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a b s t r a c t

The adjuvants approved in human vaccine with recombinant/purified antigens induce weak cellular
immune response and so the development of new adjuvant strategies is critical. CpG-ODN has suc-
cessfully been used as an adjuvant (phase IeIII clinical trials) but its bioavailability needs to be improved.
We investigated the adjuvant ability of CpG-ODN formulated with a liquid crystal nanostructure of 6-O-
ascorbyl palmitate (Coa-ASC16). Mice immunized with OVA/CpG-ODN/Coa-ASC16 elicited a potent
specific IgG1, IgG2a, Th1 and Th17 cellular response without systemic adverse effects. These responses
were superior to those induced by OVA/CpG-ODN (solution of OVA with CpG-ODN) and to those induced
by the formulation OVA/CpG-ODN/Al(OH)3. Immunization with OVA/CpG-ODN/Coa-ASC16 resulted in a
long-lasting cell-mediated immune response (at least 6.5 months). Furthermore, Coa-ASC16 alone allows
a controlled release of CpG-ODN in vitro and induces local inflammatory response, independent of TLR4
signaling, characterized by an influx of neutrophils and Ly6Chigh monocytes and pro-inflammatory cy-
tokines. Remarkably, the adjuvant capacity of CpG-ODN co-injected with Coa-ASC16 (OVA/CpG-ODN plus
Coa-ASC16) was similar to the adjuvant activity of OVA/CpG-ODN, supporting the requirement for whole
formulation to help CpG-ODN adjuvanticity. These results show the potential of this formulation,
opening a new avenue for the development of better vaccines.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Vaccine formulations are steering away from live attenuated
microorganisms toward subunits of pathogens (highly purified or
recombinant molecules). Although the latter antigens are intrinsi-
cally safer, they are often poorly immunogenic due to the lack of an
inherent immunostimulatory property and so they need a vaccine
adjuvant to trigger an effective immune response.

Approved adjuvants for human vaccines are still limited and
include aluminum salts, oil-in-water emulsion (MF59 and ASO3)
and 3-O-desacyl-40-monophosphoryl lipid A (MPL) adsorbed onto
aluminum hydroxide (ASO4) [1]. When these licensed adjuvants
are used with pure proteins, they induce a robust antibody
response but they are poor adjuvants for building up potent and
durable T cell-mediated immunity, which is crucial for vaccines
against intracellular pathogens and cancer [2,3].
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Many substances have been assayed as adjuvants in experi-
mental models or in clinical trials, including synthetic oligodeox-
ynucleotides containing unmethylated CpG motifs (CpG-ODN),
ligands of Toll-like receptor 9 (TLR9) [1,4]. Over the last decademany
human clinical trials have been carried out with CpG-ODN, some of
which are in phase III trials in the vaccine area [5]. The key features
of CpG-ODN used as a vaccine adjuvant, in contrast to currently
licensed adjuvants, include the ability to elicit antibody, Th1 cell and,
but only under certain conditions, CD8þ cytotoxic T cell responses
[6,7]. An additional benefit of CpG-ODN is its ability to divert the
preexisting Th2 response in neonates and elderly mice toward a Th1
phenotype [8e11]. However, CpG-ODN still presents some limita-
tions such as a short half-life, unfavorable pharmacokinetics and
biodistribution, high binding to plasma protein, a lack of specificity
for target cells, poor cellular uptake, and CpG motif-independent
side effects that subsequently restrict its clinical application [7,12e
14]. The development of an efficient drug carrier system could
overcome these drawbacks and improve the adjuvant properties of
CpG-ODN. To this end, a great number of formulations have been
explored, such as liposomes, nano/microparticles constructed in a
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variety of ways using different materials and modifications in its
structure [13e17]. Although some of these formulations appeared
promising, they also had some problems mainly related to
manufacturing issues, such as the scaling-up of production, and
toxicity associated with cationic materials [14,18,19].

In the present study, we formulated CpG-ODNwith coagel (Coa-
ASC16) formed by self-assembly of 6-O-ascorbyl palmitate (ASC16)
as previously described by us [20]. Alkyl ascorbic acid derivatives
(ASCn) are obtained through the esterification of the hydroxyl
group in position 6 of ascorbic acid with fatty acids of variable chain
length (Fig. 1) [20]. Since a hydrophobic portion (alkyl chain) and a
polar group (ascorbic acid) are present in this structure, this ester
behaves as an amphiphilic molecule. Being amphiphilic allows
these compounds to form supramolecular aggregates, mainly
lamellar mesophases. The solubility inwater of ASCn increases with
temperature, and form transparent dispersions above the critical
micelle temperature (CMT), at which the solubility reaches the
critical micelle concentration (CMC). On cooling, water dispersions
of ASCn form coagels, regardless of the length of the aliphatic chain
[20]. Coagels are liquid crystalline phases and their lamellar
structure produces at least one highly ordered dimension, so they
exhibit sharp X-ray diffraction patterns and optical birefringence
[21]. We have reported the phase diagram of ASC16 in water, one
interesting feature of this system is the way the interlamellar water
interacts with assembled ASC16 molecules [22]. CpG-ODN is a
water-soluble compound, so it is to be expected that dissolved CpG-
ODNmay be trapped in the interlamellar water and its release from
the system can be modulated by the three-dimensional structure of
the lamellar liquid crystal.

In previous studies, we have shown that these systems are able
to substantially increase the solubility [23] and the stability of
certain drugs [24]. In this way, ASCn coagel increased the perme-
ation of ibuprofen through hairless mouse skin in comparison to
the commercial formulation Arfen� [25]. In addition, anthralin
solubilized in Coa-ASC16 was more stable than in ethanolic/
aqueous solutions [20] and the permeation of anthralin from ASCn
coagels applied on rat skin was increased compared to other
pharmaceutical systems [26].

