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Abstract

The redistribution of high energy alpha particles due to internal kink modes is studied in plasmas with ITER-
like parameters. The exact particle trajectories in the total fields, equilibrium plus perturbation, are calculated. The
equilibrium magnetic field is obtained by analytically solving the Grad—Shafranov equation and the perturbed electric
and magnetic fields are reconstructed using ideal MHD and the experimental information about the displacement
eigenfunction. The (1, 1), (2,2) and (2, 1) modes are included and the effect of changing their amplitude and
frequency is determined. The results show that if the conditions are similar to those reported in Igochine et al (2007
Nucl. Fusion 47 23), the peak density of counter-passing particles decreases between 25% and 40% (depending on
the energy); the peak of the trapped particles density shifts outwards by approximately 10% of the minor radius and
the total on axis density decreases by more than 25%. This redistribution occurs inside the ¢ = 1 surface. The
addition of a (2, 1) mode, which can produce the stochastization of the magnetic field, significantly increases particle
redistribution and allows particles to spread beyond the ¢ = 1 surface. Different groups of particles (co-passing,

counter-passing, trapped) respond differently to the perturbations.

(Some figures may appear in colour only in the online journal)

1. Introduction

Sawtooth oscillations can produce a significant redistribution
of the alpha particle population. This is particularly important
in ITER, and future fusion reactors, because it will modify
the power deposition profile and can increase alpha particle
losses and wall loading. In addition, alpha particle transport
from the core to the outer region can trigger other instabilities.
The redistribution of suprathermal particles (beam ions, fusion
products, etc) in sawteeth has been clearly demonstrated in
various experiments [1-6].

Although the most basic features of sawteeth, such as the
presence of a kink mode, are common to all experiments, other
aspects can vary, depending on the device and the discharge
conditions. The amount of reconnected flux and the values
of the safety factor (on axis, go) and the amplitude of the kink
mode after the crash are examples of quantities that can present
significant variations. Theoretical models of sawteeth also
present significant differences. The initial model proposed

0029-5515/13/043012+11$33.00

by Kadomtsev [7] assumed full reconnection and predicted
qo = 1 and no kink mode after the crash. An alternative model
proposed by Kolesnichenko et al [8] assumes full reconnection
but allows for g < 1 after the crash, provided that two current
layers arise. Models with partial reconnection, which assume
that the reconnection stops at some inner radius, have also
been proposed [9]. Recently, a series of studies conducted
in the ASDEX-Upgrade tokamak [10-13] showed that in this
device sawteeth are characterized by the following features:
(i) partial reconnection; (ii) go < 1 after the crash and (iii)
survival of the kink mode, which drops to 40% of its maximum
amplitude at the crash and slowly decays afterwards. Since
none of the above referenced models can explain all of these
features the hypothesis that stochasticity plays an important
role in ASDEX-U sawteeth was introduced. Unfortunately, no
reliable numerical simulations of the entire sawtooth process
that can predict the experimental results are available.
Theoretical studies of alpha particle redistribution due
to sawteeth can be broadly classified in two groups. One
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group includes those studies that assume full reconnection
and employ a phenomenological description of the evolution
of the flux surfaces, generally including only the dominant
(1,1) kink mode. The other group includes the studies that
directly employ the information about the spatial and temporal
evolution of the modes present in a sawtooth to calculate
the trajectories of the alpha particles [14, 15]. The approach
employed in the studies included in the first group appears to be
better suited for sawteeth that exhibit full reconnection while
the one used in those included in the second group provides a
more accurate description of the dynamics of alpha particles in
sawteeth with partial reconnection and can include the effect
of field line stochasticity.

Initial studies in the first group assumed that the particles
were tied to the flux surfaces, and moved with them [16]. Later,
the importance of the electric field associated with the kink
modes was recognized and incorporated in the calculations
[17]. A critical energy was also found [17], above which
the perturbation has little effect on particle motion. An
overview of previous results together with an analysis of the
resonance between the electromagnetic fields of the sawtooth
and particles having large orbit widths was presented in [18].
Finally, the effect of high B (ratio of plasma to magnetic
pressure) was also studied [19].

The second approach requires knowing the space and time
dependence of the electric and magnetic fields associated with
the modes present in sawteeth and calculating the trajectories
of a large number of particles. It has been employed by
Zhao and White [14] and Farengo et al [15] and it is used
in this study. The electric and magnetic fields can be obtained
from theoretical calculations and/or numerical simulations, or
from the experimental information. A method to employ the
experimental information was introduced in [15] and is used
here. The main assumptions and advantages of our method,
and the differences with [14], are discussed in [15].

