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Abstract Loratadine (LOR) and pseudoephedrine sulfate
(PES) were determined in pharmaceutical samples by using
non-linear second-order data generated by a pH-gradient
flow injection analysis (FIA) system with diode-array
detection. Determination of both analytes was performed
on the basis of differences between the acid—base and
spectral features of each drug species. Non-linearities were
detected by using both qualitative and quantitative tools. As
a consequence of the non-linearity, a recently reported
algorithm, artificial neural networks followed by residual
bilinearization (ANN/RBL), was shown to furnish more
satisfactory results. Recoveries of 99.7% (LOR) and 95.6%
(PES) were obtained when analyzing a validation set con-
taining unexpected components (the usual excipients found
in pharmaceutical preparations). The average value obtained
by implementation of the method on four replicates was
compared with that obtained by a reference method based on
HPLC (difference not significant; p > 0.05).
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Abbreviations

U-PLS/RBL  Unfolded partial-least-squares/residual
bilinearization

ANN/RBL Atrtificial neural networks followed

by residual bilinearization

HPLC High-performance liquid chromatography
PARAFAC  Parallel-factor analysis

GRAM Generalized rank-annihilation method
MCR-ALS  Multivariate curve resolution—alternating

least squares
FIA Flow injection analysis

DAD Diode-array detector
SVD Singular-value decomposition
Introduction

The combination of loratadine (LOR) and pseudoephedrine
sulfate (PES) in medicinal products is effective in the relief
of symptoms associated with seasonal allergic rhinitis
accompanied by nasal congestion [1]. LOR is a nonsedating
long-acting antihistamine belonging to the H-1 antagonist
group; PES is used as an oral decongestant [1].

Few analytical applications for LOR and PES have been
reported in the literature. Both analytes have been simul-
taneously determined in pharmaceutical preparations by
derivative spectroscopy [2, 3] and high-performance liquid
chromatography (HPLC) [4, 5]. Very recently, a manual
pH-gradient spectrophotometric application on artificial
samples has been reported with the aim of checking the
capability of a newly developed chemometric algorithm [6].
Quantification of LOR and PES in biological fluids has also
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been carried out by applying liquid chromatography
coupled with mass spectrometry [7, 8].

Currently, second-order data are commonly being gen-
erated in analytical laboratories and used to solve more and
more complex systems [9]. These data, when processed by
suitable algorithms, give the analyst the second-order
advantage, i.e. the possibility of analyzing any sample
containing unexpected components that could be responsi-
ble for causing interferences [10].

Commonly employed second-order data are obtained by
using:

1. asingle instrument, such as a spectrofluorimeter (EEMs,
excitation—emission matrices) or a diode-array spectro-
photometer after spectral evolution of a chemical
reaction (for example a kinetic or acid—base reaction); or

2. coupling or “hyphenating” two first-order instruments,
for example tandem liquid chromatography—diode-
array detection (LC-DAD), gas chromatography—mass
spectrometry (GC-MS), GC-GC, MS-MS, etc. [10].

The analyst can use a large number of algorithms to
deal with second-order data. Among those most often
used, the following can be cited: parallel factor analysis
(PARAFAC) [11], the generalized rank annihilation method
(GRAM) [12], multivariate curve resolution—alternating
least squares (MCR—ALS) [13], and unfolded partial-least-
squares followed by residual bilinearization (U-PLS/RBL)
[14]. These algorithms are of major relevance to the
analysis of complex mixtures, because they achieve the
second-order advantage. However, the analyst will be
constrained by the structure of the data being managed.
For example, the mentioned algorithms cannot be used
when the recorded signals have a non-linear relationship
with analyte concentration. Auspiciously, very recently a
new algorithm—artificial neural networks followed by
residual bilinearization (ANN/RBL)—was presented for
dealing with non-linear data [15].