Based on all these considerations, we hypothesized that Coa-
ASC16 could improve the adjuvant activity of CpG-ODN. To test
this, we formulated CpG-ODN with Coa-ASC16, and examined its
adjuvant activity in mice with the ovalbumin (OVA) antigen.
2. Materials and methods

2.1. Reagents

We used OVA fromWorthington Biochemical Corp (Lakewood, NJ) as an antigen
[27e29]. OVA stock solution and CpG-ODN stock solution were prepared in sterile
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Fig. 1. Schematic chemical compositions of 6-O-alkyl ascorbic acid derivatives (ASCn).
R ¼ (CH2)x-CH3.
apyrogenic 0.9% NaCl saline solution (B. Braun Medical S.A, Mar del Plata, Buenos
Aires, Argentina). ASC16 was purchased from Fluka Analytical (Milan, Italy). Sterile
apyrogenic 5% dextrose solution was purchased from Laboratorios Roux-Ocefa
(Buenos Aires, Argentina). Alu-Gel-S (2% aluminum hydroxide) was purchased
from Serva Electrophoresis GmbH (Heidelberg, Germany). LPS (Escherichia coli strain
0111:B4) was obtained from SigmaeAldrich (Buenos Aires, Argentina).

2.2. Synthetic oligodeoxynucleotides

The CpG-ODN (sequence 50-TCCATGACGTTCCTGACGTT-30) was synthesized with
a nuclease-resistant phosphorothioate backbone (CpG-ODN (PS)) (1826, B-class
oligodeoxynucleotide) or with a natural phosphodiester backbone (CpG-ODN (PO)).
In all tests shown in this work we used CpG-ODN (PS) and in the nuclease digestion
assay we also used CpG-ODN (PO) (Operon Technologies, Alameda, CA, USA). The
endotoxin content in oligodeoxynucleotide after reconstitution, determined by a
standard Limulus amebocyte lysate assay (BioWhittaker Inc., Walkersville, MD,
USA), was <1 endotoxin unit/ml.

2.3. Preparation of Coa-ASC16

The samples were prepared by mixing the components (ASC16 and 5% dextrose
solution) in the appropriate proportions in closed glass tubes. The dispersions were
heated up to 72 �C (CMT) and then homogenized in an ultrasonic bath for 15min and
left to reach room temperature in small, hermetically closed plastic tubes.

CpG-ODN and/or OVAwere incorporated into ASC16/dextrose mixture and then
the Coa-ASC16 was prepared as described above. In all cases the ASC16 concentra-
tion was 2% (W/V). Coa-ASC16 has a semisolid consistency.

2.4. In vitro release of CpG-ODN and OVA from Coa-ASC16

The in vitro release kinetics of CpG-ODN and OVA from Coa-ASC16 was per-
formed in a modified Franz diffusion cell assembly at 37 � 1 �C. Plain sintered disc
(17 mm diameter and 5 mm thickness) was placed between the donor and receptor
compartment. 1 ml of Coa-ASC16 loaded with 300 ml of CpG-ODN solution (1mg/ml)
and/or 24 ml of OVA solution (10mg/ml) were placed in the upper compartment. The
receptor compartment was filled with 4.3 ml of TriseHCl buffer pH 7.2 and stirred at
200 rpm with a teflon-coated magnetic stirring bar. Periodically, 0.4 ml aliquots
were withdrawn and replaced by the same volume of receptor medium. Data were
corrected for dilution. CpG-ODN concentration was determined by HPLC and the
Bradford method was used for OVA determinations. The assays were performed in
triplicate.

2.5. Nuclease digestion assay

To evaluate the effect induced by Coa-ASC16 on CpG-ODN stability, we per-
formed a nuclease digestion assay, exposing solutions of CpG-ODN (PS) or CpG-ODN
(PO) or both formulated in Coa-ASC16, to a 30-exonuclease enzyme solution. We
chose this enzyme because it was reported that degradation of phosphorothioate
oligodeoxynucleotides administered subcutaneously occurred predominantly by 30-
exonucleases [30]. Samples were mixed with the reaction buffer (670 mM glycinee
KOH pH 9.5 at 25 �C, 67 mM MgCl2, 10 mM DTT) and were incubated at 37 �C with
0.5 ml of 30-exonuclease I (Thermo Fisher Scientific Inc., Waltham, Massachusetts,
USA). The reaction was inactivated by heating at 80 �C for 15 min at different time
points. The amount of CpG-ODN remaining at each time point was quantified by
HPLC.

2.6. Mice

Wild-type 8 to 10 week-old female BALB/c and C57BL/6 mice were provided by
Fundación Facultad de Ciencias Veterinarias (Universidad Nacional de la Plata, La
Plata, Argentina). Toll-like receptor 4 (TLR4)�/� mice, which have a defective
response to lipopolysaccharide stimulation, were provided by The Jackson Labora-
tory. Mice were maintained in our animal facility according to the standards of the
Guide to the Care and Use of Experimental Animals, published by the Canadian Council
on Animal Care, with the assurance number A5802-01 delivered by the Office of
Laboratory Animal Welfare (National Institutes of Health).

2.7. Immunizations

Mice were subcutaneously immunized with a solution of OVA with CpG-ODN
(OVA/CpG-ODN), OVA formulated in Coa-ASC16 (OVA/Coa-ASC16), OVA and CpG-
ODN co-formulated in Coa-ASC16 (OVA/CpG-ODN/Coa-ASC16), OVA/CpG-
ODN þ Coa-ASC16 (OVA/CpG-ODN solution and Coa-ASC16 administered separately
at the same injection site, co-injection), OVA/Al(OH)3 or OVA/CpG-ODN/Al(OH)3. We
used two different immunization schedules: in the first, immunizations were per-
formed at days 0, 7 and 14; in the second, they were applied only twice, at days 0 and
7. Each mouse was immunized with an entire dose (250 ml) equally distributed at
five sites: tail, back, the neck region and both hind limbs (50 ml/site). CpG-ODN was
administered at 75 mg/mouse/dose or 30 mg/mouse/dose. The OVA dose injected was
the same for all experimental groups (60 mg/mouse/dose). Al(OH)3 was administered
at 500 mg/mouse/dose in all cases.
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2.8. Antibody detection assay

