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a b s t r a c t

Multivariate curve resolution coupled to alternating least-squares (MCR-ALS) has been

employed to model kinetic-spectroscopic second-order data, with focus on the achievement

of the important second-order advantage, under conditions of extreme spectral overlap-

ping among sample components. A series of simulated examples shows that MCR-ALS can

conveniently handle the studied analytical problem unlike other second-order multivariate

calibration algorithms, provided matrix augmentation is implemented in the spectral mode

instead of in the usual kinetic mode. The approach has also been applied to three experi-

mental examples, which involve the determination of: (1) the antiparkinsonian carbidopa

(analyte) in the presence of levodopa as a potential interferent, both reacting with cerium

(IV) to produce the fluorescent species cerium (III) with different kinetics; (2) Fe(II) (analyte)

in the presence of the interferent Zn(II), both catalyzing the oxidation of methyl orange with
Extreme spectral overlapping potassium bromate; and (3) tartrazine (analyte) in the presence of the interferent brilliant

blue, both oxidized with potassium bromate, with the interferent leading to a product with

an absorption spectrum very similar to tartrazine. The results indicate good analytical per-

formance towards the analytes, despite the intense spectral overlapping and the presence

of unexpected constituents in the test samples.

ferential or integrated kinetic equations, with a number of

1. Introduction
Kinetic-spectroscopic systems provide analysts with valuable
information which can be employed for analytical purposes
[1,2]. Kinetic data have been traditionally employed for the
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determination of single or multiple analytes, based on dif-
r@fbioyf.unr.edu.ar (A.C. Olivieri).

methodologies which vary from application to application
[1–3]. For example, the method of proportional equations has
been applied to binary mixtures under first- or pseudo first-
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rder conditions [1]. However, only a small fraction of the
inetic data was used, leading to poor precision. Procedures
ased on Kalman filtering [4,5] and nonlinear least-squares
tting [6] have also been proposed. Multi-component analysis
as been attempted by applying principal component regres-
ion (PCR), partial least-squares (PLS) or net analyte signal
ethods, all of which may correct for the effects of component

nteractions [7-17].
The time evolution of spectra for a reacting system

onstitutes second-order instrumental data which can in
rinciple be subjected to the successful second-order multi-
ariate calibration methodology [18]. The latter is expected
o provide improved analytical results, because single-
avelength kinetic data may be less informative than

he multi-wavelength counterpart [19–23]. More importantly,
econd-order data may show the intrinsic property of the
econd-order advantage [24], which in principle permits
nalyte quantitation in samples containing unexpected com-
onents, i.e., compounds not included in the calibration set.
his property has immense potentialities in the field of com-
lex sample analysis, and allows one to train a calibration
odel with a limited number of standards, yet quantitating

he analyte in the presence of any number of interfer-
nts. Some literature examples where kinetic-spectroscopic
nformation has been employed to achieve the second-order
dvantage can be cited: the determination of creatinine in
he presence of serum constituents (albumin, billirubin and
lucose) [25], the pesticides carbaryl and chlorpyrifos in com-
ercial samples containing an unexpected substance [26],

itrite in water and meat samples [27], and amoxicillin in urine
amples [28].

Second-order algorithms obtaining the second-order
dvantage are parallel factor analysis (PARAFAC) [29], the
eneralized rank annihilation method (GRAM) [30], direct
rilinear decomposition (DTLD) [31], multivariate curve
esolution-alternating least-squares (MCR-ALS) [32], bilinear
east-squares (BLLS) [33,34], and alternating trilinear decom-
osition (ATLD) [35] and its variants self-weighted alternating
rilinear decomposition (SWATLD) [36] and alternating penalty
rilinear decomposition APTLD [37,38]. Second-order data
an also be unfolded into vectors and then subjected to a
rst-order algorithm, leading to unfolded-PCR (U-PCR) and
nfolded-PLS (U-PLS) [39]. A promising alternative is to apply
ultidimensional PLS (N-PLS) [20], which is a genuine multi-
ay method. However, all of these latter methods do not
btain the second-order advantage, unless they are coupled to
separate procedure known as residual bilinearization (RBL)

40]. Thus U-PLS/RBL, for example, is a promising method
njoying all the capabilities of latent factors methodologies,
et preserving the important second-order advantage [41]. It
s interesting to note that the combination of N-PLS/RBL has
een suggested in this regard [16,17], although the pertinent
lgorithm is still under development and testing [42].

An important aspect related to the analysis of second-
rder kinetic-spectral data is the fact that analytes, and also
otential interferents, may show different reaction rates but
dentical spectra (either themselves or through reagents and
roducts). For example, if sample components react with
reagent to yield either a common UV-visible absorbing

r a luminescent reaction product, then the second-order
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data will show identical profiles in the spectral dimension.
The same situation will be encountered when a responsive
reagent is consumed by reaction with the sample components.
The structure of most second-order algorithms is such that
they cannot deal with extreme overlapping in the spectral
dimension between the analyte and the potential interferents. This
phenomenon can be considered as a specific case of linear
dependency among component profiles. One way to cope with
this problem is to include the potential interferents in the cal-
ibration set of samples. This has the disadvantage of requiring
knowledge of all possible interferents which can be found in
new samples, and leads to a considerable increase in the size
of the calibration set.

