presence have been less explored.
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In this work we analyze the dynamics of driven vortices
in a square pinning potential as a function of the vortex
density and driving force. To that aim, we generate a
periodic thickness modulation in Nb films and perform
magnetoresistance measurements in the superconducting
state. The potential energy of a vortex increases with the
sample thickness due to the extra energy associated with
the vortex length [37, 38]. This allows one to control the
intensity and the topology of the pinning potential energy
using lithographic techniques.

For a film with a square lattice of protruding cylinders
we observe clear commensurability signatures. The resistivity
increases linearly with increasing magnetic field, but instead
of the usual minima at the matching fields we observe changes
in the slope of the ρ versus B curve. To interpret the results
we perform molecular dynamics simulations, and show that
the observed behavior can be ascribed to different regimes of
vortex dynamics. A low field regime that can be understood
in terms of single vortex physics, and higher field regimes
dominated by the presence of moving discommensurations
(kinks).

The rest of the paper is organized as follows. In
section 2 we describe the experimental setup. In section 3
we present magnetoresistance measurements illustrating the
commensuration effects. In section 4 we present the model
and methods to describe the driven vortex dynamics. In
section 5 we present the results of numerical simulations
that reproduce qualitatively the experimental observations. In
section 6 we present a simplified one-dimensional (1D) model
that contains the minimum ingredients to understand the kink
dynamics. Finally, in section 7 we present our concluding
remarks.

2. Experiment

We fabricated a circuit (see figure 1) consisting of an
electrical current path 60 µm wide coupled to electrodes
for longitudinal voltage measurement [16]. This structure is
fabricated in two stages. First, the desired pattern for the
extension electrodes is defined using optical lithography on
a AZ-9260 resist layer. Nb is sputtered on top and a lift-off
process is performed. Second, using the Nb deposited as an
alignment mark, the pattern for the current path and the first
part of the contacts is written with e-beam lithography on
a bilayer of MMA/PMMA resists. Then again, a Nb film is
sputtered on top and a lift-off process is performed.

The periodic modulation of the thickness is generated
on 60 µm long regions located on the current path. Using
the negative photo-resist ma-N 2403 a square lattice of resist
cylinders (see figure 1(b)) is fabricated by e-beam lithography.
When the sample is attacked by reactive ion etching (RIE), the
cylinders protect the covered portion of the film, generating
the desired thickness modulation. During the RIE process we
work with a mixture of SF6 and Ar at a pressure of 1.33 Pa,
and an acceleration voltage for the ions of approximately
110 V. With these parameters we obtain a Nb etching speed of
80 nm min−1. After the RIE process, the sample is immersed
for four hours in acetone in order to remove the resist.

Figure 1. (a) Scanning electron microscopy image of the
measurement circuit. The current path (colored in red) is coupled to
contacts for voltage measurement (colored in yellow). The box of
dotted style lines in the current path indicates the region where
thickness modulation is performed. (b) 45◦ tilted scanning electron
microscopy image of the square lattice of resist cylinders before
performing the RIE. The dark regions correspond to the bases of the
cylinders. (c) Image of sample I, with Nb cylinders of diameter
d = 350 nm and lattice parameter a = 570 nm.

Figure 1(c) shows a scanning electron microscopy image
of one sample with cylinders of diameter d = 350 nm and
lattice parameter a = 570 nm. As usual, a determines the first
matching field Bφ = φ0/a2, where φ0 is the flux quantum. At
B = Bφ there are as many vortices as unit cells in the cylinder
lattice (i.e. nV = nP).

In what follows we present magnetoresistance measure-
ments for two samples: sample I with Bφ = 62 G and
superconducting critical temperature Tc = (7.55 ± 0.02) K,
and sample II with Bφ = 48 G and Tc = (7.68± 0.02) K. The
film thicknesses are 150 nm and 110 nm for samples I and II
respectively. In both samples the nominal cylinder height with
respect to the film is hcyl = 40 nm.

3. Magnetoresistance measurements

The magnetoresistance measurements were carried out in a
four-probe geometry within a pulse tube refrigerator with
2.3 K base temperature. The voltage was measured at constant
temperature T and current density J along the current path
(see figure 1) using a nanovoltmeter. The magnetic field was
increased from zero up to a maximum value of Bmax ∼ 3Bφ
and then decreased to zero again. No hysteresis effects were
observed.