Specific antibodies against OVA were determined by ELISA. Briefly, 96-well flat-
bottom plates (Greiner Bio One, Frickenhausen, Germany) were coated with OVA
(1 mg/well) in 0.1 M sodium carbonate-bicarbonate buffer (pH 9.6) overnight at 4 �C
and blocked with 0.5% gelatin PBS. Then, after washing, they were incubated with
serial dilutions of plasma in 0.05% Tween� 20 0.5% gelatin PBS for 1 h at 37 �C. Next,
plates were incubated with HRP-conjugated anti-mouse IgM (polyclonal), IgG
(polyclonal) (both from SigmaeAldrich), IgG1 (clone X56), IgG2a/c (clone R19-15)
(both from Becton Dickinson Argentina SRL, Buenos Aires, Argentina) detection
antibodies. Anti-mouse IgG2a/c recognizes an epitope in the CH3 domain of mouse
IgG2a, with strong reactivity to the Igh-I[a] (IgG2a, BALB/c) allotype and weaker
reactivity to Igh-I[b] (IgG2c, C57BL/6). It does not react with other isotypes, therefore
we employed this antibody to detect IgG2a in BALB/c and IgG2c in C57BL/6. Finally,
plates were examined on a microplate at 490 nm after incubation with H2O2 and o-
phenylenediamine. Titers were calculated as the reciprocal of the last plasma dilu-
tion that yielded an absorbance at 490 nm above that of twice the mean value of
blank. The plasmas from non-immunized mice were not reactive to OVA.

2.9. Spleen cells culture

We used GIBCO� RPMI 1640 medium (Life Technologies, Buenos Aires,
Argentina) supplemented with 10% heat-inactivated fetal bovine serum (PAA Lab-
oratories GmbH, Linz, Austria), 2 mM GIBCO� Glutamax, 100 U/ml Penicillin and
100 mg/ml Streptomycin (all from Life Technologies) and 50 mM 2-mercaptoethanol
(SigmaeAldrich). Splenocytes (1 � 106 cell/well) were incubated in 96-well U-bot-
tom plate at 37 �C and 5% CO2 with medium or OVA (100 mg/ml). Cytokine pro-
duction was measured by ELISA in the supernatant samples collected after 72 h. For
the detection of intracellular cytokines, cell suspensions were cultured for 48 h and
GolgiStop (Monensin 4 ml/6 ml of cell culture) (Becton Dickinson Argentina SRL) was
added for the last 5 h of cell culture.

2.10. Cytokine detection assay

Concentrations of different cytokines were measured by standard sandwich
ELISA following instructions from the manufacturer. All assays were standardized
with recombinant murine cytokines. The antibody pairs used were as follows (listed
by capture/biotinylated detection): IL-6, MP5-20F3/MP5-32C11; IL-12p40, C15.6/
C17.8; IFN-g, R4-6A2/XMG1.2; IL-17A, 17CK15A5/17B7; IL-5, TRFK5/TRFK4; IL-4,
11B11/BVD6-24G2; TNF-a 1F3F3D4/XT3/XT22; IL-1b, B122/polyclonal; IL-10, JES5-
2A5/JES5-16E3; GM-CSF, MP1-22E9/MP1-31G6. All antibodies were obtained from
Becton Dickinson Argentina SRL or eBioscience (San Diego, CA).

2.11. Intraperitoneal injection assay

Mice were injected intraperitoneally with 5% dextrose solution (control) or Coa-
ASC16 (50 mL in both cases). At different time points postinjection, peritoneal lavage
was obtained. The peritoneal cavity was washed 3 times with ice-cold HBSS (1 ml
per turn) and the resulting lavage was centrifuged at 2000 rpm for 5 min in order to
separate the supernatant from the cells.

2.12. Flow cytometry

Cells were pre-incubated with anti-CD16/32 (clone 2.4G2) for 15 min at 4 �C and
then stained with fluorochrome or biotin-labeled antibodies for 30 min at 4 �C. The
antibodies used were against mouse CD11b (clone M1/70), Ly-6G (clone 1A8), Ly-6C
(clone AL-21), CD19 (clone 1D3), NK1.1 (clone DX5), CD3 (clone 145-2C11), CD4
(H129.9), CD8 (clone 53-6.7) and F4/80 (clone BM8). All antibodies were purchased
from Becton Dickinson Argentina SRL or eBioscience, except for F4/80 (clone BM8)
which was from Life Technologies. Biotin-labeled antibodies were revealed with
fluorochrome-conjugated streptavidin.

To measure the frequency of IFN-g producing cells, splenocytes were stained for
surface markers, fixed and permeabilized using BD Cytofix/Cytoperm� Plus Kit
(Becton Dickinson Argentina SRL), and stained for intracellular IFN-g using mono-
clonal antibody against mouse IFN-g (XMG1.2) (Becton Dickinson Argentina SRL) or
isotype-matched control antibody.

Cells were acquired on a FACSCanto II flow cytometer. Data were analyzed using
FlowJo software (Tree Star, Inc., Ashland, OR).

2.13. ALT and AST measurement

The plasma concentrations of alanine aminotransferase (ALT) and aspartate
aminotransferase (AST) were determined using an enzymatic standard biochemical
assay purchased from Wiener Lab (Rosario, Argentina), under the established
manufacturer protocols.

2.14. Histology

Tissue samples were fixed in 10% neutral-buffered formalin, cleared in xylol,
embedded in paraffin, sectioned and stained with hematoxylin and eosin for his-
tological assessment. All histological observations were performed by an expert
pathologist unfamiliar with the experiment.
2.15. Statistical analysis

Data were analyzed using GraphPad Prism software (GraphPad Software, San
Diego, CA). Data analysis included one-way ANOVA followed by a Bonferroni post-
test for multiple comparisons and the unpaired Student t test. All data were
considered statistically significant for p values <0.05.