The experimental studies on the effect of sawteeth on alpha
particle confinement indicated above [1-6] do not provide
much information about the space and time dependence of
the perturbed fields that produce the redistribution. In fact,
there is little experimental information about the space and
time dependence of the modes present in a sawtooth. We
therefore employ the information provided in [12] and also
study the effect of including modes not reported in [12].
In [15] the method was introduced and applied to study
the diffusion of particles initially located on a given flux
surface. Here we consider all the particles of a given energy.
We present a systematic study of the effect of changing
the number of modes, their amplitudes and frequencies, and
the energy of the particles. The results show that if the
conditions are similar to those reported in [12], the peak
density of counter-passing particles decreases between 25%
and 40% (depending on the energy); the peak of the trapped
particles density shifts outwards by approximately 10% of
the minor radius and the total on axis density decreases by
more than 25%. This redistribution occurs inside the g = 1
surface. The addition of a (2, 1) mode, which can produce the
stochastization of the magnetic field, significantly increases
particle redistribution and allows particles to spread beyond
the ¢ = 1 surface. Finally, counter-passing particles are more
strongly redistributed than co-passing particles while trapped
particles spread out and move towards larger radii.

Y
~

Figure 1. Coordinate systems.

The structure of this paper is as follows. In section 2 we
briefly review the method introduced in [15] to calculate the
fields and in section 3 the method employed to determine the
initial conditions and calculate the trajectories of the particles.
Section 4 contains the results of the numerical calculations.
Finally, in section 5 we summarize our findings and discuss
future research on this topic.

2. Equilibrium and perturbed fields

Here we briefly review the method employed in [15] to
calculate the equilibrium and perturbed fields. A complete
justification of the assumptions and approximations employed
in the calculation can be found in that reference.

Two coordinate systems are employed: cylindrical and
toroidal. Both systems are indicated in figure 1, where r, ¢
and z are the cylindrical coordinates, Ry indicates the position
of the geometric axis and p and 6 are the toroidal coordinates
(r = Ry + pcos@, z = psinh). The poloidal flux is obtained
by expanding the Grad—Shafranov equation in powers of the
inverse aspect ratio and assuming that the pressure and poloidal
current depend on the poloidal flux as

p=pi¥* P =I+IyR
where ¥ is the poloidal flux and p;, I3 and I? are constants
(Gaussian units are used). Introducing dimensionless
quantities and keeping only the first two terms in the expansion
the poloidal flux of an equilibrium with circular cross section
can be written as [15]

cos

Y(x,0) = C{Jo(kx) +

x [xjo(kx) + %(kx) (1 —xz):| } (1)

where x is the normalized minor radius coordinate (x = p/a,
a: minor radius), 6 is the poloidal angle and Jy(kx) and J; (kx)
are Bessel functions. The poloidal flux is normalized with
Boma?, where By is the external toroidal field at the geometric
axis (R ), p is normalized with Bg /8m and I with BycRy/2.
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The other quantities appearing in equation (1) are o = 4p, /&2
and k> = 4(p; + 1})/&?, where ¢ is the inverse aspect ratio.
The boundary of the plasma is at the x = 1 surface, where we
request the flux to be zero. The constant C is determined by
fixing the poloidal field at the plasma boundary (total toroidal
plasma current) and I is related to the vacuum toroidal field.
Since we normalize all the fields with the vacuum toroidal field
at Ry, Ip = 1. Finally, o, which is proportional to p;, fixes
the plasma 8. Knowing the poloidal flux we can calculate
the equilibrium magnetic field. Figure 2 of [15] shows the ¢
profile and flux surfaces obtained with ¢ = 1/3, p; = 0.05
and Bpoi(x = 1,0 = 0) = 0.155 (g0 = 0.83). Note that a
positive poloidal field at the outer boundary means a negative
toroidal current (antiparallel to the toroidal field).

Ideal MHD is used to calculate the perturbed electric and
magnetic fields:

DIXB
B, =V x (£ xB), E =—- s
C
GI
= —, 2
v = 2

where E; and B, are the normalized (with By) perturbed
electric and magnetic fields, £ is the displacement, normalized
with the minor radius (a) and B is the normalized equilibrium
magnetic field.

Reference [12] reports the presence of the (1, 1), (2, 2)
and (3, 3) modes during sawteeth, where the first digit indicates
the poloidal mode number () and the second the toroidal one
(n). The amplitude of the (1, 1) mode goes to zero at the
g = 1 surface while the (2, 2) mode extends, with very small
amplitude, a little beyond this surface. The amplitude of the
(3, 3) mode is very small everywhere. Under these conditions,
including only the (1, 1) and (2, 2) modes, as was done in [15],
has two consequences:

(i) The redistribution of alpha particles cannot go much
beyond the ¢ = 1 surface, where the modes disappear.
(i) The magnetic field cannot become stochastic.

The second consequence can be understood by noting
that the equations for the magnetic field lines can be cast in
the Hamiltonian form. For tokamaks, the Hamiltonian is the
poloidal magnetic flux and reads

H(,0,¢) = Ho(¥)
+ Y Hun (Y1) cOS(m6 — np + Yomn), 3)

m,n

where ¢ is the toroidal angle, Hy(y,) = f‘//’ 1/q(¥")dy’" and
Y, is the toroidal magnetic flux, conjugated to the poloidal
angle 6. If one assumes that only m = n modes are present,
then the corresponding Hamiltonian, (3), can easily be shown
to be integrable through a canonical change of variables,
with the generating function F, (Y, 6, ¢) = (0 — ¢);, that
amounts to moving to the (1, 1) wave frame.