In figures 2 and 3 we present magnetoresistance
measurements for sample I. We focus our analysis on the
data obtained within the range of temperatures 7.5 K < T <
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Figure 2. Resistivity versus magnetic field in a Nb film with a
square lattice of protruding cylinders at T = 7.52 K (T/Tc = 0.996)
(sample I). The lattice parameter is a = 570 nm (Bφ = 62 G) and
the diameter and height of the cylinders are d = 350 nm and
hcyl = 40 nm, respectively. The resistivity presents an
approximately piecewise linear behavior with slope changes at the
first two matching fields. As the current driving the vortices is
increased (see inset) the change in the slope at the second matching
field B = 2Bφ becomes less pronounced and eventually disappears.

7.52 K < Tc and the range of current densities 10 A cm−2 <

J < 27 A cm−2. For lower temperatures or currents the
commensurability effects are weak, presumably due to the
dominance of the intrinsic pinning mechanisms over the
periodic potential [39–41]. For temperatures or currents above
the selected intervals, we observed a finite dissipation at
zero external magnetic field, which indicates the presence of
vortices induced by the external current or other dissipation
mechanisms.

At the lowest temperatures and magnetic fields con-
sidered, we observe commensurability effects in the mag-
netoresistance at the matching fields B = Bφ,Bφ/2, 3Bφ/2
and 2Bφ (see figures 2 and 3). Instead of the usual minima
in the ρ versus B curves (see e.g. [14]), we observe a
monotonously increasing piecewise linear behavior where the
commensurability manifests itself as a series of increases in
the slope of the curves at the matching fields. This behavior
was observed in different samples obtained using films of
various thicknesses and samples produced with different
cylinder lattice parameters on a single film, and is presumably
associated with the regularity and the low strength of the
pinning potential generated by the thickness modulation and
the parameter regime of the experiments.

The linear behavior of ρ(B) at low fields is easily
understood under the assumption that the periodic pinning
potential due to the thickness modulation of the films has a
negligible disorder both in the position of the repulsive centers
and their amplitude. For low enough magnetic fields B→ 0,
the average inter-vortex distance 〈d〉 is large compared to the
penetration depth λ, and the typical vortex–vortex interaction
is exponentially small ∝e−d/λ [42]. In this regime, the
contribution from each vortex to the resistivity is independent
of magnetic field and proportional to its average velocity 〈v〉
in a direction perpendicular to the external current. If the

Figure 3. Resistivity versus magnetic field in a Nb film with a
square lattice of protruding cylinders for J = 26.6 A cm−2 and
different values of the temperature (sample I). Inset: low-field detail
of the magnetoresistance at T = 7.51 K, presenting a
commensurability effect at B = Bφ/2.

distribution of 〈v〉 is sharply peaked at a finite value 〈v〉sv,
the resistivity is simply proportional to the number of vortices
(nV = A B/φ0, where A is the area of the film) multiplied by
〈v〉sv and a linear increase in the resistivity with increasing
magnetic field is obtained: ρ ∝ B 〈v〉sv. In the experiments, the
approximately linear behavior extends up to the field B = Bφ
(or B = Bφ/2, depending on the temperature and the external
current), where a change in the slope is observed giving rise
to a new linear behavior for higher fields.

As we will see below through numerical simulations,
the persistence of the linear behavior for fields where the
vortex–vortex interaction is no longer negligible and the
changes in the slope of the magnetoresistance at the matching
fields can be understood in terms of vortices moving along
channels between pairs of cylinder rows. At the matching field
B = Bφ , the vortices in a given channel are evenly spaced
and move with an average velocity∼〈v〉sv. Adding a vortex to
the channel generates a defect (kink) in the vortex lattice that
travels faster along the channel than the individual vortices
and produces an increase in the dissipation. Quite generally,
adding vortices to a channel in a commensurate situation
creates kinks that travel faster than the individual vortices. The
additional dissipation produced by the moving defects is at the
origin of the increase in the slope of the magnetoresistance,
which is roughly proportional to the velocity of the kinks vk.
At the higher matching fields, the vortices are more densely
packed and the average inter-vortex interaction is greater. As a
consequence, the kinks generated over the following matching
fields have larger velocities, leading to the observed increases
in the slope of the magnetoresistance.

