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ABSTRACT: The thermodynamic formalism of ideal solutions is developed in most of the textbooks postulating a form for the
chemical potential of a generic component, which is adapted from the thermodynamics of ideal gas mixtures. From this basis, the
rest of useful thermodynamic properties can be derived straightforwardly without further hypothesis. Although formally elegant,
this approach to ideal solutions does not allow appreciation of subtle concepts embodied in the model such as requirements of
molecular size and shape or the fact that equations that contain the universal gas constant (R) can be applied to describe liquid or
solid solutions. As alternative, it is discussed here an approach centered on the behavior of the partial molar entropy of the
component using the framework provided by the concept of accessible volume. It is shown that this way of presenting the topic
allows a more natural flow and, particularly, analytical justification of all the hypothesis and ideas behind many fundamental
solution models, including that of ideal solutions, with the extra advantage that it can almost entirely carried out from a
macroscopic point of view.

KEYWORDS: Upper-Division Undergraduate, Graduate Education/Research, Physical Chemistry, Chemical Engineering,
Materials Science, Thermodynamics

The ideal-solution model is a central concept in courses of
physical chemistry and thermodynamics of chemistry,

chemical engineering, and materials science curricula. The
model paves the way for the understanding of the more
complex behavior of real gas, liquid, or solid solutions. Many
textbooks define ideal solutions as those single phase
multicomponent mixtures for which the chemical potential
(μi) has a specific form, adapted from the thermodynamics of
ideal gas (ig) mixtures.1−5 For the latter type of mixtures, it is
found that

μ = +G RT ylni i i
ig ig

(1)

where Gi
ig represents the Gibbs free energy per mol of the pure

i component in ideal gas state at pressure P and temperature T,
yi the molar fraction of i in the mixture, and R the gas constant.
For mixtures in any state (gas, liquid, solid) that behave as ideal
solutions (is), it is postulated that

μ = +G RT xlni i i
is

(2)

where xi now represents the mixture molar fraction and Gi the
Gibbs free energy of the pure component in the physical state
of the mixture, evaluated at P and T.6

Eq 2 is one of the cornerstones of ideal solution
thermodynamics. This definition of ideal solution is also rather
appealing from a formal point of view because of the property
of G (and μi) as generating function effortlessly yields the rest
of useful thermodynamic state functions without further
hypothesis. Thus, by partial derivation or simple algebra,
other partial molar properties such as entropy, volume,
enthalpy, or internal energy (Si̅

is, V̅i
is, H̅i

is, U̅i
is) can be directly

derived from eq 2 in terms of mixture composition and
intensive (i.e., per mol) properties of the pure component (Si,

Vi, Hi, Ui), yielding the full body of basic equations to develop
the topic.7

However, we have noticed that this formal scheme based on
postulating an expression for μi may be puzzling for most of the
students. After years of teaching, we have indentified many
reasons that (i) the concept of chemical potential may be at this
point of the course somewhat elusive as the student is just
starting to be familiar with it; (ii) the replacement of Gi

ig by Gi
in eq 2, although perceived as intuitively reasonable, is actually
introduced rather arbitrarily and without analytical demon-
stration; (iii) eq 2 contains the gas constant R while it is applied
to liquid or solid mixtures, a clearly disrupting concept
considering that students may not have knowledge on statistical
mechanics to understand that R is actually a fundamental
constant not only associated with ideal gases; (iv) despite the
fact that some of the derivations of eq 2 provide a physical
interpretation of the behavior of individual components in the
solution in terms of energy or volume,7 few textbooks
emphasize the subtle but conceptually important physical
meaning of the corresponding expression for Si̅

is such as
considerations on molecular size or shape associated with it.8

In the last years, we have been using a different approach to
introduce the concept of ideal solution, centered on the
behavior of function entropy. Instead of postulating a specific
form for the chemical potential, we invest time in developing
with some more detail the corresponding expression for Si̅

is.
The advantage is that this development allows direct
appreciation of several of the hypotheses that support several
fundamental solution models. Another advantage is that the
students are already familiar with the dependencies of S on
natural variables P, T (or P, V), actually, much more that they
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are with G (or μi). We have also pursued a macroscopic
approach, avoiding the invocation of statistical thermodynamics
to support concepts or equations, to fit the contents of our
engineering curricula. In this article, we delineate how we
present the concepts that lead to the ideal solution model
under this new framework.

