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Bio-energetic models used to characterize an animal's energy budget require the accurate estimate of different
variables such as the resting metabolic rate (RMR) and the heat increment of feeding (HIF). In this study, we
estimated the in air RMR of wild juvenile South American fur seals (SAFS; Arctocephalus australis) temporarily
held in captivity by measuring oxygen consumption while at rest in a postabsorptive condition. HIF, which is
an increase inmetabolic rate associatedwith digestion, assimilation and nutrient interconversion, was estimated
as the difference in resting metabolic rate between the postabsorptive condition and the first 3.5 h postprandial.
As data were hierarchically structured, linear mixed effect models were used to compare RMR measures under
both physiological conditions. Results indicated a significant increase (61%) for the postprandial RMR compared
to the postabsorptive condition, estimated at 17.93 ± 1.84 and 11.15 ± 1.91 mL O2 min−1 kg−1, respectively.
These values constitute thefirst estimation of RMR andHIF in this species, and should be considered in the energy
budgets for juvenile SAFS foraging at-sea.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

The field of bioenergetics focuses on the partitioning of energy by
organisms (Enders and Scruton, 2006). The basic principle of bioener-
getics is that all energy acquired through food ingestion is deposited
as new body tissue, used in metabolic processes or ultimately lost as
waste in feces and excretion. Therefore, bioenergetics provides a meth-
od to quantitatively assess an animal's effort in acquiring resources and
theway inwhich these resources are allocated (Costa, 2008) and consti-
tutes a framework for the study of relationships between organisms
and different environmental conditions (Enders and Scruton, 2006).
Bioenergetic models developed for marine mammals have ranged
from simple equations representing average energy expenditure to
detailed energy budgets for each age, sex-class and season based on
both laboratory and field measurements (Hinga, 1979; Naumov
and Chekunova, 1980; Ashwell-Erickson and Elsner, 1981; Doidge
and Croxall, 1985; Hiby and Harwood, 1985; Lavigne et al., 1985;
Worthy, 1987; Øritsland and Markussen, 1990; Härkönen and
rement of feeding; RMR, resting
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Heide-Jørgensen, 1991; Markussen and Øritsland, 1991; Ryg and
Øritsland, 1991; Markussen et al., 1992; Olesiuk, 1993; Ugland
et al., 1993; Mohn and Bowen, 1996; Bowen, 1997; Stenson et al.,
1997;Winship et al., 2002). The reliability of predictions of bioenerget-
ics models is strongly dependent on the accuracy of the input variables
(Enders and Scruton, 2006). An important variable in these models is
the resting metabolic rate (RMR); or the rate of energy consumption
by an animal while at rest. The difficulty in measuring RMR in marine
mammals has confused inter-species comparisons as many studies did
not conform to standardized criteria for measurements that include
adult age, resting, thermally neutral, and post-absorptive (Lavigne
et al., 1986).

Another variable included in bio-energetic models is the heat incre-
ment of feeding (HIF) [also called specific dynamic action (SDA) or diet-
induced thermogenesis], which is the increase in metabolic rate associ-
atedwith ingestion of ameal (Rubner, 1902;Maynard and Loosli, 1969).
Understanding the physiological causality of this phenomenon has a
long history in comparative nutritional and physiological research and
includes a multitude of preabsorptive, absorptive and postabsorptive
processes (McCue, 2006). HIF can be expressed as a function of the ab-
solute mass of food ingested (Lusk, 1912–1913a; 1912–1913b; 1915;
Wilhelmj and Bollman, 1928; Wilhelmj et al., 1931), as a function of
the caloric value of the meal (Lusk, 1910; 1922; Kriss et al., 1934;
Kriss, 1938; Kriss and Marcy, 1940), as a function of the relative mass
of each prey species (Muir and Niimi, 1972; Janes and Chappell, 1995;
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Secor and Phillips, 1997; Hopkins et al., 1999; Overgaard et al., 1999;
Busk et al., 2000; Hicks et al., 2000; Secor, 2003; Roe et al., 2004), as a
function of the percent of protein in the meal (Hamada and Maeda,
1983; Chakraborty et al., 1992) or as the difference between post-
absorptive and postprandial metabolic rates (MacArthur and Campbell,
1994; Chappell et al., 1997; Rosen and Trites, 1997; Nespolo et al.,
2003; Rosen and Trites, 2003; Bech and Praesteng, 2004; Enstipp et al.,
2008). The variety of methods reflects the complexity of this process
and the need for measurements that contribute to estimates of overall
energetic budgets.