Introducing a different helicity, here through the (2, 1)
mode, is required for the magnetic field lines deriving from (3)
to become stochastic [20]. In [14] the (1, 1), (2, 1) and (4, 3)
modes are included, and it is concluded that stochasticity can
be important in the redistribution of the alpha particles. Here
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Figure 2. Spatial structure of the (1, 1), (2, 2) and (2, 1) modes.

we will study the effect of the (1, 1), (2, 2) and (2, 1) modes.
The x component of the displacement is therefore written as

E(x,¢,0,1) =" (1) fi1(x) cos(® — ¢ — wi11)
+E2(1) fro(x) coS[2(0 — ¢ — wi11)]
+£21(1) f21(x) co8(20 — ¢ — wnyt), )

where w;; and w») are the frequency of oscillation of the (1, 1)
and (2, 1) modes and £""(¢) and f,,,(x) are chosen to match
the space and time dependence observed in the experiments.
The spatial structure and temporal variation of the (1, 1) and
(2, 2) modes are obtained from the experimental information
provided in [12] while the (2, 1) mode is obtained from [14].
The ratio w;; /wy; is fixed at 2.65, which is the value reported
in [14].

Considering incompressible displacements (V - & = 0)
and minimizing the change in potential energy for internal
modes we can write the other components of £ in terms of
&, [21] and use equation (2) to calculate the perturbed fields. To
proceed we need to specify £™"(¢) and f,,(x). We introduce
the following f,, (x):

1
fu@) =2 {1 —tanh 5(x —x)]},

_ —x2/x2
2 E X X22 (S 22 <
For(x) = {08 |:2 ( o >]+ R < 2x27,
0, X > 2){22,
(x — x21/2)*
x)=exp{—-—"T"—"=1,
Jar(x) P{ (0.2888 1012

where x; is the (minor) radius of the ¢ = 1 surface, x5, =~ 0.35,
x71 is the radius of the ¢ = 2 surface (xp; = 0.946) and § is
a numerical constant adjusted to get the desired slope of the
(1, 1) eigenfuction at x = x; (typically § > 20). Figure 2
shows the profiles of fi1(x), fo2(x) and f51(x).

The results presented in [12] indicate that the evolution of
the (1, 1) mode has three different stages: a slow rise before
the crash; a rapid drop, to approximately 40% of its peak
amplitude, at the crash and a slow decay afterwards. The (2, 2)
mode begins to grow when the (1, 1) mode has an amplitude
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which is approximately 70% of its maximum value (see figure 3
in [12]) and decays to a small amplitude after the crash. When
the (2, 1) mode is included, we use the same time dependence
as for the (2, 2) mode. In most of our simulations we follow the
particles from the time the (2, 2) mode begins to grow (or the
(1, 1) mode is at 70% of its maximum amplitude if the (2, 2)
mode is not included), go through the crash and continue until
the (1, 1) mode has dropped to 40% of its initial amplitude.
The method employed to specify the temporal dependence of
the amplitude of the modes is similar to the one employed
in [14, 15]. The explicit time dependences employed are

Growth phase:
t )} —1
Sll(t):é-o“[cl'kw}’ 0<r<t,
e —
exp{t/t.} — 1
EZZ(t): 32“,{%(’1}], 0<rt<t,,
exp{t/t.} —1
%.21(0: gl%’ 0<rt<t,,

where . is the crash time and ¢; and ¢, are numerical constants,
chosen to obtain the desired amplitudes at t = 0 and t = ¢..
Setting ¢; = 0.7 and ¢, = 2.4054, the amplitude of the (1, 1)
mode is 0.750” att = 0 and ?,-‘0” att = t. . The (2,2) and
(2, 1) modes begin to grow at ¢t = 0 and reach their maximum
value at ¢+ = f.. Note that their amplitudes can be different.
According to figure 3 of [12], the (2, 2) mode begins to grow
approximately 1.5 x 1073 s before the crash; we therefore set
t. = 3.8 x 10°, where the time has been normalized with the
cyclotron frequency of an alpha particle in the external toroidal
field at the geometric axis (€, = 2.54 x 108s71).

Decay phase:
exp{(te + 11y — 1) /t11} — 1]
() = gl [ ,
) = & i
t. <t <t
fe+tn—1)/tn)—1
522(Z)= gz[exp{( 22 )/22} ], fe <1<t
e—1
to+ty —1) /tay) — 1
52‘(t)=53'[eXp{( = 1)/21} | i<
e —

where t1, 2 and fp; are the decay times of the (1, 1), (2, 2)
and (2, 1) modes, respectively. In all of our calculations we
employed #;; = 15us and 1, = tp; = #;; x 0.6. Finally,
tr is chosen as the time (after the crash) it takes the (1, 1)
mode to drop to 40% of its maximum amplitude (the (2, 2)
and (2, 1) modes decay to 20% of their maximum amplitude).
Figure 3 shows plots of £!'(z) and £%%(¢), for 552/350“ =1/3
(the temporal dependence is the same for the (2, 2) and (2, 1)
modes). Two additional curves (in black) are included in this
figure; they correspond to different growth scenarios for the
(1, 1) mode and were used to check the sensitivity of the results
to the time history of the (1, 1) mode amplitude (see below).