MCR-ALS is an algorithm which can solve the problems
brought about by the presence of linear dependency by resort-
ing to the mathematical resource of matrix augmentation.
The latter procedure consists of constructing an augmented
data matrix by assembling instrumental data matrices for
different samples in the following modes: (1) in the direc-
tion of the columns; (2) in the direction of the rows; or (3) in
both directions simultaneously. In kinetic-spectroscopic sys-
tems, it is usual to augment the matrices in the direction of
the reaction time, because this alleviates the problems asso-
ciated with sample to sample differences in reaction rates.
In the presently discussed case, it is preferable to augment
in the spectral direction, because this permits differentia-
tion between the analyte and the interferents, as will be
shown below. It should be noticed that PARAFAC2, a variant of
PARAFAC, is also able to cope with linear dependencies, and
may also be employed for the presently discussed analysis [43].

In this report, we present a simulation study of kinetic-
spectroscopic systems, which confirms that in the presence
of extreme overlapping between the spectra of the analyte
and the interferent, the second-order advantage can only be
achieved using MCR-ALS as processing algorithm, selecting
the spectral direction for matrix augmentation. Furthermore,
when the spectra are not identical but highly overlapped,
it may be convenient to retain the spectral augmentation
mode, depending on the degree of spectral overlap. We also
present three experimental kinetic-spectroscopic systems:
(1) the reaction of the antiparkinsonian drug carbidopa (the
analyte) with cerium (IV) to produce the fluorescent species
cerium (III), in the presence of levodopa as potential interfer-
ent, which does also react with cerium (IV), but with a different
kinetics [44]; (2) the oxidation of methyl orange with potas-
sium bromate, catalyzed by Fe(II) (the analyte), in the presence
of Zn(II) as an interferent, which does also catalyze the reac-
tion, but with a different kinetics [45]; and (3) the reaction of
tartrazine (the analyte) with potassium bromate [catalyzed by
Fe(II)] in the presence of brilliant blue as interferent, which
reacts producing a compound with an absorption spectrum
very similar to tartrazine. These experimental systems do
also show the importance of correctly selecting MCR-ALS as
the processing algorithm, using the right augmentation mode
depending on the degree of spectral overlap.

In the present work we show that application of MCR-ALS

in the spectral augmentation mode is a requirement when
identical component profiles occur in the spectral dimension.
In the case of poor (but non-zero) spectral selectivity, it is
worth to check both augmentation modes, in order to assess
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Table 1 – Validation concentrations and analyte
predictions in the experimental system 1

Validation
samplea

Levodopa
(mg L−1)

Carbidopa (mg L−1)

Nominal Predictedb

1 0.13 0.47 0.47
2 0.46 0.38 0.37
3 0.66 0.28 0.28
4 0.79 0.18 0.16
5 1.06 0.08 0.04

RMSE
(mg L−1)

0.02

REP% 8.0

a RMSE = root mean square error; REP% = relative error of prediction
(with respect to the mean calibration concentration).
48 a n a l y t i c a c h i m i c a

which mode provides the better analytical figures of merit.
We provide the first simulated and experimental realization
of the processing of this type of intensely overlapped spectral
systems, with the aim of accurately quantitating analytes in
complex interfering systems.

2. Experimental

2.1. Instrumentation and software

Fluorescence emission spectra for the experimental system 1
were recorded on a Varian Cary Eclypse (Varian, Mulgrave, Aus-
tralia) luminescence spectrometer equipped with a 7 W Xenon
pulse lamp, connected to a PC microcomputer, and using
1.00 cm quartz cells. Instrumental parameters were: excita-
tion and emission slits, 5 nm, �exc = 255 nm, �em = 300–400 nm
each 5 nm, photomultiplier tube (PMT) sensitivity, 550 mV,
scan rate, 3000 nm min−1, averaging time, 0.10 s. The kinetic
evolution was followed using 20 scans, recorded every 0.1 min.
In this way, the emission-time data matrices had 21 × 20 data
points. All measurements were performed in a thermostated
cells of 20.0 ± 0.1 ◦C by means of a RM 6 Lauda thermostatic
bath (Lauda, Lauda-Königshofen, Germany).

Electronic absorption measurements for system 2 were car-
ried out on a Perkin Elmer Lambda 20 spectrophotometer
(Perkin Elmer, Waltham, Massachusetts, USA), using 1.00 cm
quartz cells and 2 nm of slit width. For each sample, twenty
spectra were sequentially recorded every 10 s in the wave-
length range 450–550 nm every 2 nm, with a scan rate of
2880 nm min−1. Therefore, the size of each spectral-time data
matrix was 51 × 20.

System 3 was implemented through a stopped-flow-
injection (FIA) system, developed using five modules
(degasser, pump, injection valve, autosampler and detector)
of an Agilent 1100 Series instrument (Agilent Technologies,
Waldbronn, Germany). The flow-injection manifold was
designed to inject a sample, previously merged with the
reagent, into a Milli-Q water carrier flowing at 0.6 mL min−1

through a 200 cm × 0.12 mm i.d. mixing coil. After 12 s since
sample injection, the pump was stopped and the reaction
was monitored during 108 s. Once this time was reached, the
flow was restored. For each FI peak, spectra were registered
in the range 400–700 nm each 1 nm, at regular steps 0.4 s for
a total time of 120 s. Therefore, matrices of size 301 × 300 per
sample were generated, although selected regions (in both
dimensions) were subsequently employed for multivariate
calibration (see below).