3. Results

3.1. Release and protection properties of formulation

Because our adjuvant strategy involved the formulation of OVA
and CpG-ODN in Coa-ASC16, we examined how this platformmight
affect the release profile of both molecules. These are shown in
Fig. 2AeC. CpG-ODN alone was quickly released (more than 90% in
15min) from the aqueous solution (Fig. 2A). The inclusion of OVA in
the solution did not affect this release pattern (Fig. 2B). However,
the co-formulation of both molecules (CpG-ODN and OVA) in Coa-
ASC16 significantly affected their release rate (Fig. 2B). When CpG-
ODN was formulated with Coa-ASC16, the amount released was
just about 45% at 60 min (Fig. 2A), and the inclusion of OVA in the
formulation scarcely affected CpG-ODN release, which was about
30% in this case in the same period of time (Fig. 2B). On the other
hand, the OVA release rate was also affected when this molecule
was formulated in Coa-ASC16 (Fig. 2C).

In order to evaluate if Coa-ASC16 could exert a protective ef-
fect on CpG-ODN, we performed a nuclease digestion assay. First,
we used the native form CpG-ODN (PO), which is extremely
susceptible to degradation by nucleases, as a positive control. As
shown in Fig. 2D, the percentage of oligodeoxynucleotide
remaining after 0.8 h treatment with the enzyme was higher for
CpG-ODN (PO)/Coa-ASC16 than for CpG-ODN (PO) in solution,
showing that Coa-ASC16 is exerting a protective effect of 30-
exonuclease. We did not observe the same for CpG-ODN (PS)
because this is already much more resistant to nucleases,
remaining completely intact even after 24 h digestion. However,
after 48 h it seems that there is a difference between both study
groups in the percentage of the adjuvant that is intact after
treatment (Fig. 2E).

Given that Coa-ASC16 generates a controlled liberation of CpG-
ODN (PS) and that current clinical trials are using CpG-ODN syn-
thesized with phosphorothioate-modified backbones [7], we chose
to use CpG-ODN (PS) in all in vivo tests.

3.2. Assessment of adjuvant efficacy

3.2.1. Comparison of CpG-ODN adjuvant activity under different
formulations

In order to evaluate the adjuvant activity of CpG-ODN formu-
lated in Coa-ASC16, mice were subcutaneously immunized at days
0, 7 and 15 with OVA/CpG-ODN, OVA/Coa-ASC16 or OVA/CpG-ODN/
Coa-ASC16.

CpG-ODN/Coa-ASC16 induced higher amounts of anti-OVA IgG,
IgG1 (associated with Th2-biased response) and IgG2a (associated
with Th1-biased response) compared with CpG-ODN (Fig. 3A). In
addition, CpG-ODN/Coa-ASC16 elicited higher amounts of IgG2a
than Coa-ASC16 alone. Splenocytes from vaccinated mice were re-
stimulated ex vivo with OVA to measure cytokine production, a
parameter indicative of the development of antigen-specific
cellular immune response. Splenocytes from mice immunized
with OVA/CpG-ODN/Coa-ASC16 showed higher antigen-specific
IFN-g and IL-17 secretion compared to those immunized with
OVA/CpG-ODN and OVA/Coa-ASC16 (Fig. 3B). IL-4 concentrations in
all groups were close to the detection limit (data not shown). In
order to identify the source of IFN-g in the spleen cells and to
evaluate the quality of the T cell response, we performed an



Fig. 2. Release of CpG-ODN and OVA from Coa-ASC16 formulations and nuclease digestion assay. (AeC) In vitro CpG-ODN and OVA release profiles in buffer TriseHCl. The oli-
godeoxynucleotide used was CpG-ODN (PS). In A, CpG-ODN release compared between CpG-ODN in solution and formulated in Coa-ASC16. In B, CpG-ODN release compared
between OVA/CpG-ODN solution and OVA/CpG-ODN formulated in Coa-ASC16. In C, OVA release compared between OVA/CpG-ODN solution and OVA/CpG-ODN formulated in Coa-
ASC16. (DeE) Nuclease digestion assay. The oligodeoxynucleotides used were CpG-ODN (PS) and CpG-ODN (PO). Percentage of the intact oligodeoxynucleotide after treatment with
30-exonuclease enzyme. The percentage is based on measurement of the total amount of oligodeoxynucleotide in the reaction medium by HPLC. Data are representative of two
independent experiments performed.

M.F. Sánchez Vallecillo et al. / Biomaterials 35 (2014) 2529e25422532
intracellular IFN-g staining of splenocytes. As shown in Fig. 3C,
spleen from mice immunized with OVA/CpG-ODN/Coa-ASC16
contained a higher frequency of OVA-specific IFN-g-producing
CD4þ and CD8þ T cells than spleen from mice immunized with
OVA/CpG-ODN, clearly showing that Coa-ASC16 helps to induce a T
cell response.

Next, we compared the efficiency of CpG-ODN/Coa-ASC16 as an
adjuvant with CpG-ODN formulated in aluminum salts, a well-
known adjuvant licensed for human use [1]. As shown in Fig. 3D,
immunization with OVA/CpG-ODN/Coa-ASC16 induced the highest
titers of OVA-specific IgG1 and IgG2a. Similarly, IFN-g and IL-17
secretions in spleen from mice immunized with OVA/CpG-ODN/
Coa-ASC16 were much higher than in mice immunized with OVA/
CpG-ODN/Al(OH)3. In contrast, IL-4 secretion was almost only
observed in spleen from OVA/Al(OH)3 vaccinated mice (Fig. 3E).
Thus, the CpG-ODN/Coa-ASC16 based vaccine was significantly
more efficient than CpG-ODN/Al(OH)3 to induce specific humoral,
Th1 and Th17 cellular immune responses.
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Similar results were obtained with TLR4�/� mice, showing that
no putative endotoxin contaminants were responsible for the
adjuvant activity of CpG-ODN/Coa-ASC16 (Supplementary Fig. 1Ae
C).