Upon increasing the external current (i.e. the vortex
driving force) or the temperature, the commensurability
effects at B = Bφ/2,B = 3Bφ/2 and B = 2Bφ become less
pronounced and disappear (see figures 3 and 4). In the
parameter regime where the commensurability effect at 2Bφ
is not observed, the slope of ρ(B) increases with J and T
for B < Bφ , but remains approximately constant for B > Bφ .
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Figure 4. Resistivity versus magnetic field in a Nb film with a
square lattice of protruding cylinders at T = 7.65 K (sample II). The
lattice parameter is a = 650 nm (Bφ = 48 G) and the diameter and
height of the cylinders are d = 340 nm and hcyl = 40 nm,
respectively. The resistivity presents an approximately piecewise
linear behavior with slope changes only at the first matching field.
As the current driving the vortices is increased, the slope of the
low-field segment increases, while it remains approximately
constant for B > Bφ .

The numerical simulations show that the average single vortex
velocity 〈v〉sv increases much faster than the velocity of the
kinks with increasing J, giving rise to a different rate of
increase in the slope of the magnetoresistance for magnetic
fields below or above the matching field Bφ .

4. Model and methods

Molecular dynamics has proved to be a very successful
technique to describe the static and dynamic properties of
vortex systems in a variety of experimental situations [23, 32].
Here we model the magnetoresistance experiments described
in section 3. We consider an effective two-dimensional model
to describe the vortices in the superconducting film. The
overdamped equation of motion for the ith vortex is given by

ηEvi = Ef
vv
i −

E∇U
(
Eri
)
+ EFC (1)

where Evi = Ėri = (ẋi, ẏi) is the velocity, η is the Bardeen–
Stephen friction,

Ef vv
i =

∑
j6=i

Efij, (2)

is the force due to the interaction with the other vortices, U
(
Eri
)

is the external potential, and EFC =
φ0
c
EJ × ẑ, a driving force

generated by the transport density supercurrent EJ.
In the limit λ� ξ , we have

Efij = f0K1

( rij

λ

)
Erij

rij
(3)

where Erij = Eri−Erj,K1(r/λ) is the modified Bessel function of

the first kind, and f0 =
φ2

0
8π2λ3 . Since K1(r/λ) ∝ exp(−r/λ) for

r � λ, we cut off the vortex–vortex interaction for distances

larger than 6λ. In what follows we take λ,
λη
f0

and f0 as
distance, time and force units, respectively.

We model the interaction between the ith vortex and the
square lattice of protruding cylinders with the potential:

U(Eri) =
a FP

2π

[
cos

(
2πxi

a

)
+ cos

(
2πyi

a

)]
, (4)

where a is the lattice parameter of the cylinder structure, and
FP is a function of a and λ.4

To simulate the magnetoresistance measurements we
consider a system with periodic boundary conditions and an
external force along one of the principal axes of the square
lattice (the ŷ direction). Starting with zero vortices we add
at random positions 1n vortices and perform Neq molecular
dynamics (MD) time steps to reach a stationary state. Then,
we average the quantities of interest over Nmes additional MD
steps. In particular we calculate the total average velocity
〈EV〉 =

∑nV
i 〈Evi〉 whose projection 〈Vy〉 along the y-axis is

proportional to the measured voltage drop across the sample
associated with the motion of the vortices. The process is
repeated until the desired number of vortices is reached.

In the low vortex density limit the behavior of 〈Vy〉 can
be understood assuming that the inter-vortex interaction is
negligible. We may then calculate the average velocity as
〈Vy〉NI = nV〈v〉sv, where 〈v〉sv is the mean velocity for an
isolated vortex in the system, and determines the slope of 〈Vy〉.
A single vortex in the potential generated by the cylinders
follows a rectilinear path parallel to the y axis equidistant to
two rows of cylinders. Along these paths, the pinning potential
has the form

U1D(y) =
a FP

2π
cos(2πy/a) (5)

with an associated pinning force F1D(y) = −∂U1D(y)/∂y.
For FC larger than the maximum pinning force FP =

max[F1D(y)], the average velocity can be calculated by
integrating the equation of motion:

〈v〉sv =
a∫ a

0
dy

[1−F1D(y)/FC]

FC, (6)

which can be evaluated for the potential (5) to obtain

〈v〉sv =

√
F2

C − F2
P. (7)

Equation (5) shows that 〈v〉sv vanishes as
√

FC − FP for
FC−FP→ 0, which is a generic behavior for potentials having
a quadratic maximum in the pinning force.