The South American fur seal (SAFS, Arctocephalus australis, Zimmer-
mann 1783) is a relatively small species of pinnipedwith an insular dis-
tribution that extends along the coast of South America, from Southern
Brazil to Central Perú (Vaz-Ferreira, 1982). The main breeding area of
this species in the Atlantic Ocean includes six colonies on islands off
the coast of Uruguay (Vaz-Ferreira, 1982; Vaz-Ferreira and Ponce de
León, 1987; Bastida and Rodríguez, 2003; Ponce de León and Pin,
2006). Althoughmany aspects of the life history and ecology of this spe-
cies have been studied, there have been no previous measurements of
RMR or HIF.

The goals of this study were to measure the in air RMR in male
SAFS and to estimate HIF through comparisons of postabsorptive and
postprandial RMR. The study was performed on juvenile animals, for
which these energetic parameters are even more critical to foraging
success, and focused on the first 3.5 h after feeding.

2. Materials and methods

2.1. Animals and measurement of RMR in air

The in air RMRwas estimated bymeasuring oxygen consumption in
five juvenile (mean body mass 13.2 ± 1.3 kg) male SAFS under
postabsorptive conditions (16 h since last feeding) at the Mundo Mari-
no Aquarium (San Clemente de Tuyú, Argentina) from March to April
2007. These animals originally stranded on beaches close to the aquar-
ium and were rehabilitated during a 3–5 month period. Prior to meta-
bolic measurements, all animals were judged by the veterinarians to
be healthy and ready for release.

Animals were placed in a metabolic box (1.2 m long, 0.8 m wide,
0.8 m high) connected to an open flow respirometry system (Sable Sys-
tem International, Inc., Henderson, NV, USA). Air was drawn through
the metabolic box with a Sable Systems Mass Flow pump at an adjust-
able flow rate that ranged from 200 to 250 l min−1. At these flows,
the percentage of oxygen in the box remained above 20%. A continuous
subsample of air from the exhaust port was dried (Drierite) and
scrubbed of carbon dioxide (Sodasorb) before entering an FC-1 oxygen
analyzer. The percentage of oxygen in the expired air was monitored
continuously and recorded once per second using the Sable Systems
ExpeData software. Oxygen consumption (V̇o2, mL O2 min−1 kg−1)
was calculated using equations from Depocas and Hart (1957) and
calibrated in triplicate according to Davis et al. (1985). A respiratory
quotient of 0.77 was assumed according to measurements (the amount
of CO2 produced per unit of O2 consumed) performed in Antarctic fur
seals Arctocephalus gazella (Arnould et al., 2001). During calibration,
oxygen concentrations in the metabolic box were 99.29 ± 0.04% and
99.52 ± 0.02% of the predicted values for N2 flows of 2 l min−1 and
5 l min−1, respectively.

Fur sealswere kept in themetabolic box for 2–3 hwhile oxygen con-
sumption was continuously measured. These experimental runs were
performed once per day with each animal starting at the same time
(10:00 am) to prevent possible diel fluctuations in basal metabolic
rate from affecting measurements. To avoid an increase in metabolism
associated with occasional movement of the animals within the box,
resting metabolic rate (V̇o2) was determined during periods of at least
10 min (range = 10–24) of continuous resting behavior (lyingmotion-
less and awake) and a steady rate of oxygen consumption. The number
of V̇o2 measurements per experimental run (range = 2–7) differed
among animals depending on their behavior.

The average air temperature inside the box duringmeasurements
(18.3 ± 2.4 °C; range = 14–20) was included within the thermal
neutral zone (TNZ) of Northern fur seals (Callorhinus ursinus) resting
in water (8.3–24.3 °C; Liwanag, 2010), which allowed us to assume
thermo neutrality in our experiments. In addition, no thermore-
gulatory behavior (flipper movements and/or hyperventilation)
was observed during measurements. All measurements followed
standard criteria for measuring basal metabolic rate (Kleiber, 1975;
postabsorptive, resting motionless and at thermoneutrality) with
the exception that the animals were still juveniles. Therefore, the
mean V̇o2 was considered an estimate of RMR for juvenile animals
and then used as a base level to compare with postprandial metabol-
ic rate.