To conclude this section we note that the analytic
equilibrium employed is static. There are no flows, and
therefore no sheared flows. It is well known that sheared
flows can reduce fluctuations driven transport by reducing the
correlation length in the direction of the shear [22]. Since our
equilibrium is static alpha particle redistribution is not limited
by this effect.

1.00 T T T

0.75 4

e

0.50

.

0.00 L= . . T s T T T
-3x10° -2x10° -1x10° 0 1x10° 2x10° 3x10° 4x10°
t

Figure 3. Temporal evolution of the modes. Three different growth
scenarios are shown for the (1, 1) mode.

3. Initial conditions and numerical methods

The exact trajectories of a large number of alpha particles
(typically 10°) are followed to determine the redistribution
produced by the modes considered. The high energy alpha
particles are assumed to be initially distributed according to
the slowing down distribution function:

S(r)z

47 (v3 + Ug’)’
0, v > Vg,

v < v,
Fi(r,v) =

where S(r) is the source rate, 75 is the slowing down time,
v. is the crossover velocity (equal friction with electrons
and ions) and vy is the initial alpha particle velocity. The
expressions for 7, and v, are the same employed in [23]
while the fusion reaction rate was obtained using the accurate
expression provided in [24]. The density of alpha particles
with energies between E; and E, is obtained by integrating Fj
between vy and vy (v12 = (2E1,2/ma)'/2):

v2
/ F, 4mv? dv

Vi

S 3 3
T {1n<2+1>—1n(v4+1>}.
3 v2 v3

The density of particles within a very narrow energy

ny(Ey, Er)

interval is obtained by assuming that v; = v, — §, with §
very small:
St,v2é
ne(Ey, Ey) 35723
(U2 + vc)

In our calculation v, is taken to be the velocity corresponding
to the energy considered (i.e. vy = (2E/my)'/?, where E
is the energy considered) and the value of § is irrelevant
because all we need is the spatial dependence for a given
energy. To proceed we need to specify the density and
temperature profiles. For standard ITER operating conditions,
the density profile in the central region is expected to be
quite flat and the temperature profile (before sawteeth) more
peaked (see figure 91 of [25]). We therefore assume a uniform
density profile, with n, = 1.2 x 10" cm™, and obtain the
temperature profile from the pressure profile corresponding to
our equilibrium, with T,y = Tjp = 18keV.
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Knowing the alpha particle density profile, the following
procedure is employed to determine the initial conditions of
the alpha particles:

(i) The energy of the particle (absolute value of the initial

velocity) is fixed (Ep < 3.5MeV).

(ii) A random initial position, distributed according to the
alpha particle density, is chosen in the poloidal plane. For
a normalized (with ) frequency of 2 x 107*, which is
the value used in most simulations, the simulation time is
more than 10 periods of the (1, 1) mode and therefore the
initial toroidal location, which defines the initial phase at
the position of the particle, is irrelevant.

(iii) A random (isotropic) initial velocity direction is chosen.

A low dissipation, fourth order, Runge—Kutta method [26]
is employed to calculate the exact particle trajectories in the
time dependent fields. Collisions are not included because the
simulation time is much shorter than the collision time. The
time step is taken small enough to guarantee that, when the
perturbed fields are not included, the energy and azimuthal
(toroidal) component of the canonical momentum (Py) are
conserved (error less than 1%). In the equations of motion
the time is normalized with €, (defined above), lengths are
normalized with the minor radius (a) and velocities with the
initial velocity of the alpha particle (v;). This results in a
single dimensionless parameter appearing in the normalized
equations:

U2
T Qua’

With ITER-like parameters (By = 5.3T,a = 2m), y =
2.552 x 1072 for a 3.5MeV alpha particle and decreases as
the square root of the energy for lower energies.

To check that the number of particles employed in a
standard simulation is sufficient, we repeated one case using
four different sets of initial conditions, each with 10° particles.
The difference between the maximum and minimum values of
the parameter x, which measures the spreading of the alpha
particles (see definition below), resulted approximately 3%.

14

4. Results

In [15] we studied the effect of modes (1, 1) and (2, 2) on
particles initially located on a given flux surface. Here we
extend those studies by considering all of the particles of a
given energy and including also the (2, 1) mode. It was shown
in [15] that particles born at the same flux surface have a
distribution of periods (bouncing and precession of trapped
particles and toroidal and poloidal rotation of passing particles)
and that the diffusion coefficient does not have sharp maxima at
the frequencies corresponding to these periodic motions. Two
reasons were proposed to explain this behaviour:

(i) Particles have random pitch angles and therefore there is
a distribution of periods (frequencies) rather than a sharp
peak, see figures 5 and 6 of [15].

(i) Due to the perturbation, the type of particle orbit (trapped
or passing) can change during the simulation, see figures 8
and 9 of [15] and the results presented below.