5. Two-dimensional simulations

Using the procedure described in section 4, we performed nu-
merical simulations of the magnetoresistance measurements

4 Following Berdiyorov et al [38] we expect the interaction with the
cylinders to behave as ∼f0e−r/λ as a function of λ and the vortex–cylinder
distance r. Using this form, the potential along paths parallel to the rows
of cylinders is approximately described by a cosine function. We assume
that in the range of temperatures, currents and fields studied, the vortices do
not penetrate the cylinders, so that the potential considered in equation (4)
describes the interstitial region where the vortices move.
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Figure 5. Total average vortex velocity versus the number of
vortices in a 30× 30 square array of cylinders with lattice parameter
a = 2. For Lorentz forces FC larger than FP and nV/nP < 1 the
average velocity is well described by the single vortex value. At
nV = nP an increase in the slope is observed which is related to the
propagation of kinks for nV > nP. The dotted style lines present the
results expected for a single vortex (see text).

calculating 〈Vy〉, which is proportional to the dissipation, as a
function of the number of vortices nV, which is proportional to
the external magnetic field. We perform the simulations in a
30 × 30 square array of cylinders and use 1n = 22,Neq =

4000, 6000 and temporal discretization 1t = 0.007. The
curves 〈Vy〉 versus nV/nP presented are the result of averaging
over ten realizations.

The main result (see figure 5) is the observation of a
piecewise linear increase in 〈Vy〉 as a function of the number
of vortices nV. This behavior is obtained for a wide range
of values of the penetration length, including the estimated
value for the samples studied in section 3 (λ ∼ 350 nm),5and
reproduces qualitatively our experimental results.

In figure 5 we present 〈Vy〉 as a function of nV/nP for
different values of the external force FC. For forces over a
threshold FC > FP and low vortex densities (nV � nP), the
average velocity increases linearly with the number of vortices
in the system following the expected behavior for a single
vortex (thin lines in figure 5). An approximately single vortex
behavior is observed in 〈Vy〉 up to the first matching field
nV = nP, where there is a change in the slope of the curves. For
nV > nP, 〈Vy〉 presents again an approximately linear behavior
but with a higher slope. The strong deviation of 〈Vy〉 from the
single vortex result for nV > nP indicates a more active role of
the vortex–vortex interactions in this regime and is associated
with the presence of moving discommensurations (kinks).

In qualitative agreement with the experimental observa-
tions (see figure 4), at low vortex densities there is a large
relative increase in the slope of the curves for a moderate
increase in FC, while the slope remains relatively constant for
nV > nP. The large relative increase in 〈v〉sv with increasing

5 The value of the penetration length for Nb at low temperatures [43, 44]
is λ(T → 0) ∼ 44 nm. For sample I, using the two-fluid approximation we
obtain λ = (350± 120) nm at T/Tc = 0.996.

Figure 6. Vortex velocity distribution P(vy) versus (vy − FC)/FP
for FC = 2.07 and FP = 2 and a = 2. For densities
nV/nP < 1,P(vy) ∼= Psv(v), while for nV/nP > 1 there are two
additional peaks (see arrows) and the probability of finding a vortex
having a velocity FC − FP decreases.

FC can be easily understood from (7) in the regime 1F =

FC − FP � FC.
Figure 6 presents the vortex velocity probability

distribution P(vy) for the lowest value of the force considered
in figure 5. For low vortex densities nV � nP,P(vy) is well
described by the single vortex result Psv(v) (see appendix),
signaling a weak effect of vortex–vortex interactions, in
agreement with the results for 〈Vy〉. The distribution is highly
peaked at two characteristic velocities: a ‘slow’ velocity FC−

FP and a ‘fast’ velocity FC + FP. For vortex densities above
the first matching field nV > nP, a clear deviation from the
single vortex result is obtained as P(vy) develops two new
peaks. As anticipated in section 3, for nV & nP each additional
vortex generates a kink that travels faster along the sample
than the individual vortices. The two additional peaks in P(vy)

are associated with the typical velocities of a vortex when it is
participating in the kink’s movement.