In all cases, spectra were measured in random order
with respect to analyte concentrations, and those corre-
sponding to the calibration set were recorded in different
days with respect to the validation set. Data were saved
in ASCII format, and transferred to a PC Sempron AMD
microcomputer for subsequent manipulation by the MCR-ALS
program.
2.2. Reagents

All chemicals used were of analytical reagent grade. For
the experimental system 1, the following solutions were
b Average of duplicate analysis.

employed: a 0.25 M H2SO4 solution, prepared from concen-
trated H2SO4 (Merck, Darmstadt, Germany). Stock solutions
of levodopa 650 mg L−1 (Klonal Laboratories, Buenos Aires,
Argentina) and carbidopa 500 mg L−1 (Klonal Laboratories,
Buenos Aires, Argentina) were prepared by weighing the
required amount of the corresponding compounds, and dis-
solved in doubly distilled water after adding eight drops of
H2SO4 0.25 mol L−1. Both solutions were prepared daily. A stock
solution of cerium (IV) (1.00 × 10−3 mol L−1) was prepared from
cerium (IV) sulphate tetrahydrate (Merck, Darmstadt, Ger-
many) and dissolved in H2SO4 0.25 mol L−1.

For the experimental systems 2 and 3, a stock solution
of Fe(II) 1000 mg L−1 was prepared by dissolving the appro-
priate amount of Fe(NH4)(SO4)2·6H2O (Cicarelli, San Lorenzo,
Argentina) in water, adding 5.0 mL of H2SO4 and diluting to the
mark in a 500.00 mL volumetric flask. Solutions of potassium
bromate (Cicarelli, San Lorenzo, Argentina) 0.1 mol L−1 and
phosphoric acid (Cicarelli, San Lorenzo, Argentina) 3.0 mol L−1

were also prepared. For system 2, stocks solution of Zn(II)
92.7 mg L−1 and methyl orange 1240 mg L−1 were prepared
from ZnSO4·7H2O (Merck, Darmstadt, Germany) and from
methyl orange (Carlo Erba Reagenti, Milan, Italy), respec-
tively, by dissolving appropriate amounts of each compound
in water. For system 3, stock solutions of tartrazine and bril-
liant blue (Ardinet, Buenos Aires, Argentina) 1000 mg L−1 each
were also prepared by dissolving appropriate amounts of each
compound in water.

2.3. Calibration and validation sets

2.3.1. Experimental system 1
For training the multivariate MCR-ALS model, a calibration set
was constructed having seven calibration samples for the ana-
lyte carbidopa, with concentrations equally distributed in the
range 0.00–0.50 mg L−1 (six samples) and an additional one at
the centre of the latter range, i.e., 0.25 mg L−1.

A five-sample validation set was prepared with the con-

centrations of carbidopa and levodopa which are reported in
Table 1. They were taken at random from the calibration range
(carbidopa) and from the range 0.00–1.20 mg L−1 (levodopa).
These validation solutions were prepared in duplicate, by mix-
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Table 2 – Validation concentrations and analyte
predictions in the experimental system 2

Validation samplea Iron (II) (mg L−1)

Nominal Predictedb

1 1.00 1.16
2 3.50 3.49
3 5.00 4.92
4 6.50 6.31
5 8.00 7.73
6 9.50 9.45

RMSE (mg L−1) 0.16
REP% 2.8

a RMSE = root mean square error; REP% = relative error of prediction
(with respect to the mean calibration concentration). All valida-
tion samples contain zinc 3.00 mg L−1.
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b Average of duplicate analysis.

ng appropriate volumes of the stock solutions of levodopa and
arbidopa.

The oxidation reaction of levodopa and carbidopa was car-
ied out directly in the spectrofluorometer cell. In order to
btain the emission-time matrices, calibration and validation
amples were processed as follows: 2.50 mL of the correspond-
ng solution was added to the quartz cell and thermostated at
0 ◦C for 1 min, and then 200 �L of Ce(IV) 1.00 × 10−3 mol L−1

issolved in H2SO4 0.25 mol L−1 were added. The cell was then
apped and its content was homogenized turning it upside
own. After 10 s, the relative fluorescence of the induced Ce(III)
s a function of emission wavelength (21 data points) was
ecorded during 2 min every 0.1 min (20 reaction times). To
emove the effect of the initially present Ce(III), the fluores-
ence intensities of Ce(IV) solutions were measured daily to
btain appropriate blank corrections.

.3.2. Experimental system 2
training set of 10 calibration samples was prepared with
oncentrations of Fe(II) spanning the range 1.00–10.00 mg L−1

very 1.00 mg L−1. Additionally, six validation samples con-
aining Fe(II) at different concentrations (see Table 2) were
repared for prediction requiring the second-order advantage,

Table 3 – Validation concentrations and analyte predictions in t

Validation samplea Tartrazine (m

Nominal Predictedb

1 10.00 10.92
2 15.00 15.28
3 10.00 10.33
4 15.00 14.82
5 12.50 13.15

RMSE (mg L−1) 0.54
REP% 4.4

a RMSE = root mean square error; REP% = relative error of prediction (with
b Temporal-augmentation mode. The results are averages of duplicate ana
c Spectral-augmentation mode. The results are averages of duplicate anal
6 1 4 ( 2 0 0 8 ) 46–57 49

because they also contained 3 mg L−1 of Zn (II). These valida-
tion samples were prepared in duplicate.