■ IDEAL GAS MIXTURES
We start by reminding the students that the differential
equation that relates S with V and T for ideal gases is

= +S C
T

T
R

V
V

d
d d

v
ig ig

(3)

We then introduce the archetypical mixture of two ideal gas
components at P, T that produce a solution at the same P, T,
see Figure 1. Integration of eq 3 for the i = 1 component

between the pure state at P, T and its state in the mixture at the
same P, T implies that

∫ ∫=S R
V

V
d

d
pure

mixt

1
ig

pure

mixt

(4)

Integration limits for the right-hand term should reflect the
volumetric changes experienced by the component from its
initial state at n1Vi

ig to the final volume of the mixture n1V1
ig +

n2V2
ig, see Figure 1, which gives

̅ − =
+

S S R
n V n V

n V
ln1

ig
1
ig 1 1

ig
2 2

ig

1 1
ig

(5)

or

̅ = +
+

S S R
n V n V

n V
ln1

ig
1
ig 1 1

ig
2 2

ig

1 1
ig

(6)

where S ̅iigand Si
ig are evaluated at the same P and T.

Since the volume of the reservoir for the mixture is larger
than that containing any of the gases in the pure state, eq 5
predicts that Si̅

ig > Si
ig. At this point, the student can certainly

start to visualize that the increase in entropy perceived by the
component in this mixing process at constant P and T is only
due to the larger space accessible in the mixture compared with
that in the pure state.9,10 This macroscopic perspective of the

entropy in mixing processes along with the idea of accessible
volume, revisited and emphasized in recent publications of this
Journal,10 becomes an essential concept here, as it will be
discussed further.

■ ENTROPY AND ACCESIBLE VOLUME
The interpretation of the results of eqs 5 and 6 in terms of the
concept of accessible volume is a key point in our attempt to
describe entropy changes in mixing processes that involves
phases other than ideal gases. As a first step, we should identify
what would be this available or accessible volume in a real gas,
liquid, or solid phase. It can be seen as the space available for
translation of a single molecule while the positions of the others
are fixed, a concept closely related with the so-called free
volume in molecular theories of liquids.11,12 Free volume is an
elusive quantity, too complex to be fully addressed in
introductory courses as it requires a detailed description of
the phase at the molecular level. Despite its complexity, the
students are able to rationalize it and recognize its direct
connection with the volumetric behavior of pure components
developed in early stages of a course of macroscopic
thermodynamics.
In its simplest form, free volume is defined as the difference

between the actual volume of the phase (niVi), temperature-
and pressure-dependent, and the volume occupied by the
molecules themselves, not available for molecular translations.12

We can define the accessible volume (Vi
acc) in similar fashion.

The volume occupied by the molecules themselves is referred
to as hard-core, close-packed, or excluded volume and can be
seen as an structural parameter related for instance with the b
parameter of the van der Waals equation.12 Figure 2 shows this

conceptualization, where we have envisioned our generic phase
as composed by finite-sized entities, in opposition to the
punctual, infinitesimally sized, ideal gases species. At this point,
we will assume that species are rigid spheres and ignore details
of their molecular structures to simplify the treatment. We can
analyze some boundary conditions of this simple definition of
Vi
acc. In the ideal gas-limit, the volume of the molecules

themselves tends to zero, and the accessible volume is that of
the whole reservoir, that is, Vi

acc → Vi. At T = 0 K, considering
that the phase is in the solid state, the available volume for
molecular motions vanishes and Vi

acc → 0.13

Figure 1. Schematics of a mixture of two ideal gases.

Figure 2. Schematics of the concept of available space or accessible
volume (Vacc) in a pure component. It can be seen as the difference
between the total volume of the phase and the volume occupied by the
molecules themselves.
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In the context of an introductory course, two important
dependencies of Vi

acc need to be highlighted. One of them is its
temperature (eventually pressure) dependency, embodied in
that of Vi and related with the compressibility of the phase, as
described by its corresponding state equation. Figure 3 shows
that an increase in available space is directly connected with an
decrease in phase density if we assume that core volumes are
essentially rigid spheres.