2.2. Postprandial metabolic rate and estimation of HIF

To determine the increase in metabolic rate associated with diges-
tion, assimilation and nutrient interconversion, experimental runs
were also performed under postprandial conditions. Postprandial mea-
surements commenced 30 min after ameal of approximately 75% of the
normal daily food intake (kg day−1) of white croaker (Micropogonias
furnieri), striped weakfish (Cynoscion guatucupa) and Brazilian menha-
den (Brevoortia aurea). Similar to postabsortive conditions, data were
obtained under thermoneutrality, and V̇o2 measurements consisted of
at least 10 min (range = 10–51) of continuous resting behavior
(lying motionless) and a steady rate of oxygen consumption. The total
number of V̇o2 measurements per session varied among animals
according to their particular behavior.

Due to the limited period in which wild animals could be kept in
the metabolic box, experimental runs could not be performed longer
than 3 h, which resulted in a total time of 3.5 h after feeding for post-
prandial measurements. As a result, the full duration of an elevated
postprandial metabolic rate could not be recorded, and HIF could not
be estimated as the total oxygen consumed during the complete pro-
cess. As an alternative approach, we estimated the mean postprandial
increase (expressed as a percentage) in metabolism above post-
absorptive levels for the initial 3.5 h after meal ingestion. A similar
definition of HIF was previously used with Steller sea lions by Rosen
and Trites (1997, 2003), who found that metabolism peaks 2.8–3.7 h
after feeding depending on meal size and returns to fasting levels be-
tween 6 and 10 h. Therefore, our HIF estimation probably represents
the first half of the complete process (see Discussion). To examine var-
iations in V̇o2 within the initial 3.5 h postprandial, the elapsed time
since the animal was fed (30 min after experimental run started)
and the beginning of each of the postprandial V̇o2 measurements
was recorded as the variable time from feeding (in min) and included
in the statistical analysis.

2.3. Statistical analysis

Prior to analysis, graphical explanatory techniqueswere applied to the
original data to identify outliers both in the response variable (V̇o2)
and continuous explanatory variables. The assessment of collineari-
ty–correlation between explanatory variables used in both statistical
models applied (feeding condition, animal ID, body mass, month,
experimental run and time from feeding) was performed using multi-
ple pair-wise scatter plots (pair plots) (Zuur et al., 2010). Variables
such as age and sex were not considered because all animals were
juvenile males.

Linear mixed effect models (LME; Pinheiro and Bates, 2000; West
et al., 2006; Zuur et al., 2007, 2009)were used to estimate themass spe-
cific oxygen consumption rate (V̇o2) in relation to both feeding condi-
tions (postabsorptive and postprandial). Data were two-way nested
(experimental run is nested in animal ID),whichmeans that observations
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within the same experimental run were likely to be correlated, but
correlation between V̇o2 measurements for the same animal was also
expected. This resulted in the following model:

V̇o2ijk ¼ αþ feeding conditionijk þ ak þ aj=k þ εijk

where V̇o2ijk is themass specific oxygen consumption for observation i in
experimental run j of animal k, where i refers to the observation within
an experimental run that takes any value between 2 and 7, j refers to ex-
perimental runs (j = 3,…, 5) and k to animal (k = 1,…,5). The explan-
atory variable feeding condition is nominal and has two classes
(postabsorptive and postprandial). The term aj/k is the random effect ex-
perimental run that is nested within the random effect animal ID (ak).
Both are assumed to be normally distributed with mean 0 and variance
σ2. The expression εijk is the unexplained error and represents the
variation within experimental runs. It was assumed to be normally dis-
tributed mean 0 and variance σ2. The variables month and body mass
were excluded from this model due to collinearity with experimental
run.

A similar model was applied to the postprandial data to test for the
effect of time from feeding on V̇o2. In this case, we applied LME on one-
way nested data modeling animal ID as a random effect and factor
month as fixed. Although two experimental runs per animal are a
small number of clusters for the use of a random intercept, it is also
too many for the fixed part. The two experimental runs per animal
were taken in March and April, respectively. Hence, we decided to use
factor month as fixed to reduce the number of parameters due to small
sample size (Zuur et al., 2013). This resulted in the following model:

V̇o2ij ¼ αþ time from feedingij þ fmonthij þ aj þ εij

where V̇o2ij is the mass specific oxygen consumption of observation i of
animal j, where j runs from 1 to 5, and i takes any value between 8
and 12. The notation above means that V̇o2ij is modeled as a function
of time (time from feeding) and factor month (March and April). The
termajwas the random intercept animal andwas assumed to be normal-
ly distributed with mean 0 and variance σ2

animal. The residual εij was
also assumed to be normally distributed with mean 0 and variance σ2.