In the situation considered here, where particles have random
pitch and are initially distributed inside the entire plasma
according to the slowing down distribution function, the
distribution of periods is similar for passing particles and
broader for trapped particles (both for the bouncing and
precession periods) when compared with those shown in
[15].  We therefore expect an even smoother frequency
dependence.

A pseudo-diffusion coefficient was introduced in [15] to
quantify the departure of the alpha particles from the original
flux surface. Here it is important to see how the initially peaked
alpha particle density spreads out due to the interaction with the
modes present in a sawtooth. The width of the alpha particle
distribution can be characterized by o'(¢), defined as

1
ot =3 A —FOP +lz() - Z0OP}, )

l

where 7 (¢) and z(¢) are the instantaneous averaged values of r
and z (averaged over all the particles) and N is the total number
of particles. To quantify the spreading of the alpha particles
we introduce the parameter y, defined as

o?(t)

0= =0

(6)

As already indicated, our simulations usually start when
the (2, 2) and (2, 1) modes begin to grow and the (1, 1) mode
is at 70% of its maximum amplitude. We assume that after the
crash the amplitude of the modes decreases rapidly, in 15 us.
The (1, 1) mode decreases to 40% of its maximum value and
the (2,2) and (2, 1) modes to 20%. Since the simulations
begin when the (1, 1) mode already has 70% of its maximum
amplitude, the particles initially undergo a rapid redistribution
to accommodate to the new magnetic field structure. To check
the sensitivity of the results to the time history of the (1, 1)
mode amplitude we performed other simulations where the
(1, 1) mode starts with zero amplitude, grows with different
slopes to the same maximum amplitude (see black curves
in figure 3) and decays after the crash as before. Figure 4
shows a plot of x as a function of time for three different
cases (Edl = 0.3, 552 =0, Sg] = (). Curve 1 was obtained
starting with the (1, 1) mode at 70% (standard case); in curve 2
the mode amplitude starts from zero and grows in a time #,
and in curve 3 it grows in 2¢.. Curve 1 clearly shows the
initial redistribution but just before the crash the values of x
obtained with the three growth scenarios differ by less than
2%. The differences between the three cases increase after
the crash (we do not know why yet) but remain below 6%.
The results presented in figure 4 show that the final value of
x depends on the final amplitude of the mode and not on its
time history. Additional evidence regarding this behaviour is
shown in figure 5, which presents a plot of x as a function of the
amplitude of the (1,1) mode. Curve 1 is for the standard case
(starts at 70%) and curves 2 and 3 (which are indistinguible)
correspond to the same cases considered in the previous figure.
We see again that for relative amplitudes above 70% (where
case 1 starts) the differences are very small. We note that when
the (1, 1) mode starts from zero, x (and therefore o2) increases
almost linearly in time until the crash occurs.
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1.6 r T T
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t

Figure 4. x as a function of time for three different cases

(€' =0.3,2 =0, &' = 0). Curve 1 was obtained starting with
the (1, 1) mode at 70% (standard case); in curve 2 the mode
amplitude starts from zero and grows in a time . and in curve 3 it
grows in 2¢.. The numbers and colours of the curves correspond to
the same scenarios indicated in figure 3.

1.4 T T T T T T

1.2 3 -

1.14 -

1.0 . T

. )
0.00 0.25 0.50

511/5011

0.75 1.00

Figure 5. x as a function of £'!/&]! for three different cases

(El' = 0.3,£2 =0, &' = 0). Curve 1 was obtained starting with
the (1, 1) mode at 70% (standard case); in curve 2 the mode
amplitude starts from zero and grows in a time . and in curve 3 it
grows in 2¢.

4.1. Effect of modes (1,1) and (2,2)

We first analyse what occurs under the conditions reported
in [12], where a (1, 1) mode with a maximum normalized
amplitude of 0.12 and a (2,2) mode with a maximum
amplitude of approximately 1/3 that of the (1, 1) mode were
found. The maximum perturbed magnetic field produced
by these displacement amplitudes are §B;; = 0.014 and
8By = 0.004, respectively. Figure 6 shows a plot of x¢ (final
value of x(¢)) as a function of the normalized frequency for
(;] = 0.12, “;‘32 = 0, and two energy values, £ = 3.5 and
0.5 MeV. It is seen that the spreading (x;) of 3.5 MeV particles
increases with the frequency up to w ~ 2.5 x 107*, where

1'30 ) ) ) ) ) ) )

E=0.5 MeV

E=3.5 MeV

1.05 1 -

1.00 T T
00 05 1.0

20 25 30 35

o (x10)

1:5 4.0

Figure 6. x; as a function of frequency for two energies.
g1 =012, =¢"'=0.

it saturates. At lower energies (E = 0.5MeV) x; remains
approximately constant in the frequency range considered.
Since the dependence is relatively weak, and there are many
other parameters to change, we keep its value fixed at =
2 x 10~* in what follows.