The kinetic procedure employed was adapted from the one
proposed by Safavi et al. [45]. Suitable amounts of the stock
solution of Fe(II) were added to 5.00 mL volumetric flasks con-
taining 1.00 mL of methyl orange 80 mg L−1 and 1.00 mL of
phosphoric acid 3.0 mol L−1. The samples were then diluted
to the mark with Milli-Q water and homogenized. Subse-
quently, 2.00 mL of each solution were transferred to a 1.00 cm
quartz cell and 10 s after the addition of 40 �L of a solution of
potassium bromate 0.1 mol L−1, 20 spectra were sequentially
recorded each 10 s.

2.3.3. Experimental system 3
A set of six samples was prepared for calibration, with
concentrations of tartrazine from 4.00 to 24.00 mg L−1 each
4.00 mg L−1. An additional five-sample set was built for vali-
dation, having the concentrations of tartrazine and brilliant
blue shown in Table 3. These validation samples were pre-
pared in duplicate, by adding 20 �L of the stock solution of the
catalyst Fe(II) to 2.00 mL volumetric flasks containing suitable
amounts of tartrazine and 40 �L of phosphoric acid 3.0 mol L−1.
The samples were then diluted up to the mark with Milli-Q
water and homogenized. An injector program was developed
to automatically merge 95 �L of each sample with 5 �L of bro-
mate 0.1 mol L−1, and to subsequently inject the mixture into
the FIA system.

3. Theory

3.1. MCR-ALS

In this second-order multivariate method, an augmented data
matrix is created from the calibration and test data matrices.
If the matrices are of size J × K (J is the number of wavelengths
and K the number of reaction times), the columns represent
the spectral mode and the rows the kinetic mode. The usual
setting is to augment matrices in the temporal direction, in

order to cope with possible sample to sample variations in
kinetic profiles. In the temporal-augmentation mode, the cal-
ibration matrices and the unknown matrix are placed adjacent
to each other [32]. The bilinear decomposition of the aug-

he experimental system 3

g L−1) Brilliant blue (mg L−1)

Predictedc Nominal

13.07 10.00
16.42 10.00
11.99 15.00
15.03 15.00
13.80 12.50

1.63
13.1

respect to the mean calibration concentration).
lyses.

yses.
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Fig. 1 – (A) Common spectrum to both components of the
simulated example 1. (B) Kinetic profiles of both
components of the simulated example 1 (solid line, analyte,

inverse required in Eq. (2) becomes unstable. One alternative
to solve this problem is to employ the spectral augmentation
mode. In this case, the matrices are placed on top of each other,
and the least-squares process is represented by the following

Fig. 2 – (A) Spectra for both components of the simulated
dashed line, interferent). In all cases, the intensities have
been normalized to unit length.

mented matrix is then performed according to the expression:

Dta = StaGT
ta + Eta (1)

where the columns of Dta contain the absorption spectra
measured for different samples at several reaction times, the
columns of Gta contain the time profiles of the intervening
species, the columns of Sta their related spectra, and Eta is
a matrix of residuals not fitted by the model (the subscript
‘ta’ stands for temporal augmentation). Appropriate dimen-
sions of Dta, Gta, Sta and Eta are J × [(I + 1)K], [(I + 1)K] × N, J × N
and J × [(I + 1)K], respectively (I is the number of training sam-
ples, N the number of responsive components and a single test
sample is assumed). Decomposition of Dta is achieved by itera-
tive least-squares minimization of the Frobenius norm of Eta.
The minimization is started by supplying estimated spectra
for the various components, which are employed to esti-

mate Ĝta (with the ’hat’ implying an estimated matrix) from
Eq. (1):

Ĝta = DT
ta(S+

ta)T (2)
a 6 1 4 ( 2 0 0 8 ) 46–57

where ‘+’ indicates the generalized inverse. With matrix Ĝta

from Eq. (2) and the original data matrix Dta, the matrix Sta is
re-estimated by least-squares:

Ŝta = Dta(Ĝ
T

ta)
+

(3)

and finally Eta is calculated from Eq. (1) using Dta and the esti-
mated Ĝta and Ŝta matrices. These steps are repeated until
convergence, under suitable constraining conditions during
the ALS process, namely non-negativity in spectral and time
profiles. The pure spectra of the compounds are expected to be
the same in all experiments, while the time profiles in the dif-
ferent Gta submatrices need not share a common shape. This
is the reason why experiments performed in different condi-
tions (e.g. temperature) can be analyzed together as long as the
component spectra remain invariant. It is important to point
out that MCR-ALS requires initialization with system param-
eters as close as possible to the final results. One may supply,
for example, the species spectra, as obtained from either pure
analyte standards or from the analysis of the so-called ‘purest’
spectra [46]. In the present work we have employed the former
alternative in all cases.

The above setting is the regular one when spectra for
the intervening species are sufficiently different. In the case
of extreme spectral overlapping, however, the generalized
example 2. (B) Spectra for both components of the
simulated example 3. In both cases, the solid line indicates
the analyte and the dashed line the interferent. The
intensities have been normalized to unit length.
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et of equations:

sa = SsaGT
sa + Esa (4)

ˆ sa = Dsa(GT
sa)

+
(5)

ˆ sa = (Ŝ
+
saDsa)