The model selection followed the step-down approach described by
West et al., 2006; Zuur et al., 2009. All analyses were performed with R
(R Development Core Team, 2012) using the nlme Package (Pinheiro
et al., 2012). Optimal models were validated to confirm that the
Table 1
Measurements of resting metabolic rate (RMR) from five wild juvenile South American fur sea

Animal ID Feeding
condition

Experimental
run (date)

RMR in mL O2 min−1 kg−1 (time
Numbers# indicate consecutive m

1# 2#

FMM1 PA 1 (26-Mar) 18.3 (6) 19.5 (36)
2 (28-Mar) 12.3 (30) 14.7 (41)

PP 3 (24-Mar) 22.4 (48) 26.0 (90)
4 (05-Apr) 20.5 (43) 22.2 (80)

FMM2 PA 1 (29-Mar) 6.9 (47) 6.5 (67)
2 (06-Apr) 10.0 (52) 9.2 (60)
3 (07-Apr) 10.3 (18) 9.2 (36)

PP 4 (30-Mar) 23.9 (41) 20.0 (66)
5 (08-Apr) 13.1 (41) 9.2 (60)

FMM3 PA 1 (21-Mar) 6.2 (26) 4.7 (46)
2 (09-Apr) 10.4 (29) 10.6 (55)

PP 3 (23-Mar) 9.7 (31) 10.5 (44)
4 (01-Apr) 12.0 (62) 11.2 (92)

FMM4 PA 1 (22-Mar) 11.9 (6) 8.5 (24)
2 (03-Apr) 15.4 (6) 11.8 (36)

PP 3 (25-Mar) 21.1 (42) 15.8 (60)
4 (02-Apr) 20.6 (38) 23.5 (54)

FMM5 PP 1 (27-Mar) 17.7 (46) 17.4 (60)
2 (04-Apr) 18.5 (39) 17.3 (54)

⁎ To represent the Time from feeding, 30 min has been added to the time since beginning of th
underlying statistical assumptions were not violated; normality of re-
siduals was assessed by plotting theoretical quantiles versus standard-
ized residuals (Q–Q plots), and homogeneity of variance was
evaluated by plotting residual versus fitted values. Independence was
examined by plotting residuals versus time (Zuur et al., 2009).

3. Results

A total of 76measurements (29 postabsorptive and 47postprandial)
of in air restingmetabolic rate were conducted (Table 1). Although they
were performed under both feeding conditions in the five SAFS, data
from one postabsorptive animal could not be used due to file corrup-
tion. Durations of V̇o2 measurements ranged from 10 to 24 min
(14.3 ± 4.1 s.d.) and from 10 to 51 min (23.2 ± 10.2 s.d.) for the
postabsorptive and postprandial conditions, respectively.

The estimated mean values of RMR for the postabsorptive and post-
prandial conditions obtained by the random intercept model were
11.15 ± 1.91 and 17.93 ± 1.84 mL O2 min−1 kg−1, respectively. The
amount of variation around the intercept (σanimal

2 ) was (3.65)2. The var-
iance (σExp-run

2 ), which allowed for a random variation among experi-
mental runs for each animal, was (2.502), indicating that both random
effects were needed in the model. Using a likelihood ratio test, models
with and without the factor feeding condition were compared, and the
results showed that the variable feeding conditionwas highly significant
(L = 16.67, df = 1, p b 0.001). The mean postprandial increase in me-
tabolismabove postabsorptive levelswas 61%,whichwe attribute to the
HIF during the first 3.5 h after feeding.

When only postprandial data were analyzed, modeling results con-
firmed that neither time from feeding normonthwere significantly relat-
ed to the response variable (V̇o2), indicating that the overall increase in
metabolic rate over postabsorptive levels did not vary significantly dur-
ing the first 3.5 h after feeding and between the two time periods.