To summarize, these results indicate that this new strategy of
vaccine adjuvant is strong enough to generate a specific antibody
and T-cells immune response and works independently of TLR4
signaling. Moreover, the formulation of CpG-ODN in Coa-ASC16
increased the magnitude but did not change the Th1 response
profile, which indicated that CpG-ODN maintains its known Th1
polarizing effect.

3.2.2. Evaluation of memory immune response
To study the persistence of the induced immune response, mice

received three subcutaneous immunizations (at days 0, 7 and 14)
with OVA/CpG-ODN or OVA/CpG-ODN/Coa-ASC16 and were in vivo
re-stimulated with OVA at day 190. Both groups were able to sus-
tain the OVA-specific humoral response at least 6.5 months.
Remarkably, without restimulation, mice immunized with OVA/
CpG-ODN/Coa-ASC16 always showed significantly higher
amounts of anti-OVA IgG, IgG1 and IgG2a than those observed in
plasma of OVA/CpG-ODN immunized mice (Fig. 4A). Next, at day
190, mice were challenged with an intraperitoneal injection of OVA
to simulate protective efficacy of immunization. One week later
(day 197), the amounts of anti-OVA IgG, IgG1 and IgG2a were
similar in both groups (Fig. 4A) and there were no differences in
IgG2a/IgG1 ratio at any of the study days (Fig. 4B). Moreover,
splenocytes from OVA/CpG-ODN/Coa-ASC16 immunized mice
produced greater quantities of antigen-specific IFN-g and IL-17
than OVA/CpG-ODN immunized mice. There were no differences
between the two experimental groups in the production of IL-4
(Fig. 4C). These data indicate that the CpG-ODN/Coa-ASC16
formulation facilitates the generation of a more robust memory
immune response than the soluble CpG-ODN form (principally
cellular immunity).

3.2.3. Comparison of alternative immunization schemes
In order to evaluate the potency of CpG-ODN/Coa-ASC16 as an

adjuvant using shorter immunization schedules, we subcutane-
ously immunized mice at days 0 and 7 with OVA/CpG-ODN or OVA/
CpG-ODN/Coa-ASC16. At day 13 post first immunization, OVA/CpG-
ODN/Coa-ASC16-immunized mice showed stronger amounts of
anti-OVA IgM, IgG, IgG1 and IgG2a than those immunized with
OVA/CpG-ODN (Fig. 5A). These results clearly show that Coa-ASC16
makes it possible to reach titers of immunoglobulin more rapidly
than CpG-ODN alone.

Then, we evaluated the efficiency of two vs three immuniza-
tions. For this purpose, mice received two (days 0 and 7) or three
(days 0, 7 and 15) subcutaneous immunizations with OVA/CpG-
ODN or OVA/CpG-ODN/Coa-ASC16 and the antigen-specific
response was evaluated at day 21 post first immunization. As
shown in Fig. 5B, the amounts of IgG1 and IgG2a anti-OVA were
always higher in mice immunized with OVA/CpG-ODN/Coa-ASC16
than in OVA/CpG-ODN-immunized mice. However, the IgG2a titer
was lower when OVA/CpG-ODN/Coa-ASC16 mice received two
instead of three immunizations. In addition, three immunizations
induced higher amounts of antigen-specific IFN-g and similar
amounts of IL-17 (Fig. 5C).

Finally, since Coa-ASC16 increases the adjuvant activity of CpG-
ODN, the use of lower quantities of CpG-ODN for inducing the
antigen-specific immune response was evaluated. Mice received
three subcutaneous immunizations (at days 0, 7 and 14) with OVA/
CpG-ODN(75 mg)/Coa-ASC16 or OVA/CpG-ODN(30 mg)/Coa-ASC16.
The OVA-specific humoral and cellular immune responses were
evaluated at day 21 post first immunization. Both doses of CpG-
ODN (75 and 30 mg) formulated in Coa-ASC16 induced equivalent
amounts of anti-OVA IgG1, IgG2a and IFN-g, IL-17 (Fig. 5D and E).
Furthermore, the IgG2a/IgG1 ratio showed no significant differ-
ences between the two doses of CpG-ODN (Fig. 5F).

All these results provide evidence that Coa-ASC16 notably in-
creases the adjuvanticity of CpG-ODN.
3.3. Study of systemic toxicity

We have previously observed that mice immunized with OVA/
CpG-ODN showed no sign of toxicity [11]. ASC16, a Generally
Recognized As Safe (GRAS) substance, is a non-toxic component
when used as an antioxidant in oral pharmaceutical formulations
and food products [31]. However, we cannot assume that this is also
true for its derivate, Coa-ASC16. Therefore, we evaluated the effect
of vaccination with CpG-ODN formulated with Coa-ASC16 through
biochemical and histological assays.

All mice survived the duration of the vaccine trial (21 days or 6.5
months) and no macroscopic evidence of organ damage was
observed. At days 21 and 197 after first immunization, plasma ALT
and AST concentrations in OVA/CpG-ODN/Coa-ASC16 and OVA/
CpG-ODN immunized mice were not significantly different from
those observed in non-immunized mice (Supplementary Fig. 2A
and B). Histological analyses in liver, spleen, kidney and lung per-
formed at days 21 and 197 after first immunization showed no signs
of toxicity in any of these groups (data not shown).

All these results together indicate that the formulation CpG-
ODN/Coa-ASC16 was able to stimulate a vigorous specific im-
mune response without inducing adverse biological effects.
3.4. Injection site studies

We found that the formulation CpG-ODN/Coa-ASC16 is a potent
adjuvant for Th1 and Th17 responses. To begin to elucidate the
mechanisms involved in the improvement of the specific immune
response, we tested whether the immune system could sense Coa-
ASC16 at the injection site.