T
(6)

here now the sizes of the relevant matrices are: Dsa,
(I + 1)J] × K, Ssa, [(I + 1)J] × N, Gsa, K × N (‘sa’ stands for spec-
ral augmentation). In this particular augmentation mode, the
eneralized inverse of Gsa in Eq. (5) can be obtained provided
he kinetic profiles of sample components differ (itself being
ne of the main assumptions of the present model). More

mportantly, the generalized inverse of Ssa can also be reliably
btained, because matrix augmentation breaks down the lin-
ar dependency of the individual spectral profiles. This is due
o the fact that the spectral matrix Ssa has now [(I + 1)J] × N
lements instead of the J × N corresponding to the temporal-
ugmentation mode. Each column of Ssa consists of successive
ectors of size J × 1, each of them having the shape of a partic-
lar component spectrum, with an intensity proportional to

ts concentration in a given sample. Hence, the columns of Ssa

re no longer linearly dependent.
After MCR-ALS decomposition of Dsa, concentration infor-

ation contained in Ssa can be used for quantitative
redictions, by first building a pseudo-univariate calibration
raph with the relative concentrations of the training samples
ontained in the optimized matrix Ssa. Once the particular
omponent of interest is chosen, the elements of S corre-
sa

ponding to the I calibration samples are selected, which run
rom Ssa(1, n) to Ssa(IK, n). Each series of K values corresponds to
he profile in the time dimension for a particular sample. If the
rea under the profile is considered as proportional to com-

ig. 3 – Prediction results for the 100 test samples of the simulat
C) U-PLS/RBL; (D) MCR-ALS in the spectral augmentation mode.
6 1 4 ( 2 0 0 8 ) 46–57 51

ponent concentration, then the required pseudo-univariate
graph is built in the following way:

[
K∑

k=1

Ssa(k, n)

∣∣∣∣∣
K∑

k=1

Ssa[(k + K), n]

∣∣∣∣∣ . . .

∣∣∣∣∣
K∑

k=1

Ssa{[k + K(I − 1)], n}
]

= k y (7)

where each summation groups the K elements of Ssa corre-
sponding to a particular component and standard sample and
y is the vector of calibration concentrations. Once k is found
from Eq. (7), subsequent interpolation of the values for the
unknown sample provides the concentration of the compo-
nent in the unknown yu, i.e.:

yu = 1
k

K∑
k=1

Ssa[(k + IK), n] (8)

In the regular setting in which augmentation is performed
in the temporal mode, Eqs. (7) and (8) are also employed, with
Ssa(k, n) elements replaced by the analogous series of J ele-
ments Gta(j, n) taken from the matrix Gta.

3.2. Simulations

In order to illustrate the behavior of MCR-ALS and other
second-order calibration algorithms in connection with the
presently studied problem, simulations were carried out for
three different systems. In the simulated system 1, a sin-
gle analyte was considered to be present in the calibration

samples, while the latter component and an additional one
were included in the test samples. Thus, proper resolution of
this system requires adherence to the second-order advan-
tage. The kinetic-spectral matrix data were generated starting

ed example 1 (open circles), using: (A) PARAFAC; (B) GRAM;
The solid lines indicate the perfect fit.
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Likewise, use of GRAM by joining each test sample and a
virtual sample created by averaging the data matrices for all
the calibration samples, led to the results presented in Fig. 3B.
Again, the agreement between nominal and predicted concen-

Fig. 4 – Profiles retrieved by MCR-ALS when processing a
typical test sample of the simulated example 1. (A) Kinetic
52 a n a l y t i c a c h i m i c a

from noiseless spectral and kinetic profiles which are shown
in Fig. 1A and B, respectively. As can be seen, both components
have identical spectra, but differ in their reaction rates. From
the profiles shown in Fig. 1, a calibration set of second-order
signals was built with the analyte at nominal concentrations
of 0.3, 0.6 and 0.9 (in arbitrary units). A set of 100 test sam-
ples was also created, having random concentrations of both
components in the range 0.0–1.0. To all of these second-order
signals, noise was added from a gaussian distribution having
a standard deviation equal to 5% of the maximum calibration
signal.

The second-order data for each of the 100 test samples were
then joined to those for the calibration set, and each four-
sample data set was submitted to second-order calibration
with PARAFAC, GRAM, U-PLS/RBL and MCR-ALS, the latter in
the spectral augmentation mode. Specific analyte predictions
were stored for statistical analysis and future comparison. In
the case of GRAM, the three calibration matrices were aver-
aged to provide a virtual data matrix corresponding to the
average analyte concentration in the calibration set. Then the
test sample and this virtual sample were subjected to GRAM
analysis.

For the simulated systems 2 and 3, the setting was anal-
ogous to the simulated system 1, except that slight shifts in
the component spectra were allowed (Fig. 2A and B show the
corresponding spectra). The time profiles, in turn, were kept at
the values shown in Fig. 1B. The results were analyzed using
MCR-ALS in both spectral and temporal-augmentation modes,
which were compared in order to assess the ability of this algo-
rithm to distinguish components having very similar spectra.
A successful spectral distinction would allow one to return to
the usual kinetic-augmentation mode, which may provide the
additional advantage of coping with changes in kinetic profiles
from sample to sample.

In order to quantitate the degree of spectral overlap
between components 1 and 2 (S12), the following expression
was employed:

S12 = ||sT
1 s2||

||s1|| ||s2|| (9)

where s1 and s2 are the spectra for components 1 and 2,
respectively. The value of S12 ranges from zero to one, cor-
responding to the extreme situations of no overlapping and
complete overlapping, respectively. Using Eq. (9), the spectral
overlap for the simulated systems 1, 2 and 3 are 1.0000, 0.9936
and 0.9984, respectively, i.e., system 3 shows a degree of over-
lap which is intermediate between those for systems 1 and
2.