4. Discussion

This study provides the first estimate of in air RMR and HIF in the
SAFS and was measured in wild animals temporally habituated to
captivity. Although the estimated HIF does not represent the complete
digestion period, the results showed a significant (61%) increase in
resting metabolism that should be considered in any energy budget
for juvenile SAFS foraging at-sea.
l males in postabsorptive (PA) and postprandial (PP) feeding conditions.

since beginning of the experimental run⁎, in min)
easurements in each experimental run

3# 4# 5# 6# 7#

16.5 (54) 18.6 (85) 18.6 (116)
14.0 (59) 13.1 (72) 13.6 (96)
25.0 (141)
24.7 (118) 26.5 (162) 23.7 (198) 20.7 (240)
9.7 (84)

17.9 (90) 19.3 (114)
12.7 (78) 14.0 (93) 10.7 (114)
4.5 (99) 4.8 (121)

13.3 (50) 12.7 (74) 12.3 (104) 8.4 (136) 7.8 (166)
11.5 (127) 13.0 (162) 14.6 (191)
11.2 (36) 6.9 (48)

17.7 (84) 17.4 (108) 16.4 (132)
20.8 (65)
20.0 (78) 20.9 (90)
19.9 (72) 20.5 (90) 16.9 (108)

e experimental run in PP measurements.



Fig. 1. Schematic illustration of several metrics used to quantify the HIF (Heat increment
of feeding) or the SDA (Specific Dynamic Action) response (extracted from McCue, 2006).
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The postabsorptive RMR (11.1 mL O2 min−1 kg−1) was 2.1 times
higher than the BMR predicted for terrestrial mammals of similar
body mass (Kleiber, 1975). This result is consistent with estimates
from other pinnipeds and sea otters (Enhydra lutris) in which RMR is
2–3 times greater than predicted (Matsuura and Whittow, 1973;
Miller, 1974; Costa, 1982; Davis et al., 1985; Costa and Gentry, 1986;
Feldkamp, 1987; Davis et al., 1988; Williams et al., 1988; Costa et al.,
1989a; 1989b; Liao, 1990; Ponganis et al., 1991; Boyd et al., 1995;
Hurley and Costa, 2001; Costa and Gales, 2003; Dassis et al., 2012a).
The reason for an elevated RMR relative to terrestrial mammals is not
understood, but it may be associated with adaptations for thermoregu-
lation in water, which has a thermal conductance at least 25-fold greater
than air (Schmidt-Nielsen, 1979). Although marine mammals have a
RMR that is higher than that in terrestrial mammals, the younger ani-
mals used in this study may have resulted in an additional increase
(Davydov and Marakova, 1965; Matsuura and Whittow, 1973; Miller
and Irving, 1975; Øritsland and Ronald, 1975; Ashwell-Erickson and
Elsner, 1981; Thompson et al., 1987; Rea and Costa, 1992). Causes for
an elevated resting metabolic rate in young animals may be related to
growth, smaller body size and the concomitant maturation of thermo-
regulatory ability (Brody, 1945; Donohue et al., 2000).

Our results indicate that juvenile SAFS experience highmaintenance
energetic costs that may affect their field metabolic rate (FMR) while at
sea, foraging ecology and survival rates. In addition to this elevated
Table 2
SDA (Specific Dynamic Action) scope of different species of pinnipeds and sea otters.

Species

Otariids South American fur seal
Arctocephalus australis
Northern fur seal
Callorhinus ursinus
Steller sea lions
Eumetopias jubatus

Phocids Northern elephant seals
Mirounga angustirostris
Harp seal
Phoca groenlandica
Ring seal
Phoca hispida
Harbor seal
Phoca vitulina

Sea otters Sea otter
Enhydra lutris
RMR, HIF increases the metabolism an additional 61%. Since the HIF
is an increase in energy expenditure following feeding, it can be charac-
terized usingmetrics related to the typical postprandialmetabolic curve
(McCue, 2006; Fig. 1). Although we were not able to measure the
complete HIF postprandial period, our results allowed us to estimate
minimum values of these metrics for juvenile SAFS.

Considering that the postprandial increase in metabolic rate was
apparent within the first 30 min after feeding and remained stable for
at least the next three hours (no significant effect of Time from feeding),
we estimated: 1) the Time to peakmetabolic rate to be at least 30 min, 2)
the Highest recorded metabolic rate as 17.9 mL O2 min−1 kg−1, 3) the
Increase in metabolic rate as 6.8 mL O2 min−1 kg−1 (the difference
between postabsorptive and postprandial fitted V̇o2) and 4) the total
Duration of increased metabolism as a minimum of 3.5 h. Considering
that total HIF duration in mammals is between 2 and 8 h (Rosen and
Trites, 1997;McCue, 2006),we hypothesize that the 3.5 h ofmaintained
increased metabolism represents the first half of the complete HIF peri-
od for juvenile SAFS (which might extend to a total time of approxi-
mately 6–7 h).