We injected mice subcutaneously with OVA, Coa-ASC16 or OVA/
Coa-ASC16. Forty-three hours later, plasma and tissue samples from
the injection site were obtained. Histological examination of the
injection site in mice injected with OVA showed scarce cellular
infiltrate (Fig. 6A and B). In contrast, the tissue samples obtained
from mice injected with Coa-ASC16 or OVA/Coa-ASC16 presented
an infiltration mainly composed of neutrophils in dermis and
subcutaneous tissue (Fig. 6A and B). In addition, Fig. 6C shows a
macroscopic view of the injection site of Coa-ASC16-injected mice.
To dissect local and systemic effects of Coa-ASC16, pro-inflamma-
tory plasma cytokines concentrations were assessed 43 h after
subcutaneous injection. IL-6 and TNF-a were not detected in any
group studied (data not shown), indicating that at this time any
effects of Coa-ASC16 were distant from the injection site. In addi-
tion, plasma amounts of hepatic enzymes (ALT and AST) were
similar in all groups (data not shown), which is also evidence that
Coa-ASC16 has no systemic effects.

Mice subcutaneously injected with OVA/CpG-ODN had a slight
cellular infiltration at the injection site, principally composed of
mononuclear cells (Fig. 6A). This finding matches others previously
reported [32,33]. Mice subcutaneously injected with OVA/CpG-
ODN/Coa-ASC16 presented higher cellular recruitment than the
OVA/CpG-ODN group (Fig. 6A). Additionally, Coa-ASC16 altered the
cellular composition of the cell influx, inducing an increased per-
centage of neutrophils (Fig. 6A, OVA/CpG-ODN/Coa-ASC16 vs OVA/
CpG-ODN). This clearly shows that the injection site response is
mainly driven by Coa-ASC16 rather than CpG-ODN.
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To go more deeply into the characterization of the inflammatory
response induced by Coa-ASC16, we employed the peritoneal in-
jection route as being more accessible and easier to study. Mice
were injected with Coa-ASC16 or dextrose (control group) and, 2
and 6 h later, we obtained peritoneal lavages. Coa-ASC16 induced a
recruitment of neutrophils at 2 and 6 h, and also of Ly6Chigh

monocytes at 6 h after injection into the peritoneal cavity (Fig. 7A
and B). At the same time, 2 and 6 h after injection, there was a
dramatic reduction in the number of resident macrophages and B
cells in mice receiving Coa-ASC16, with no significant differences in
the number of NK, NKT and T cells (data not shown). We also
determined the amount of pro-inflammatory as well as regulatory
cytokines in peritoneal lavage supernatants. The secretion of IL-6
(principally), IL-12 and IL-1b was promoted by Coa-ASC16. Con-
centrations of TNF-a, IFN-g, IL-17, GM-CSF and IL-10 were similar in
mice injected with Coa-ASC16 and in those injected with dextrose
(Fig. 7C and data not shown).

Similar experiments were also carried out in TLR4�/� mice with
similar results (Supplemental Fig. 1D and E). Collectively, all these
findings indicate that Coa-ASC16 is sensed by the immune system,
initiating a sterile inflammatory response independent of TLR4
signaling.
3.5. Comparison of co-formulation vs co-injection regimen of
immunization

Based on all these results, we hypothesized that the enhancer
action of Coa-ASC16 on CpG-ODN adjuvant activity may either
reflect the activation of complementary biological processes, since
both molecules have demonstrated stand-alone inflammatory ac-
tivity, or it may depend on the whole formulation. Therefore, we
performed a comparative analysis of the specific immune re-
sponses induced by immunization with OVA/CpG-ODN/Coa-ASC16
(co-formulation) vs immunization with OVA/CpG-ODN plus Coa-
ASC16 (co-injection). In mice subcutaneously immunized with
the co-injection regimen, Coa-ASC16 was administered at the same
injection site of OVA/CpG-ODN solution using the same needle,
without being removed between the injections. The administration
of OVA/CpG-ODN plus Coa-ASC16 (co-injection regimen) resulted
in a very similar antigen-specific humoral and cellular response to
that elicited by OVA/CpG-ODN, and thus under these conditions
Coa-ASC16 did not increase the adjuvant activity of CpG-ODN
(Fig. 8A and B). Moreover, the injection site of mice immunized
by the co-injection regimen showed quantitative and qualitative
differences in local cell infiltration to those that received the co-
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formulation regimen. Mice immunized by co-injection showed a
mixed pattern between CpG-ODN alone and Coa-ASC16 alone
(Fig. 6A).

These results together indicate that the whole formulation is
needed in order to enhance CpG-ODN adjuvant activity and that
Coa-ASC16 seems not to help CpG-ODN adjuvanticity when
administered separately.

4. Discussion

Vaccines can be classified into three broad groups: live attenu-
ated, inactivated and subunit vaccines. The latter group is less
immunogenic and therefore the adjuvant has a central role in
generating an effective vaccine response [34]. In addition, it was
recently shown that genetic and environmental exposure differ-
ences between populations around the world determine differ-
ences in the innate response to adjuvants, leading to heterogeneity
in vaccine efficacy [35]. Other factors such as aging, nutritional
status, chronic diseases and emerging infections can also modify
adjuvant efficacy. There is thus an urgent need to develop vaccine
strategies that target and protect specific vulnerable groups [36].

In this context, we analyzed a new adjuvant strategy consisting
in formulating CpG-ODN with Coa-ASC16 using OVA as a model
antigen. We showed that CpG-ODN formulated with Coa-ASC16
dramatically enhances the magnitude of both OVA-specific hu-
moral (IgG1, IgG2a) and cellular (IFN-g, IL-17) immune responses
(even when we halved the dose of CpG-ODN) compared to CpG-
ODN in solution (Fig. 3AeC and Fig. 5DeF). We also observed that
Coa-ASC16 accelerates seroconversion (Fig. 5A). The enhancement
of CpG-ODN activity could be most relevant in domestic animals
and humans where CpG-ODN is not as potent as in rodents, pre-
sumably due to differences in TLR9 expression between the species
[7,37]. Although the cost of CpG-ODN may not be the main limiting
factor for human vaccines, it would not be economic in large animal
vaccines. So, the possibility of reducing the dose of CpG-ODN is
another benefit of this newadjuvant strategy. In addition, the use of
smaller doses of adjuvant and the increased speed of the initial
vaccine-specific response may be critical in pandemic situations.