The other one is the not so obvious molecular-size
dependency. Figure 4 is presented to clarify the connection

between molecular size and available space using a 2-D
representation of packed spheres where the latter parameter is
quantified in terms of areas. The array shows five circles
representing chemical units surrounded by empty space. Notice
that while molar volumes (Vi) are evidently different between
examples A and B, circles representing chemical units are
similarly packed so we may anticipate comparable density
values in mass per unit volume for either A or B cases. In the
first case, the circles have unity radii so the square has sides of 6
units in length. Calculation of the free or available space as
square minus circles areas yields a value of 20.3 area units.
Increasing the molecular size by duplicating the circles’ radii
yields a much larger amount of accessible space, equivalent to
81.2 area units.
We can characterize the amount of accessible volume in

terms of another useful parameter, the fraction of available or
accessible volume, θ, defined as the ratio between Vi

acc and Vi.
The advantage of a description in terms of θ is that its value
becomes under certain circumstances independent of molecular
size. For instance, packing theories predict that objects of
similar shape but different size, packed in a similar arrangement,
yield equal fractions of free or accessible space. The concept is
simply demonstrated in Figure 4, where θ values calculated as
the ratio between free to total (square) areas is about 0.56 in
both cases, despite the duplication in circle diameter. We then
may expect that components with dissimilar size but
comparable molecular shape and density can be described in
terms of a common value of θ, despite the fact they contribute

to the eventual mixture with very different amounts of
accessible volume. Notice that the boundary limits for θ are 0
for solids at T = 0 K (Vi

acc → 0) and 1 for the ideal gas state
(Vi

acc → Vi).

■ PARTIAL MOLAR ENTROPY IN GENERIC MIXTURES
With these elements, we can rationalize the behavior of Si̅ in a
generic homogeneous mixture carried out at constant P and T,
as shown in Figure 5. A generic phase, either pure components

or mixture, differentiates from ideal gases in two structural
factors: the presence of molecular interactions and the above-
addressed differences in the amount of accessible volume. At
this point, we will assume that any change in intermolecular
interactions when passing from pure component to mixture in
our generic phase does not affect entropy. The thermody-
namics of van der Waals fluids provides an adequate framework
to reinforce this concept: we can remind the students that for a
van der Waals pure fluid, changes in S at constant T do not
depend on a, the intermolecular attraction parameter, and it
happens because a is a temperature-independent parameter.14

We then formalize our assumption by stating that any
molecular interaction either in pure components or mixture is
considered temperature- and composition-independent, so
entropy does not depend on them. By applying this condition,
we are actually ignoring subtle changes in the entropy of the
mixture due to nonrandom distributions of species produced by
molecular interactions, well described by models with a
mechanical statistical basis.11

By leaving aside the problem of molecular interactions, we
focus on how to integrate the concept of accessible volume to
our calculations. We first recognize that the accessible volume
in the mixture is larger than that of the component in the pure
state and that these changes can be quantified with the
elements developed in the previous section. Then, we assume
that the increase in entropy of a given component in the
generic mixture is quantitatively similar to that experienced by a
component in an ideal gas mixture, if expressed in terms of the
accessible volume. Once again, the thermodynamics of van der
Waals pure fluids can be helpful to reinforce the concepts as it
predicts that S at constant T only depends on the difference V
− b, that is, the concept of accessible volume we are pursuing to
develop here.14 Therefore, S ̅i in our generic mixture can be
described in terms of the eq 6 but considering variations in
accessible volume between pure and solution states:

θ
̅ = +S S R

V
n V

ln1 1
mixt
acc

1 1 1 (7)

Figure 3. Connection between the increase in available space and the
decrease in phase density.

Figure 4. A 2-D representation to differentiate concepts of accessible
volume (Vacc) and fraction of accessible volume (θ). (A) Circles have
radii equal to unity, which implies that the square has a length side of 6
units; (B) the radii of the circles have been duplicated so the square
side has a length of 12 units.

Figure 5. Schematics of a generic mixture.
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where the terms S1̅ and S1 are now evaluated at the same P, T
and at the physical state of the mixture, that is, real gas, liquid,
or solid. Notice that the presence of terms evaluated at the state
of the mixture, instead of as ideal gases, or the presence of the R
constant, is a natural consequence of the extension of the
concepts embodied in eqs 5 and 6 to generic mixtures. The
calculation of accessible volume in the individual component
has simply been performed in terms of θi, although that of the
mixture (Vmixt

acc ) requires some extra considerations about the
solution that will be developed in the next section.