Alpha particles can be divided into co-passing (rotate in
the same sense as the current), counter-passing (rotate in the
opposite sense) and trapped. This classification is not absolute
because particles can change their status due to the interaction
with the modes. In fact, we show below that the fraction
of particles that change their status can be very significant,
depending on the energy of the particles, amplitude of the
perturbation, and modes present. We present below initial
and final density profiles for the different groups of particles
(co-passing, counter-passing, trapped). To construct these
plots we considered the status of the particles at the time
corresponding to the plot (initial or final). This means that
the particles used to construct the density plots corresponding
to a given group could be different. When analysing the effect
of the perturbation on different groups of particles their initial
(unperturbed) status is considered.

The effect of the perturbation is clearly different on
different groups of particles. This canbe seenin figure 7, which
shows the initial and final density profiles for different groups
of particles when g(}' = 0.12, 552 = 0and £ = 3.5MeV
(full lines) and 0.5 MeV (dashed lines). The location of the
g = 1 surface and the values of x¢ for the different groups of
particles are also shown. In all cases the plots show the density
as a function of radius (cylindrical coordinates) at z = O.
Counter-passing particles undergo a larger redistribution than
co-passing particles while trapped particles are mostly shifted
towards larger radius. Counter-passing particles of 0.5 MeV
spread out more than 3.5MeV particles, and the opposite
occurs with trapped particles. The peak density of counter-
passing particles decreases by approximately 40% for 0.5 MeV
particles and 25% for 3.5 MeV particles. The peak density of
trapped particles does not change very much but the position
of the peak shifts outwards by approximately 10% of the minor
radius (slightly more for 3.5 MeV particles). The spreading of
co-passing particles is very small and similar for both energies.
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Figure 7. Density profiles for different groups of particles. Red
lines for initial profiles and blue for final. Full lines for
E = 3.5MeV and dash lines for £ = 0.5 MeV.

The total on axis density decreases by more than 25%. As
expected, the density of alpha particles remains very small
outside the ¢ = 1 surface. The density profile of the trapped
particles shows the presence of trapped particles on the high-
field side of the magnetic axis (located at » = 3.105). This is
due to the following reasons:

(i) Although the plot is supposed to show the density at
z = 0, we are forced to collect particles located between
z = %£0.025 to produce smooth enough histograms (with
enough particles).

1.32 T T

E=3.5 MeV

1.28 1 -
%
E=0.5 MeV
1.24 - .
1.20 T T T
0.00 0.25 0.50 0.75 1.00
522/511

Figure 8. y; as a function of the ratio £2?/£}! for &}' = 0.12 and
two different energies, £ = 3.5 and 0.5 MeV.

(i1) Trapped particles in potato orbits can circle the magnetic
axis due to drifts [29]. The fraction of these particles
increases with energy, thus justifying that the fraction of
trapped particles in the low-field side is larger for 3.5 MeV
than for 0.5 MeV.

The difference between the response of counter-passing
and co-passing particles can be qualitatively explained using
the analysis presented in [30] (equations (1) and (2)). For our
choice of phase (m6 — n¢ — w,,,t) the strongest resonance
occurs at values of the safety factor given by

m

Gres = + Om’

3

where oy is the toroidal transit frequency. Since in our case
wun <K wg the resonance will be close to the ¢ = 1 surface
for the (1, 1) mode. Our equilibrium has the toroidal current
anti-parallel to the toroidal magnetic field, which points in the
positive toroidal direction. Co-passing particles therefore have
a negative wg while the opposite occurs for counter-passing
particles. If wy; is positive, grs > 1 for co-passing particles
and gres < 1 for counter-passing particles. Since the amplitude
of the (1, 1) mode decreases rapidly at the ¢ 1 surface
it is substantially larger in the region where counter-passing
particles resonate than in the region where co-passing particles
resonate, thus explaining the stronger effect on the former. This
explanation is further supported by the fact that if the sign of
] is changed, co-passing particles result more affected than
counter-passing ones.

The addition of the (2, 2) mode does not change the value
of y; significantly. This can be seen in figure 8, which shows a
plot of x as a function of the ratio £32/&,! for &' = 0.12 and
two different energies, £ = 3.5 and 0.5 MeV. The change in
xr when the amplitude of the (2, 2) mode increases from zero
to the value of the (1, 1) mode (§3%/€}! = 1) is approximately
10% for E = 0.5 MeV and less than 5% for E = 3.5 MeV.

Increasing the amplitude of the perturbations clearly
results in a larger spreading. This is shown in figure 9, which
presents a plot of x; as a function of the amplitude of the
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Figure 9. x; as a function of the amplitude of the (1, 1) and (2, 2)
modes, £ = £]!/3.

(1,1) and (2, 2) modes, with £3* = £}!/3, and two different
energies, £ = 3.5 and 0.5 MeV. It can be seen that x¢ increases
almost linearly with the amplitude of the perturbation and that
higher energy particles are more strongly redistributed for this
frequency value. The initial and final density profiles for each
group of particles, for &}' = 0.3, &3> = 0.1, are shown in
figure 10. The qualitative behaviour is similar to that shown in
figure 7. Note that trapped 0.5 MeV particles have a larger ¢
than 3.5 MeV particles while the opposite occurs for counter-
passing particles.