Our findings are consistent with several previous reports
demonstrating enhanced CpG-ODN adjuvant activity achieved by
formulationwith awide range of components [13e17,38]. However,
it is difficult to compare different formulations of CpG-ODN re-
ported in the literature because the amount and the type of CpG-
ODN and antigen as well as mouse strain are divergent. For
example, two different reports showed a profound increase of anti-
OVA immune response after OVA and CpG-ODN formulation with
anionic nanoliposomes [39] or ISCOMATRIX [40]. Erikci et al. re-
ported that Balb/c mice immunized with OVA and CpG-ODN (A or
D-type) co-encapsulated in anionic nanoliposomes showed
increased IgG1 and IgG2a titers at two weeks post-boost, similar to
the measured by us one week post-boost in mice immunized with
OVA/CpG-ODN/Coa-ASC16 [39]. Similarly, McCluskie et al. showed
in C57Bl/6 mice immunized with the combination OVA, CpG-ODN
and ISCOMATRIX, IgG2c titers similar to those obtained in mice
immunized with OVA/CpG-ODN/Coa-ASC16 [40].

The goal of vaccination is to generate long-lasting immunolog-
ical memory that mediates host protection from infection or cancer
[41]. One distinguishing feature of the CpG-ODN/Coa-ASC16
formulation is its enhancing effect on Th1 and Th17 cellular re-
sponses and the fact that this remains over a long period of time
(Fig. 4).

Many clinical trials have examined the vaccine adjuvant activity
of TLR9 ligands, focusing principally on “B” (also called “K”) class
CpG-ODN. Among those trials, CpG-ODN was evaluated combined
with licensed vaccines designed to prevent infections. One example
is the administration of the commercial Engerix-B� vaccine (re-
combinant hepatitis B surface antigen alum-adsorbed) plus CpG-
ODN, which induced protective antibody titers in HIV-infected
adults who were hyporesponsive to vaccination with Engerix-B�

alone (completed phase 1b) [5,42]. In the present study, we found
that the CpG-ODN/Coa-ASC16 formulation is much better than
CpG-ODN/Al(OH)3 at inducing Th1 and Th17 cell responses
(Fig. 3DeE). Recently, several groups have shown that Th1 and Th17
responses are crucial for the induction of protective immunity
against a wide range of pathogens [43]. However, licensed human
vaccine adjuvants are poorly effective promoters of Th1 and Th17
responses. Freund’s complete adjuvant, which is experimentally
used, is among the most potent adjuvants leading immune re-
sponses toward Th1 and Th17 [44], but it is associated with sig-
nificant adverse events and so its use is not approved in humans
[45]. It would be premature to suggest that CpG-ODN/Coa-ASC16
would not induce adverse side effects in future clinical studies.
However, taking into account the preclinical systemic toxicology
studies of blood and organ histopathology performed in this work
(Supplementary Fig. 2 and data not shown), CpG-ODN/Coa-ASC16
seems not to have these limitations. This formulation is thus an
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interesting approach to developing a new vaccine against many
pathogens, cancer and for specific patient groups such as elderly
people. Further studies will examine these specific topics.

CpG-ODN is not optimally effective when used in soluble form
and, in consequence, several groups have developed different ap-
proaches to enhancing the adjuvant efficacy of CpG-ODN in vivo
[13e17,38]. Our new adjuvant strategy (CpG-ODN nanoformulated
with Coa-ASC16) fits some of the characteristics defining an “ideal
vaccine” (elicits long-term immunity, few doses, easy and low cost
production, contains a minimal number of biological molecules,
easy logistics). Coa-ASC16 has many advantages that make it a very
attractive platform for biomedical use: (i) it is a compound formed
by ascorbic acid and palmitic acid, both biodegradable components,
(ii) ascorbic acid preserves its antioxidant property [31], (iii) ASC16
is listed as a GRAS substance, (iv) it is easy to prepare and
inexpensive.

Another important point to note is that mice immunized with
OVA/CpG-ODN solution in this study were found to develop a weak
specific immune response. This finding is similar to those reported
by other authors using highly purified antigens [40,46] but differs
from other published studies. We and other authors have previ-
ously shown that mice immunized with OVA plus CpG-ODN solu-
tion developed a good specific immune response [10]. A possible
explanation for this discrepancy may be the type of OVA used,
because some commercially available OVA preparations usually
contain contaminations. In addition, in this workwe showed that in
the absence of TLR4, the enhancement of a specific immune
response elicited by OVA/CpG-ODN/Coa-ASC16 was similar to that
obtained inwild type counterpart mice (Supplementary Fig. 1AeC).
This excludes the possibility that residual traces of endotoxins in
OVA, CpG-ODN or Coa-ASC16 might be responsible for this
enhancer effect. Therefore, these results indicate that OVA/CpG-
ODN/Coa-ASC16 is a very good adjuvant strategy to induce spe-
cific immune response when the antigen has weak intrinsic
immunogenicity (subunit and recombinant antigens).