3.3. Software

Simulations were carried out using in-house MATLAB 7.0 rou-
tines [47]. When required, the PARAFAC and GRAM algorithms

available in the internet were employed [29,48], as well as
the routines performing the U-PLS/RBL method [49]. MCR-ALS
was implemented using the graphical interface provided by R.
Tauler in his web page [50,51].
a 6 1 4 ( 2 0 0 8 ) 46–57

4. Results and discussion

4.1. Simulations

As explained in Section 3, three simulated systems were ana-
lyzed. In the simulated system 1, the spectra of two sample
components are identical, while the kinetic profiles differ
(Fig. 1). Component 1 is only present in the calibration set,
but all test samples contain both constituents.

When PARAFAC was applied to the test samples of this sys-
tem, the usual methodology in which data for each test sample
is joined with those for the calibration samples was employed.
Subsequent decomposition of the three-way array, identifi-
cation of the analyte of interest, and interpolation into the
pseudo-univariate calibration graph allows one to predict the
concentration of the analyte. The results are shown in Fig. 3A,
where the poor recoveries are apparent.
profile, common to all samples. (B) Spectral profiles for
successive matrix samples in the spectral augmentation
mode (test and calibration samples are indicated). In both
cases, the solid line indicates the analyte and the dashed
line the interferent.
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rations is very poor. The U-PLS/RBL method was also applied
o this set of samples, calibrating first with the unfolded-PLS
lgorithm the training data (using a single latent PLS variable),
nd then implementing the post-calibration RBL procedure in
rder to obtain the second-order advantage. Poor recoveries
re also apparent in Fig. 3C.

MCR-ALS was then employed in the spectral augmen-
ation mode described in the Section 3. Matrix data for
ach test sample and for the calibration data matrices were
laced on top of each other, and decomposition according
o Eqs. (4)–(6) was performed by imposing the restriction of
on-negativity for both component profiles in both dimen-
ions. Another constraint imposed to the model during ALS
inimization was the correspondence among species, i.e.,

nformation was supplied on the absence of component 2
n all calibration samples, allowing it to only appear in the
est sample. The results (Fig. 3D) shows good agreement
etween nominal and predicted concentrations values, with
n average root mean square error (RMSE) of 0.035 units,
mplying a relative error of prediction (REP%) with respect
o the mean calibration concentration of 5.8%. Fig. 4 shows
he profiles retrieved by MCR-ALS in the temporal (Fig. 4A)
nd spectral (Fig. 4B) dimensions for a typical test sam-
le and the three calibration samples. As can be seen, the
inetics are perfectly distinguished (compare Fig. 4A with
ig. 1B), and the spectra are recognized as belonging to
ither component 1 (present in all samples) or component
(present only in the test sample), as shown in Fig. 4B. It

hould be noticed that in the above-simulated case, spec-

ral augmentation is the only setting which allows MCR-ALS
o solve the analytical problem achieving the second-order
dvantage.

ig. 5 – Prediction results for the 100 test samples of the simulat
imulated example 2, spectral augmentation mode; (B) simulated
xample 3, spectral augmentation mode; and (D) simulated exam
ndicate the perfect fit.
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The simulated systems 2 and 3 provide the opportunity of
analyzing the effect of small spectral shifts in the pure com-
ponent spectra, i.e. spectral overlapping between components
which are close to, but not exactly 1. The corresponding spec-
tral profiles are shown in Fig. 2. When MCR-ALS was applied
in both temporal- and spectral-augmentation modes for these
simulated systems, the obtained results are presented in Fig. 5.
Fig. 5A and B show the results for the simulated system 2, using
spectral and temporal augmentation, respectively, in a system
where the degree of spectral overlap is 0.9936. The correspond-
ing RMSE (REP%) values are 0.026 (4.3%) and 0.020 (3.3%), indi-
cating comparable results for both augmentation modes. The
degree of overlap in the time dimension can be calculated with
Eq. (9), replacing the spectral profiles with the corresponding
time profiles, yielding a value of 0.9916. As can be seen, the
overlapping is similar in both dimensions, leading to compa-
rable prediction errors using either augmentation mode.

In the case of the simulated system 3, on the other
hand, the RMSE (REP%) are 0.032 (5.3%) and 0.044 (7.3%) for
spectral and temporal augmentation, respectively. The cor-
responding plots of predicted versus nominal can be found
in Fig. 5C and D. In this system, where the degree of over-
lap S12 is 0.9984, the worst statistical indicator corresponds
to the temporal-augmentation setting. This can be ascribed
to spectral superposition leading to instabilities in the com-
putation of the generalized inverse of the pure component
spectral Sta matrix [see Eq. (2)]. In fact, the spectral overlap-
ping is larger than the one in the time dimension (0.9916, see
above). Thus, time augmentation yields poorer recoveries in

comparison with the augmentation in the spectral direction,
which appears to be the method of choice for severe spectral
overlapping.

ed examples 2 and 3 using MCR-ALS (open circles): (A)
example 2, temporal-augmentation mode; (C) simulated
ple 3, temporal-augmentation mode. The solid lines
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Fig. 6 – Three-dimensional plots of signal as a function of
wavelength and reaction time for the studied experimental
systems: (A) experimental system 1, fluorescence intensity
(AFU = arbitrary fluorescence units) for a calibration sample
containing carbidopa 0.40 mg L−1, during reaction with
Ce(IV) to produce fluorescent Ce(III); (B) experimental
system 2, absorbance for a calibration sample containing
5.00 mg L−1, during reaction with potassium bromate (data
were converted as described in the text, i.e., subtracting the
spectrum at zero time and taking the modulus); and (C)
experimental system 3, absorbance for a validation sample
containing 15.0 mg L−1 of both tartrazine and brilliant blue

during reaction with potassium bromate.