■ PARTIAL MOLAR ENTROPY IN SPECIFIC
SOLUTION MODELS

The generic eq 7 can be further elaborated to describe the
thermodynamics of a series of relevant solution models,
including ideal solutions. To derive these expressions, we
simply need to address the calculation of Vmixt

acc in eq 8. We start
considering those mixtures that are additive in terms of volume,
that is, Vmixt = n1V2 + n2V2. If we additionally assume that core
volumes of individual components are also additive, it follows
from the above conditions that accessible volumes are also
additive, that is, Vmixt

acc = V1
acc + V2

acc = θ1n1V1 + θ2n2V2. Therefore,
eq 7 can be rewritten as

θ θ
θ

̅ = +
+

S S R
n V n V

n V
ln1 1

1 1 1 2 2 2

1 1 1 (8)

Remarkably, eq 8 has also been derived from statistical
mechanics arguments, and it has been proposed to describe the
thermodynamics of athermal (zero mixing enthalpy) solutions
of molecules with markedly different sizes, fractions of
accessible volume, or phase density, but that follow the additive
rule of volumes.15 Entropy in mixtures of polymers with
solvents or monomers chemically similar have been successfully
described with this equation. However, other important types
of mixtures that are not additive in terms of volumes, for
instance, interstitial solutions in metallic alloys, do not fit to this
description.
Additional considerations about molecular shape and size can

simplify eq 8 even more. We may now consider that molecules
of both components have a similar shape and mass density, but
not necessarily similar size, for example, the situation shown in
Figure 4. In those cases, although components may differ in
amounts of accessible volume, their fractions can be considered
similar (θ1 = θ2), and eq 8 reduces to

̅ = +
+

S S R
n V n V

n V
ln1 1

1 1 2 2

1 1 (9)

or

̅ = −
+

S S R
n V

n V n V
ln1 1

1 1

1 1 2 2 (10)

The argument of the natural logarithm is the volume fraction
of the 1 component (Φ1), so eq 10 can be rewritten generically
for the i component as

̅ = − ΦS S R lni i i (11)

Eq 11 is identical to the entropic form of the Flory−Huggins
theory, widely used to describe polymer solutions and mixtures
between molecules with dissimilar size. Strictly, it does describe
molecular mixtures between species that provide similar
fractions of accessible volume, that is, similar densities in
mass per unit volume, a more stringent condition than that

embodied in eq 8. Besides its well-known application in
polymer thermodynamics, eq 11 has served as a basis for several
other model solutions widely used in several branches of
chemical engineering.16 In a strict way, it could be used for
instance to describe mixtures between two hydrocarbons with
different numbers of carbon atoms or two real gases with
comparable critical properties.
If we now assume in eq 10 that molecular sizes are identical

(V1 = V2), volume fractions reduce to molar fractions, thus
yielding the equation that defines ideal solutions:

̅ = −S S R xlni i i
is

(12)

In summary, the assumptions needed to obtain eq 12 from
eq 6 have flown rather naturally: molecular interactions were
assumed temperature- and composition-independent so en-
tropy is only dictated by changes in accessible volume, in a
similar fashion to that of ideal gas mixtures; molecular size and
shape of species are assumed to be comparable to yield
expressions that contain the molar fraction of the mixture
instead of individual accessible volume contributions. The
description of ideal solutions can be completed in the
traditional fashion, assuming that when components are
mixed, each of them is subjected to the same molecular
interactions that are in the pure state, that is, the condition H̅i

is

= Hi holds. The additive rule in terms of volume, Vmixt
is = n1V1 +

n2V2, leads to V̅i
is = Vi, whereas the combination of the two

above conditions yields U̅i
is = Ui. Eq 12, along with the

condition H̅i
is = Hi and the relationship μi

is = H̅i
is − TSi̅

is, finally
yields eq 2, thus completing the full body of equations used to
describe ideal-solution thermodynamics.