In immunology, the term “vaccine adjuvant” comprises all
molecules/compounds or formulations that are able to modify the
specific immune response when used in combination with vaccine
antigens. The adjuvants change the adaptive immune response by
one or more pathways, including formation of an antigen depot
(slow sustained vaccine components release), local inflammatory
response, chemotaxis of appropriate immune cells to the antigen
administration site, prolonging bioavailability and in consequence
increasing the duration of action of immunomodulatory com-
pounds, specific delivery of antigen and/or adjuvant, etc. [2,4,47e
49]. Many adjuvants were found empirically, and progress in un-
derstanding their mechanism of action has been slow, which partly
explains why the number of adjuvants approved for human use is
still low [50]. This work showed that the formulation CpG-ODN/
Coa-ASC16 has significant adjuvant properties. The mechanism of
action of CpG-ODN has been well characterized. CpG motifs, char-
acteristic of bacterial DNA, are a “danger signal” for the innate
immune system [7] and TLR9 was identified as the mediator of its
immune stimulatory effects [51]. In relation to Coa-ASC16, wewere
surprised when our studies showed that Coa-ASC16 injected alone
(without antigen) was sensed by the innate immune system, trig-
gering per se an early inflammatory response at the injection site
(Fig. 6AeB). This response was characterized by rapid cell recruit-
ment dominated by neutrophils and Ly6Chigh monocytes, associ-
atedwith the production of IL-6, IL-12 and IL-1b, and TLR4 signaling
was not required (Fig. 7 and Supplementary Fig. 1DeE). In addition,
when Coa-ASC16 was used to formulate OVA/CpG-ODN, the in-
flammatory response induced by OVA/CpG-ODN was modified
quantitatively and qualitatively (Fig. 6A). Since Coa-ASC16 was
administered without antigen (some experimental groups of Figs. 6
and 7), the observed activation of innate immune cells is antigen
independent and may be acting upstream of dendritic cells.
Considering these results, by analogy with other recognized adju-
vants [28,52e54], we hypothesized that the particular local
immunocompetent environment created by Coa-ASC16 may
significantly impact the final OVA-specific immune response. This
could thus be one of the mechanisms through which Coa-ASC16
increases the immunogenicity of OVA/CpG-ODN. However, our
studies are insufficient to build a connection between inflamma-
tion and the enhancer adjuvant effect induced by Coa-ASC16 on the
downstream adaptive response. In addition, our data do not
consider the nature of the molecular mechanism/s that initiates
interactions between innate immune cells and Coa-ASC16, which
requires further studies. This is a challenge for the basic immu-
nobiology that has emerged in recent years from the engineering of
numerous new biomaterials. Several reviews related to how these
emerging biomaterials can modulate immune-cell function may be
found in the literature [55,56]. It is interesting that the injection of
Coa-ASC16 alone stimulated an inflammatory response at the in-
jection site without systemic immune activation at 43 h. This is a
useful quality of Coa-ASC16, because establishing a local immu-
nocompetent environment for vaccine adjuvanticity is generally
associated with the development of minimum vaccine risks [57e
59].

Finally, we investigated the dependence of adjuvant enhancer
activity of the whole formulation through comparative analysis of
immunization with the co-formulation regimen vs the co-injection
regimen. Under the co-injection regimen, no increase of the
adjuvant ability of CpG-ODN was observed (Fig. 8). Therefore, the
formulation of CpG-ODN in Coa-ASC16 is strictly required, as the
inflammatory response induced by Coa-ASC16 seems to be insuf-
ficient to help CpG-ODN adjuvanticity when they are separately
administered. The injection with whole formulation may provide
other benefits in vivo, not addressed in this work, such as forming
a depot to keep the vaccine components at the injection site. It is
noteworthy that structures such as Coa-ASC16 have a certain ri-
gidity which can modulate the release of molecule/s into the
biological medium or provide stability to loaded molecules [20].
Here, when OVA/CpG-ODN was formulated with Coa-ASC16, we
detected in vitro a sustained release of both adjuvant and antigen
(Fig. 2AeC). This kind of release kinetics may work in vivo as a
depot effect, which often makes it possible to reduce the dose and/
or the number of immunizations required for optimal response.
Related to this, using CpG-ODN formulated with Coa-ASC16, it is
possible to use a half-dose of the adjuvant (Fig. 5DeF). Moreover,
specific humoral response following two immunizations (days
0 and 7) with OVA/CpG-ODN/Coa-ASC16 was higher than that
observed in mice receiving three immunizations (days 0, 7 and 14)
with OVA/CpG-ODN (Fig. 5B). Evidently, some kind of depot effect
is produced after injection, making this strategy a reservoir of the
vaccine components at the injection site. We cannot affirm that
the enhancer effect of Coa-ASC16 on CpG-ODN adjuvant activity
may be given, in part, by the effect of protection from degradation
by nucleases, since we worked with CpG-ODN (PS), which is
relatively nuclease resistant (Fig. 2E). However, we do not un-
derestimate the protective effect that Coa-ASC16 exerts on CpG-
ODN (PO), because this strategy would make it possible to
replace CpG-ODN (PS) with CpG-ODN (PO) in future vaccination
trials.

In summary, Coa-ASC16 improves CpG-ODN adjuvant activity,
using more than one mechanism and the whole formulation is
critical in order to achieve optimal results. CpG-ODN/Coa-ASC16 is
therefore a potent adjuvant formulation that could be considered as
a promising candidate to promote humoral and, more remarkably,
cellular immune response.
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5. Conclusions

In this study, we demonstrate that the nanostructure formed by
self-aggregation from ASC16 is not immunologically inert since it
creates a local inflammatory response. The formulation of the im-
mune modulator CpG-ODN with this nanostructure leads to the
enhancement of the specific humoral and cellular immune
response, which is long-lasting. However, we still do not know the
exact mechanism of action of Coa-ASC16. We believe that more
than one mechanism may be involved, the eliciting of proper
cytokine milieus and the formation of a depot probably are key
elements. This last one is supported by the fact that only the
formulation (OVA/CpG-ODN/Coa-ASC16) was able to improve CpG-
ODN adjuvant activity. We showed the potential of combining a
nanostructure and a TLR9 agonist as a Th1 and Th17 response-
promoting adjuvant. Thus, the system described here is ideal for
investigating the wide variety of poorly immunogenic emerging
antigens and immune modulators, using this formulation to design
more effective vaccines.
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