4.2. Experimental system 1
Fig. 6A shows the time evolution of the fluorescence intensity
in the useful emission range for a typical sample containing
carbidopa, during reaction with Ce(IV) to produce the flu-
orescent Ce(III) species. Similar results are obtained when
a 6 1 4 ( 2 0 0 8 ) 46–57

levodopa is subjected to the same oxidation conditions. It
may be noticed that the generation of fluorescent Ce(III) has
been previously employed for the analysis of pharmaceuticals,
taking advantage of the different oxidation kinetics [17,44].
First-order multivariate calibration methods were employed,
which imply the preparation of calibration sets containing
all possible responsive components [17,44]. In the present
work, the focus is directed towards the achievement of the
second-order advantage, and thus the calibration samples
only contained carbidopa, while the validation samples con-
tained both components. In view of the identical emission
spectra produced by both system components, quantitation
of carbidopa in the validation samples is only possible using
MCR-ALS in the spectral augmentation mode, in the man-
ner described above for the simulated example 1. It should
be noticed that freshly prepared solutions of Ce(IV) produce
a blank signal, which was reproducible from sample to sam-
ple. Hence, an average blank matrix was subtracted from all
sample data matrices, in order to correct for the presence of
the blank signal. In this way, only two responsive components
were considered during MCR-ALS processing.

Matrix decomposition yielded the kinetic and spectral pro-
files which are shown in Fig. 7A and B, respectively. As can
be seen, the kinetic profiles (Fig. 7A) are sufficiently different
to ensure distinguishing both sample components. Moreover,
Fig. 7B shows that the presence of the interferent levodopa is
correctly accounted for in the test sample, whereas only the
calibrated analyte carbidopa is present in the training sam-
ples.

The areas under the analyte spectra for each sample in
Fig. 7B are proportional to its concentration, a fact which
permits analyte quantitation in the test sample, even in
the presence of the unexpected interferent. Specifically, this
was accomplished using the pseudo-univariate approach rep-
resented by Eqs. (7) and (8) for calibration and prediction,
respectively. Specific prediction results for the five-sample val-
idation set are presented in Table 1. As can be seen, good
statistical indicators are obtained: the RMSE is 0.02 mg L−1,
corresponding to an REP of 8.0% based on the mean calibra-
tion concentration. This implies that the presently discussed
methodology is feasible for attaining the second-order advan-
tage in a case of sample components leading to identical
product spectra.

4.3. Experimental system 2

In this system, the signal at time zero corresponds to the
high absorbance spectrum of methyl orange. The absorbance
slowly decreases due to reaction with potassium bromate,
catalyzed by the presence of metal ions, in our case Fe(II)
(the analyte) and Zn(II) (the potential interferent). In order
to enhance the information provided by the experimental
data obtained during the reaction, the following data pre-
preprocessing was applied: the spectrum at zero time was
subtracted from all spectra contained in each data matrix at
all times. In this way, differences among kinetic profiles for

different samples were highlighted. Subsequently, the mod-
uli of the obtained values were used to build the MCR-ALS
models. Fig. 6B shows the time evolution of the matrix data,
converted in the manner described above, for a calibration
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Fig. 7 – Plots of the spectral and kinetic profiles after MCR-ALS processing of a typical test sample, together with the
calibration samples, for the experimental systems 1 (A and B), 2 (C and D) and 3 (E and F). Plots (A) and (C) correspond to the
kinetic profiles, which are common to all samples in the experimental systems 1 and 2. Plots (B) and (D) show the spectral
profiles for successive matrix samples in the spectral augmentation mode (the first sample is the test one and the
remaining ones are the first four calibration samples, with vertical dotted lines separating sensor ranges for each sample).
Only four calibration samples are shown for simplicity. Plots (E) and (F) correspond to the experimental system 3 when the
most successful kinetic augmentation is employed. They are analogous to plots (A)–(D), but the spectral and kinetic modes
a alyte
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re interchanged. In all cases, the solid line indicates the an
A), (C) and (E) are all normalized to unit length.

ample containing Fe(II) 5.00 mg L−1: absorbance differences
hich are initially zero at all wavelengths are seen to increase

s the reaction progresses.
As previously shown for the simulated system 1 and also

or the experimental system 1, this system can only be ana-
yzed using MCR-ALS in the spectral augmentation mode.
hus, the calibration data matrices and each of the valida-

ion matrices were placed on top of each other, in order to
ugment the matrices in the spectral dimension. Decomposi-
ion was then performed by imposing the same non-negativity

nd species correspondence restrictions commented above.
he profiles retrieved by the program are shown in Fig. 7C
nd D in the kinetic and in the (augmented) spectral dimen-
ions, respectively. Notice in Fig. 7C that the profiles show the
and the dashed line the interferent. The profiles in plots

increase in the absorbance change, since these matrix data
were previously converted by subtraction of the spectra at
zero time and taking the modulus. Predictive results obtained
with pseudo-univariate methodology discussed above are pre-
sented in Table 2, showing an excellent agreement between
nominal and predicted values: the RMSE is 0.16 mg L−1, imply-
ing a REP value of 2.8%.