Although not shown here, particles with energies between
3.5 and 0.5 MeV display a very similar behaviour, with values
of xr between those obtained for 3.5 and 0.5 MeV.

4.2. Effect of the (2,1) mode

The addition of the (2, 1) mode increases significantly the
redistribution of alpha particles. When analysing the effect of
this mode it should be noted that the perturbed magnetic field
produced by a (2,1) mode with ;! = 0.04 has a maximum
value of § By; = 0.012, which is similar to the value obtained
with a (1,1) mode having S&l =0.12.

As indicated above, regions of stochasticity appear when

the (2,1) mode is included. This is shown in figure 11,
which presents Poincaré plots for three different conditions.
Figure 11(a) has only the (1,1) mode (501 ' = 0.12); figure 11(b)
has the (1,1) and (2,2) modes (E(}l = 0.12, égz = 0.04) and
figure 11(c) has the (1,1), (2,2) and (2,1) modes (&} = 0.12,

22 = 0.04, &' = 0.04). With the (1,1) and (2,2) modes the
corresponding island structure appears but there are no signs
of stochastic behaviour. When the (2,1) mode is included a
large stochastic region appears.

Figure 12 presents a plot of xr as a function of the ratio
21/El for £11 = 0.12, £22 = 0.04 (red lines) and £} = 0.3,
52 = 0.1 (bluelines), and two values of energy: £ = 3.5 MeV

(full lines) and E = 0.5MeV (dashed lines). It is clear that
adding the (2, 1) mode increases the spreading significantly
(almost linearly with the amplitude) but its quantitative effect
depends on the energy of the particles and the amplitude of
the perturbation. Lower energy particles are generally more
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Figure 10. Density profiles for different groups of particles. Red
lines for initial profiles and blue for final. Full lines for

E = 3.5MeV and dash lines for E = 0.5MeV. With ' = 0.3,
£ =0.1.

affected by the (2, 1) mode but the difference between 3.5 and
0.5MeV particles is larger at lower mode amplitude. Also
note that when the amplitude of the (2, 1) mode is very small
higher energy particles are more affected, in agreement with
the results shown above (without the (2, 1) mode).

The effect of changing the energy is also shown in
figure 13, which presents a plot of x; as a function of the
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Figure 11. Poincaré plots for three different conditions. (@) has only the (1,1) mode (SO” = 0.12); (b) has the (1,1) and (2,2) modes
(&0' = 0.12, 2% = 0.04) and (c) has the (1,1), (2,2) and (2,1) modes (§)' = 0.12, £3* = 0.04, £2' = 0.04). The inner black circumference
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E=0.5 MeV

0.75 1.00

621/511

Figure 12. x; as a function of the amplitude of the (2,1) mode for
different energies and amplitudes of modes (1,1) and (2,2).
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energy for different mode amplitudes. The mode amplitudes
employed to obtain each curve are listed in table 1. It is clear
that when the three modes are present lower energy particles
are more affected and the relative change (x¢(0.5)/x¢(3.5))
increases with the amplitude of the modes (for the same relative
amplitudes between the different modes).

In figure 14, we present plots of the initial and final
densities of 3.5 MeV particles for 5&‘ = 0.12 and 0.3, keeping
the ratios &3' /&) and £3?/&," equal to 1/3 in all cases. It is
interesting to note that although increasing the amplitude of the
modes results in a larger spreading (the overall s increases,
as shown in figure 9), the result is very different for different
groups of particles. Co-passing particles, which are hardly
affected when &)' = 0.12, are strongly redistributed when

o1 = 0.3. For counter-passing and trapped particles the
effect of increasing the amplitude of the perturbation is less
important.

When only the (1, 1) and (2, 2) modes are included, and
the alpha particles are only weakly redistributed, the large
electric field that appears at the crash produces a significant

1.6 4

2

E (MeV)

Figure 13. x; as a function of the energy for different mode
amplitudes. The numbers on the curves correspond to the conditions
shown in table 1.

Table 1. Amplitude of the modes for the curves of figure 13.

Curve & 2 g
1 0.12 0.0 0.0
2 0.12 0.04 0.04
3 0.3 0.0 0.0
4 0.3 0.1 0.1

increase in x. When the (2, 1) mode is included the particles
undergo a significant redistribution before the crash (due to the
stochasticity of the field lines) and the effect of the electric field
at the crash is less important. This can be seen in figure 15,
which shows the temporal evolution of x, with (full line)
and without (dash line) the perturbed electric field, for two
different cases. In one case (red), only the (1, 1) mode is
present while in the other (blue) the (2, 1) and (2, 2) modes
were added. The sharp rise of x at the crash is only seen when
the perturbed electric field is included and the (2, 1) and (2, 2)
are not present.

To conclude this analysis, we show, in table 2, the fraction
of particles that change their status for different conditions.
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Figure 14. Initial and final densities of 3.5 MeV particles with
21 =0.12and 0.3. &3 /&) = £22/6)" = 1/3.