■ APPLICATION EXAMPLES
The examples presented are used to highlight the conceptual
differences between eqs 8, 11, and 12 in several contexts. The
first example proposes the calculation of the total change of
entropy of mixing (ΔSMIX,TOT) involved in the formation of the
three liquid solutions described in Figure 6. It is assumed that

we start from pure components that mix at constant P and T.
Figure 6, panel A, corresponds to a solution formed by 15 blue
and 15 red species, small molecules of the same size. Figure 6,
panel B, shows a solution formed by 15 blue species with three
red larger molecules, with a length equivalent to 5 spheres. The
third case, Figure 6, panel C, shows a solution of three red and
three blue species, both 5 spheres long.
Expressions for ΔSMIX,TOT = Σ ni(Si̅ − Si) can be derived

from the respective solution model used for S̅i. From eq 11, we
can write

Δ = − Φ + ΦS R n n( ln ln )MIX,TOT
red red blue blue (13)

whereas eq 12 gives

Figure 6. Binary solutions of: (A) 15 red species and 15 blue species
with similar size; (B) 15 blue small species and three 5-sphere chains
of red species; (C) three blue 5-sphere chains with three red 5-sphere
chains.
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Δ = − +S R n x n x( ln ln )MIX,TOT
red red blue blue (14)

In the calculations, we assume that molar volumes for the 5-
sphere length molecules are five-times that of the single-sphere
molecules. Case A corresponds to a random mixture of
molecules with similar size, so we should use eq 14,
corresponding to ideal solutions, for the calculation. Eq 13
should yield the same results as the condition Vred = Vblue holds.
Case B can be approached via eq 13 since red molecules differ
markedly in size from those blue. To use eq 13, we consider
that Vred/Vblue = 5. Case C can be indistinctly solved via eq 13
or 14 as molecules are actually large, but they have similar sizes.
Table 1 summarizes the results obtained.

Results from Table 1 show that ΔSMIX,TOT decreases with the
increase in molecular size of the species. Eventually, the
students will be able to rationalize that this value approaches
zero as molecular length increases, considering that very long
molecules, such as polymers, are composed of hundreds of
what we have idealized here as spheres, joined consecutively.
We should also remark that for very long molecules, the driving
force for mixing is dramatically reduced, and this explains why
polymers do not mix with each other unless they have specific
attractive interactions.
The second example is the calculation of the solid−liquid

equilibrium curves for a mixture of two chemically similar
molecules, heptane (C7H16) and hexatriacontane (C36H74), but
that differ in molecular size. We will assume that those
molecules mutually excluded in the crystal state, that is, C7H16
and C36H74 solids are immiscible. The solid−liquid phase
diagram expected is that of eutectic type, where typically
temperature versus liquid composition in equilibrium con-
ditions are represented. The standard treatment of the solid−
liquid equilibrium yields the equation that relates xi and T as

γ=
Δ

− −
⎛
⎝⎜

⎞
⎠⎟x

H
R T T

ln
1 1

lni
i

i
i

m

m
(15)

where ΔHi
m and Ti

m are the melting enthalpy and melting
temperature of the pure i component and γi the Lewis-Randall
activity coefficient of i in the liquid solution that corrects from
deviations from ideal-solution behavior. Since the species are
chemically similar, we neglect enthalpic effects and assume that
any deviation from ideality is entirely ascribed to the entropic
contribution. In this case, and because of the dissimilar
molecular size between components, we can use as a first
approach the Flory−Huggins model, eqs 11 and 13. Derivation
of the corresponding expressions for γi can be found in several
textbooks as2,8,9

γ =
Φ

+ −
Φ⎛

⎝⎜
⎞
⎠⎟x x

ln ln 1i
i

i

i

i (16)

Eq 16 predicts that deviations from ideal solution behavior
increases with the increase in molecular size dissimilarity, as Φi

departs from xi. If i represents the larger molecule, Φi > xi and
ln γi < 0, so eq 15 predicts, for a given equilibrium temperature,
larger values of xi than those obtained assuming ideal liquid
solutions (ln γi = 0).
Figure 7 shows solid−liquid equilibrium data (black circles)

in the form of equilibrium temperature versus molar fraction of

C36H74 in the liquid phase, in mixtures with C7H16, as taken
from ref 17. Notice that only one branch of the phase diagram
is shown, that on the right-hand of the eutectic point,
corresponding to the solubility curve of the C36H74 component.
The left-hand branch in this system occurs at very low mole
fraction of C36H74 (less than 0.005) and at a lower temperature,
as C7H16 has a low melting point (183 K). Primary data
necessary for the calculations of the equilibrium curve are ΔHm

and Tm of pure C36H74, 129.16 kJ/mol and 349 K,
respectively.17,18 Molar volumes in the liquid state for C7H16
and C36H74 were taken as 147.5 and 620.20 cm3/mol and
assumed temperature-invariant.17 Densities calculated from
molar volumes are 0.678 g/cm3 for C7H16 and 0.816 g/cm3