4.4. Experimental system 3
Fig. 6C shows the time evolution of the absorbance in the
useful spectral range for a validation sample containing
15.0 mg L−1 of both tartrazine and brilliant blue. As mentioned
in Section 2, appropriate sensor regions were selected in both
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dimensions before building the models. Specifically, wave-
lengths were restricted to 400–524 nm, and times to 14–115.6 s,
leading to 125 × 259 data points per sample, and shown in
Fig. 6C for the selected example.

In this experimental system, tartrazine reacts with potas-
sium bromate in the presence of Fe(II), and its absorbance
significantly decreases due to the oxidation reaction. The
potential interferent brilliant blue, in turn, does also react
with bromate, yielding a reaction product whose spectrum
is very similar to that of tartrazine, but not identical: the
degree of spectral overlap, estimated using Eq. (9), is 0.9856.
The only two responsive components in samples having
both tartrazine and brilliant blue are therefore the former
compound and the oxidation product of the latter. MCR-
ALS was applied to this system in both the temporal- and
spectral-augmentation modes, with analytical results which
are presented in Table 3. As can be seen, better results are
furnished when the temporal-augmentation mode is applied,
with an RMSE (REP%) of 0.54 (4.4%). On the other hand, a value
of RMSE (REP%) of 1.63 (13.1%) is obtained when the spectral-
augmentation is implemented. This fact can be ascribed
to spectral differences between tartrazine and brilliant blue
oxidation product which are large enough to stabilize the gen-
eralized inverse of the pure component spectral S matrix. In
fact, Eq. (9) can be employed to estimate the degree of kinetic
overlap between components, by replacing the spectra with
the corresponding time profiles. The result is 0.9969, showing
a stronger overlap in the time dimension in comparison with
the spectral dimension. This is the reason why better analyti-
cal figures of merit are obtained in the temporal-augmentation
mode.

Fig. 7E and F show the spectral and (augmented) kinetic
profiles for a typical test sample and some of the calibration
samples after MCR-ALS data processing. The success of the
applied chemometric technique in decomposing the contri-
butions of both sample constituents is apparent. Not only the
retrieved spectra (Fig. 7E) compare well with the known com-
ponent spectra, but the kinetic profiles (Fig. 7F) agree with the
presence of a growing concentration of the brilliant blue oxida-
tion product in the test sample. In both the test and calibration
samples, on the other hand, a time-decreasing concentration
of the analyte tartrazine is evident (Fig. 7F).

In this particular experimental system, the differences in
spectral profiles provided enough spectral differentiation so
that the usual temporal-augmentation mode outperformed
the spectral augmentation in what concerns analytical fig-
ures of merit. However, in a more severely overlapped system
in the spectral dimension, the opposite might be true. Our
results indicate that in this case both options should be
checked before deciding which provides the better analytical
results.

5. Conclusions

Simulations and experimental data for second-order kinet-

ically modulated luminescent and absorptive instrumental
data shows that multivariate curve resolution coupled to alter-
nating least-squares is a suitable data processing method.
In the presence of extreme spectral overlapping, matrix
a 6 1 4 ( 2 0 0 8 ) 46–57

augmentation in the spectral mode permits an adequate
decomposition of the augmented data matrix, leading to
the achievement of the second-order advantage. When the
extreme overlapping condition is relaxed, differences in
component spectra may allow for augmentation in the tem-
poral direction, which is usually employed to cope with
sample to sample variations in kinetic profiles. Future anal-
ysis of complex samples using kinetic-spectral second-order
data may benefit from the presently discussed chemometric
approach.
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[26] A. Espinosa Mansilla, A. Muñoz de la Peña, H.C. Goicoechea,

A.C. Olivieri, Appl. Spectrosc. 58 (2004) 83–90.
[27] A. Nazi, J. Ghasemi, A. Yazdanipur, Anal. Lett. 38 (2005)

2377–2392.
[28] A. Garcı́a-Reiriz, P.C. Damiani, A.C. Olivieri, Talanta 71 (2007)

806–815.
[29] R. Bro, Chemom. Intell. Lab. Syst. 38 (1997) 149–171.
[30] E. Sanchez, B.R. Kowalski, Anal. Chem. 58 (1986) 496–499.
[31] E. Sanchez, B.R. Kowalski, J. Chemom. 1 (1990) 29–45.
[32] A. de Juan, E. Casassas, R. Tauler, in: R.A. Myers (Ed.),

Encyclopedia of Analytical Chemistry, vol. 11, Wiley,
Chichester, 2002, pp. 9800–9837.
[33] M. Linder, R. Sundberg, Chemom. Intell. Lab. Syst. 42 (1998)
159–178.

[34] M. Linder, R. Sundberg, J. Chemom. 16 (2002) 12–27.
[35] H.L. Wu, M. Shibukawa, K. Oguma, J. Chemom. 12 (1998)

1–26.
6 1 4 ( 2 0 0 8 ) 46–57 57

[36] Z.P. Chen, H.L. Wu, J.H. Jiang, Y. Li, R.Q. Yu, Chemom. Intell.
Lab. Syst. 52 (2000) 75–86.

[37] L.Q. Hu, H.L. Wu, Y.J. Ding, D.M. Fang, A.L. Xia, R.Q. Yu,
Chemom. Intell. Lab. Syst. 82 (2006) 145–153.

[38] A.L. Xia, H.L. Wu, D.M. Fang, Y.J. Ding, L.Q. Hu, R.Q. Yu, J.
Chemom. 19 (2005) 65–76.

[39] S. Wold, P. Geladi, K. Esbensen, J. Øhman, J. Chemom. 1
(1987) 41–56.
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