The different columns contain (from left to right): the case,
energy, amplitude of the modes, initial and final percentages
of particles of each type and the percentage of particles that
changed status. The columns labelled (co-i and co-f) contain
the initial and final percentages of co-passing particles, and
similarly for counter-passing particles (ct-i, ct-f) and trapped
particles (tr-i, tr-f). It is well known [31] that, due to an
asymmetry in the passing—trapping boundary, the fractions of

2x10° 3x10° 4x10°

t

0 1x10°

Figure 15. x as a function of time with and without the electric field
for different conditions. Blue curves have the three modes and red
curves include only the (1,1) mode.

co-passing and counter-passing particles are different. We also
note that only in case F, where all the modes are present with
large amplitudes, the fraction of co-passing particles changes
significantly.

5. Summary and discussion

We investigated the effect of sawtooth oscillations on high
energy alpha particles in plasmas with ITER-like parameters.
The main results can be summarized as follows:

(i) For the conditions reported in [12] the peak density of
counter-passing particles decreases between 25% and
40% (depending on the energy) and the peak of the trapped
particles density shifts outwards by approximately 10% of
the minor radius. The total on axis density decreases by
more than 25%, indicating a significant reduction of the
alpha particle heating in this region. The redistribution
occurs inside the ¢ = 1 surface.

(i) The addition of a (2,1) mode, which can produce
the stochastization of the magnetic field, significantly
increases particle redistribution. It also allows particles
to spread beyond the g = 1 surface. Its effect depends on
the energy of the particles and the amplitude of the other
modes.

(iii) For our conditions, counter-passing particles are more
strongly redistributed than co-passing particles. However,
the opposite occurs when the direction of mode
propagation is changed. Trapped particles are also
redistributed, they spread out and move towards larger
radii.

(iv) The fraction of particles that change their status (from
passing to trapped or vice versa), can be significant,
depending on the energy and number and amplitude of
the modes present.

(v) When only the (1, 1) and (2, 2) modes are present, and

32 < 0.75&,", higher energy particles are more affected.
When the (2, 1) mode is included lower energy particles
are more affected.
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Table 2. Initial and final percentages of each type of particles and percentage of particles that changed their status for different conditions.

Case E (MeV) 0” 32 5021 co-i  co-f cti ct-f i tr-f Change
A 3.5 012 0 0 413 413 345 332 242 255 6.1
B 0.5 012 0 0 39.2 388 364 355 244 257 93
C 3.5 0.12 0.04 004 413 412 345 313 242 276 147
D 0.5 0.12 0.04 0.04 392 386 364 293 244 321 250
E 35 03 0.1 0.1 413 41.1 345 280 242 314 369
F 0.5 0.3 0.1 0.1 392 379 364 28.1 244 339 48.0
(vi) Changing the time dependence employed during the  [9] Porcelli F. et al 1996 Plasma Phys. Control. Fusion 38 2163
growth of the (1, 1) mode does not change the results [10] LeiCh 'A."ZCOhdels RyteIr ISO 052‘1;303 \z (_}Udi 2A10 ];(S)rcelli E,
. . . . . ngioni C. an urno 1. uct. rusion
mgnlﬁcantly if the maximum amplitude reached by the [11] Igochﬁw V., Boom J., Classen 1., Dumbrajs O., Gunter S.,
mode remains the same. Lackner K., Pereverzev G., Zohm H. and the ASDEX
(vii) The large electric field that appears at the crash produces Upgrade Team 2010 Phys. Plasmas 17 122506
a significant change if the magnetic field does not become  [12] Igochine V., Dumbrajs O., Zohm H., Flaws A. and the ASDEX
stochastic. Team 2007 Nucl. Fusion 47 23-32
[13] Udintsev V.S. et al 2005 Plasma Phys. Control. Fusion
To remove some of the limitations of the model presented 47 1111
above we are developing a different approach, where the [14] Zhao Y. and White R.B. 1997 Phys. Plasmas 4 1103
equilibrium and mode structure are calculated numerically. In [15] Farengo R., Ferrari H.E., Firpo M.-C., Garcia-Martinez P.L.
. . e . . and Lifschitz A.F. 2012 Plasma Phys. Control. Fusion
this approach [32], an ITER-like equilibrium with gg < 1 is 54 025007
obtained by solving a 2D nonlinear Grad-Shafranov equation. [16] Kolesnichenko Y.I. and Yakovenko Y.V. 1992 Nucl. Fusion
This equilibrium is then used as the initial condition for a 32449
3D, nonlinear resistive MHD simulation which determines the ~ [17] Kolesnichenko Y.I. and Yakovenko Y.V. 1996 Nucl. Fusion
spatial structure of the modes. Preliminary results obtained 36 1_59 .
. . . . [18] Kolesnichenko Y.I., Lutsenko V.V., White R.B. and
with this method seem to be cons1stept with .thqse PresenFed Yakovenko Y.V. 2000 Nucl. Fusion 40 1325
above. A complete study of alpha particle redistribution using [19] Kolesnichenko Y.L, Lutsenko V.V., White R.B. and
this approach will be presented in a future paper. Yakovenko Y.V. 2001 Phys. Lett. A 287 131
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