In the range of magnetic fields studied and for values of
the penetration length where a piecewise linear behavior is
observed in the magnetoresistance, an analysis of the vortex
trajectories shows that they follow approximately rectilinear
paths along channels defined by pairs of cylinder rows. This
is illustrated in figure 7(a), where a time average of the vortex
positions is plotted for a regime with nV > nP. Figure 7(b)
shows a typical configuration of the vortex velocities at a
given time. Most vortices move with a ‘slow’ velocity, as
expected from P(vy), while a few move with a faster velocity.
These faster moving vortices are associated with the presence
of kinks. As we will show in section 6, the observed piecewise
linear behavior of the magnetoresistance can be understood
within a purely one-dimensional model.

6. One-dimensional toy model

In the two-dimensional numerical simulations presented in
section 5 the vortices moved along approximately rectilinear
paths. In this section we consider a one-dimensional toy

5
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Figure 7. (a) Time averaged density map of the vortex positions, the darker shades of gray indicate a higher probability of finding a vortex
at a given position. The dotted style lines are equipotential contour lines of the pinning potential (4) and the dots indicate the potential
maxima. The density is calculated by averaging over 10 000 simulation time steps for FC = 2.07,FP = 2, a = 2, and nV = 1.2nC in a
30× 30 simulation box. The vortices move along approximately rectilinear paths between energy maxima and spend most of the time
climbing the potential barrier. (b) Snapshot of the vortex configuration, where the arrows indicate the vortex velocities. The vortices having
a larger velocity are associated with the presence of moving discommensurations.

model that provides a simple qualitative picture of the kink
dynamics. For simplicity we consider a periodic triangular
potential such that the force on a vortex is given by:

F(y) = −FP sgn[cos(2πy/a)].

At zero temperature for vortices driven by an external
force FC > FP, the single vortex average velocity is:

〈v〉sv = FC −
F2

P

FC
=
(FC − FP)(FC + FP)

FC
, (8)

and the velocity probability distribution results as:

P(v) =
FC + FP

2FC
δ(FP − FC)+

FC − FP

2FC
δ(FP + FC). (9)

The presence of two characteristic velocities for the motion
of an isolated vortex: a ‘slow’ velocity FC − FP and a ‘fast’
velocity FC + FP is the main ingredient for the observation of
the kinks.

We also use a simpler form of vortex–vortex interaction
potential including a cut-off:

vint(u) = λf0

(
− log |u| −

u4

4
+ u2
−

3
4

)
, (10)

where u = 2
5 r12/λ, and the cut-off is at uc = 1. The

precise form of the interaction is not important for a
qualitative description of the magnetoresistance provided that
vortex–vortex interactions are negligible at large distances.

At the first matching field the vortices are evenly spaced
and synchronized, and the probability distribution of the
velocity is given by the single vortex result (9). For 1F =

FC − FP � FC there is a large probability of finding the
vortices with a slow velocity 1F.6 This is because in the
process of going over a period of the potential, the vortices

6 For a sinusoidal potential the δ-functions are replaced by square root
divergences, but the physical picture remains the same (see appendix).

Figure 8. Schematic representation of a moving
discommensuration in a 1D system. The temporal sequence starts at
(a) and ends at (d). Initially there are as many vortices (filled red
dots) as periods in the total potential (solid line), which is given by
the pinning potential and the driving potential. A single vortex
added to the system (open blue dot) generates a cascade of vortex
displacements.

spend most of their time traveling at a slow velocity and it is
the slow velocity which dominates their average velocity.

In this situation, adding a single vortex to the system
generates a defect that produces a cascade of displacements
(see figure 8). The additional vortex pushes its first neighbor
which is in a slow velocity region, increasing its velocity. The
extra vortex stays trapped in a region with a slow velocity
while its neighbor now with a fast velocity approaches the
next vortex in the chain to help it in turn go faster along
the slow velocity region. This defect propagates faster than
the average velocity of the vortices and is equivalent, in its
contribution to the magnetoresistance, to the addition of a
vortex with a speed vk > 〈v〉sv.