Comparisonwith previous studies is difficult because of the different
ways inwhichHIF is expressed. However, we can compare our estimate
when postprandial energy consumption is expressed as a multiple of
RMR, a metric that is known as the SDA scope (Specific dynamic action
scope; see McCue, 2006). SDA scope is calculated as the maximal post-
prandial metabolic rate divided by the standard or basal metabolic
rate. The SDA scope is important because it can be compared to the
maximal metabolic scope of an animal to estimate the residual capacity
for activity during digestion (McCue, 2006). The estimated SDA scope
for juvenile SAFS was 1.6, which was the same as the SDA scope mea-
sured in northern fur seal pups resting within their thermal neutral
zone (Liwanag, 2010) and includedwithin the range of valuesmeasured
for other pinnipeds and sea otters (Table 2). The similarity among
SDA scopes reported for different marine mammal species supports
our HIF estimate measured during the first 3.5 h after feeding probably
represents the maximum increase in metabolic rate.

Some studies have suggested that HIF may augment thermogenic
heat production in cold-stressed endotherms (Bech and Praesteng,
2004). This augmentation would reduce the need for thermoregulatory
heat production at low ambient temperatures. Current results regarding
this hypothesis differ by species. While heat substitution by HIF
has been documented in some species of mammals (Simek, 1975;
Masman et al., 1988; MacArthur and Campbell, 1994; Chappell et al.,
1997; Jensen et al., 1999), other studies have not found convincing evi-
dences for the substitution (Klaassen et al., 1989; Campbell et al., 2000;
Hindle et al., 2003). With regard to marine mammals, no evidence of
heat substitution from HIF was found in Steller sea lions (Rosen and
Trites, 2003), but data obtained from sea otters (Costa and Kooyman,
SDA scope Data source

1.6 This study

1.6 Liwanag (2010)

1.7 to 2.1 Rosen and Trites (1997)

1.4 to 1.6 Barbour (1993)

1.4 to 1.7 Gallivan and Ronald (1981)

1.8 to 2 Parsons (1977)

1.3 to 1.9 Ashwell-Erickson and Elsner (1981),
Markussen et al. (1994)

1.5 Costa and Kooyman (1984)
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1984) have supported augmentation, which was suggested to be corre-
lated with the long period of resting at-sea observed in this species.

Our studywas performed over a small range of air temperatures that
were within the likely thermoneutral zone of SAFS, so it does not
provide evidence for the thermoregulatory role of HIF. In addition,
differences between fasting and postprandial metabolic rates cannot
be directly extrapolated from in air to in watermeasurements. However,
the typical at-sea behavior of these animals, characterized by long
periods of resting at the surface during foraging trips (Gentry and
Kooyman, 1986; Liwanag, 2010; Dassis et al., 2012b), might support
the substitution hypothesis. SAFS usually spend prolonged periods rest-
ing at-sea (Gentry and Kooyman, 1986; Liwanag, 2010; Dassis et al.,
2012b), a behavior that has been interpreted as a thermoregulation
challenge (Liwanag et al., 2009; Liwanag, 2010). In this scenario, the in-
creased production of heat associatedwith digestionwhen resting in air
-that might be occurring in a similarly range of values when resting in
water- could be used tomaintain body temperature during long periods
of resting on the sea surface. The thermoregulatory advantages implied
in the substitution hypothesis may be more important in juveniles,
which have a higher surface to volume ratio and in which energetic
efficiency is further constrained by inexperience and the incomplete
development of foraging skills.

This study has provided the first estimation of in air RMR and HIF in
SAFS and showed the need of further research to determinate the total
duration of HIF and its role in thermoregulation and FMR at sea. These
estimations are important variables in bio-energetic models used to es-
timate FMR in different geographical regions and seasons.
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Glossary

Metabolic rate( V̇o2): Rate of oxygen consumption per unit of mass, usually expressed in
mL O2 min−1 kg−1.
Basal metabolic rate (BMR): Average metabolic rate of adult animals while at rest in a
thermal neutral environment and in a post-absorptive state (Kleiber, 1975).
Resting metabolic rate (RMR): Average metabolic rate of an animal while at rest in a
thermal neutral environment and in a post-absorptive state. Minimum values for RMR
are often used as estimates of BMR.
Heat increment of feeding (HIF): The increase inmetabolic rate that occurs after the ingestion
of a meal, which is associated with digestion, assimilation and nutrient interconversion.
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