for C36H74. Figure 7 shows the predicted solid−liquid
equilibrium curve (upper black line) calculated assuming ideal
liquid solutions (γi = 1; ln γi = 0). It can be seen that the ideal
solution model underestimates solubility when compared with
the experimental evidence. Flory−Huggins-type behavior
(lower black line), calculated via eqs 15 and 16, correctly
predict a right-shift of the equilibrium curve toward higher
values of molar fraction of the larger molecule. However, the
model overcorrects nonideality, yielding similar departures
from experimental data to those computed from ideal solutions.
Looking for a reason for the failure of the Flory−Huggins

model, we should revise the basis for the validity of eq 11: in its
derivation, it was assumed that components had similar density
and accessible volume fractions. Examination of density data
indicates that some of these conditions may not be met. C7H16
is actually rather less dense than C36H74, despite their similar
chemical structures, which may lead to differences in fractions
of accessible volume. To confirm this hypothesis, we need the
support of some calculations. On the basis of the method of
group contributions proposed by Bondi (refs 12 and 19), hard-

Table 1. Change in the Total Entropy by Mixing for the
Three Situations Shown in Figure 6a

Mixture nred NA nblue NA xred Φred ΔSMIX,TOT NA/R

A 15 15 0.5 0.5 20.79
B 15 3 0.167 0.5 12.48
C 3 3 0.5 0.5 4.16

aNA, Avogadro’s number.
Figure 7. Solid−liquid equilibrium for the binary mixture C7H16 and
C36H74. Only the right branch of the eutectic-type diagram is shown,
see text. Symbols represent experimental data taken from ref 17,
whereas lines represent calculations performed with ideal solutions
(upper black), Flory−Huggins (lower black), and a solution model
that accounts for differences in fraction of accessible volume between
components based on eq 18 (gray).
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core volumes for C7H16 and C36H74 can be readily estimated:
94.2 cm3/mol and 450 cm3/mol, respectively. Accessible
volumes can be obtained by subtracting the hard-core volume
from the actual molar volume of liquid phase, which yields 53.3
cm3/mol for C7H16 and 170.2 cm

3/mol for C36H74. Fractions of
accessible volume (θi) can then be calculated: 0.36 for C7H16
and 0.27 for C36H74. Clearly, the assumption of similar fractions
of accessible volumes between components does not strictly
meet in this liquid solution.
To incorporate those differences in θi in our calculations, we

need to resort to the more rigorous eq 8, which can be
rewritten as

θ
θ θ

̅ = −
+

S S R
n V

n V n V
ln1 1

1 1 1

1 1 1 2 2 2 (17)

The argument of the natural logarithm can be simply seen as a
fraction of accessible volume of component 1 in the mixture
(Φ1

acc), so for the i component, eq 17 leads to

̅ = − ΦS S R lni i i
acc

(18)

Eq 18 has the same form as eq 11, except for the different
meanings of Φi

acc and Φi. The corresponding expression for γi is
identical to eq 16, but expressed in terms of Φi

acc.15 Calculations
based on eq 18 yield the gray solid line in Figure 7, in much
better agreement with the experimental data: the smaller θi
value of C36H74 counterbalances its larger Vi, see eq 17, thus
predicting Φi

acc values that lie between Φi (Flory−Huggins) and
xi (ideal solutions). The example highlights the subtle
molecular aspects that we need to consider for correctly
predicting solution behavior.

■ CONCLUSIONS

It has been shown that an approach based on the behavior of Si̅
allows a logical flow of the several hypotheses that built up the
thermodynamics of several fundamentals solution models. In
the context of ideal solutions, the specific form used to describe
S ̅iis or the requirements of similar molecular shape and size
between components, usually enunciated without demonstra-
tion,1−5 arise naturally. We have found that the students are
able to much better grasp subtle concepts behind the
application of eqs 11, 12, or 18 that they usually lose in
explanations entirely based on postulating a specific form for
the chemical potential, developing at the same time a wider
perspective of the topic. Another major advantage of this
approach is that it is mostly macroscopic, which avoids the
development of concepts of statistical mechanics, absent in our
engineering curricula. For instance, derivations of expressions
such as eq 11 or 18 provide a valuable connection with the
Flory−Huggins theory of thermodynamics of polymer
mixtures, particularly useful in materials science programs,
and as a general framework to deeply understand the behavior
of real mixtures between molecules with dissimilar size or
shape.
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