Increasing further the number of vortices increases the
number of kinks and the dissipation. The increase is however

6
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Figure 9. Total velocity for vortices moving in a triangular
potential. Two changes in the slope of the velocity are observed as a
function of the number of vortices. The dotted style lines are linear
fits and serve as guides to the eye. The parameters are
FC = 1.03FP, a = 4,FP = 10. Increasing FC, the commensurability
effect at B = 2Bφ becomes weaker and eventually disappears. This
is shown in the inset for a different set of parameters
FC = 1.025FP, 1.075FP, . . . , 1.275 FP, a = 4,FP = 1.33.

larger than the one obtained for B < Bφ , as the slope of ρ is
given by the kink velocity vk. The kinks repel each other and
tend to be evenly spaced, but this interaction does not lead to a
significant change in their average velocity. While the slope of
the first segment (B < Bφ) is dominated by the single vortex
result for the average velocity 〈v〉sv ∼ FC − FP, the slope for
fields above the first matching field is given by the speed of the
kink, which is typically a fraction of FC. For FC ∼ FP, a small
change in FC can lead to a large relative change in the slope
of the first segment while producing a small relative change
in the slope of the second, as is observed experimentally (see
figure 4).

Increasing further the number of vortices up to the second
matching field, assuming that the 1D model still gives a
qualitative picture for these vortex densities7, can lead to
a second increase in the slope of the magnetoresistance, as
figure 9 shows. The dynamics above the second matching
field is similar to the one above the first matching field. At
the second matching field the vortices form a commensurate
structure and an additional vortex generates a moving defect.

Decreasing the pinning force FP or increasing the
Lorentz force FC reduces the time spent by the vortices
in the slow velocity regions and eventually destroys the
possibility of having a second slope change at B = Bφ
in the magnetoresistance. This behavior is shown in the
inset of figure 9, where we present simulations of the
magnetoresistance for different values of FC.

7. Summary and conclusions

We measured the electronic transport in superconducting Nb
films having a periodically modulated thickness as a function

7 This is possible provided the range of the vortex–vortex interactions, given
by λ, is short enough.

of the magnetic field. We observed a piecewise linear behavior
of the resistivity, which we interpreted in terms of different
dynamic regimes of the superconducting vortices. The
thickness modulation of the film generates a periodic potential
for the vortices that induces commensurability effects in
the vortex flow. Numerical results for the vortex dynamics
indicate the presence of different moving discommensuration
(or kink) regimes. In the regime of parameters where there is a
good qualitative agreement with the experimental results, the
kinks observed are well described considering independent
one-dimensional vortex chains formed between pairs of
neighboring rows of cylinders.

The generation of a thickness modulation using
lithographic techniques offers a unique opportunity to control
precisely the intensity, geometry and topology of the pinning
potential. Ginzburg–Landau calculations in principle allow
the calculation of the pinning potential surface, making these
systems a fertile ground for experiment–theory comparisons
and the study of different dynamical regimes and transitions.
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Appendix. 1D cosine potential

For a cosine one-dimensional (1D) potential

U(y) =
a FP

2π
cos(2πy/a), (A.1)

the equation of motion of a single vortex

ẏ = FC − FP sin(2πy/a) (A.2)

can be readily integrated to obtain:

y(t) =
a

π
tan−1

[
FP + 〈v〉sv

FC
tan

(
π〈v〉svt

a
−
π

2

)]
(A.3)

valid for −a/2 < y(t) < a/2, where 〈v〉sv =

√
F2

C − F2
P is

the average velocity of a vortex over a period of the pinning
potential. The probability distribution of the vortex coordinate
y over a period can be calculated using the relation P(y) =
P(t)
ẏ(t) , where P(t) = 〈v〉vs

a :

P(y) =
1
a

〈v〉vs

FC − FP sin(2πy/a)
. (A.4)

Using P(ẏ) = P(y)
ÿ(t) (here two branches must be added because

the velocity is not a monotonous function of the coordinate)
we obtain the single vortex velocity probability distribution

Psv(v) =
1
πv

√
(FC − FP)(FC + FP)

(v− FC + FP)(FC + FP − v)
, (A.5)
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which has square root divergences at v = FC ± FP. As in the
toy model described in section 6, for 0 < FC−FP � FC there
is a large probability of finding the vortex with a slow velocity
v ∼ FC − FP. This is a central ingredient for the physics of
moving discommensurations described in the main text.
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