In this report, non-linear second-order data were gener-
ated by a pH-gradient flow injection analysis (FIA) system
with diode-array detection. As a result, determination of
both analytes was performed on the basis of the different
acid—base and spectral features of each drug species.
However, a clear non-linear relationship was observed
between the concentration and absorbances measured in
the studied range for both analytes, because one of the
analytes (PES) is present at a relatively high concentration
in comparison with the other (LOR). Therefore, classical
second-order multivariate calibration methods could not be
successfully applied. Instead, ANN/RBL was shown to be
appropriate for training these non-linear spectroscopic data
and successfully predicting analyte concentrations in the
presence of unexpected constituents, thus achieving the
important second-order advantage.
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Theory
ANN modeling

The ANN architecture most commonly used for calibration
applications consists of three layers with variable numbers
of neurons [16]. The first corresponds to an input layer to
accommodate the input data. The second is a hidden layer,
whose number is adjusted on a trial-and-error basis. The
last is an output layer with a single neuron, which yields the
concentration of the analyte of interest in each sample. Both
the input and hidden layers also include the so-called bias
neurons, whose inputs are equal to 1. The common practice
is to compress the input data into a reduced number (4) of
principal components (PC) or scores. Thus, the number of
input neurons equals 4, where, in general, A<<JK (number
of sensors after the unfolding procedure). The value of 4
can be estimated, for example, by computing the percentage
of variance explained by the principal components of the
unfolded training data matrix (size /xJK, [ is the number of
training samples), and selecting the first 4 PCs which
explain more than a certain percentage (e.g., 99%) of the
total variance.

Once the first A PCs are loaded into the 4 neurons of the
input layer, the outputs are calculated for each training
sample using a set of randomly selected initial weights
which are transferred from layer to layer through a suitable
transfer function [17], which currently is the sigmoidal
transfer function f'(x) = 1/[1 + exp (—x)]. The weights are
then modified according to the back-propagation method-
ology, which compares the ANN outputs with the nominal
values of the analyte concentration in the training and
monitoring samples. Two figures are obtained from these
comparison:

1. the training root-mean-square error (RMSET), which is
computed every training cycle, and allows the correc-
tion of the network weights which leads to a decrease
of the RMSET; and

2. the RMSEM (M for monitoring), which simultaneously
monitors the ANN performance by the results provided
on an independent monitoring sample set.

Usually the net is trained during a number of epochs until
a RMSEM value compatible with the noise level present in
the system is reached. This value should correspond to a
minimum in the RMSEM, in order to avoid overtraining
[17]. Two important parameters for network training are the
learning rate, which tends towards a fast, steepest-descent
convergence, and the momentum, a long-range function
preventing the solution from being trapped in local minima.
These parameters are usually tuned around a value of 0.5,
also by trial and error. The final set of weights is stored for
future prediction on new samples.
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RBL procedure

The training/prediction scheme works properly provided the
new test samples do not have unexpected components. If yes,
its scores will not be suitable for analyte prediction using the
trained ANN. In this case, it is necessary to resort to a
technique which marks the new sample as an outlier,
indicating that further actions are necessary before ANN
prediction, and then isolates the contribution of the unex-
pected component from that of the calibrated analytes, in
order to recalculate appropriate scores for the test sample.
This can be accomplished through PC analysis (PCA), since
the sample will be considered as an outlier if the residuals of
the PC analysis of X,, (s, in Eq. 1) are abnormally large in
comparison with the typical instrumental noise:

5o = o/~
= Hvec(Xu) — PPTvec(Xu)H/(JK _A)1/2

= [Ivec(X,) —Ptu||/(JK—A)1/2 (1)

where ||.|| indicates the Euclidean norm, P is the matrix
containing the first 4 loadings obtained by applying PCA to
the unfolded training data, t, is the vector of test sample
scores, and vec() indicates the unfolding operation. The
sizes of the relevant arrays in Eq. (1) are as follows: e, and
vec(Xy), JKx1; Xy, JXK; P, JKxA and t,, Ax1. If 5, is
indeed large, then RBL can be employed to model the
presence of unexpected sample components, decomposing
the signal for a test sample containing unexpected compo-
nents into two parts: one modeled using the calibration
latent variables (X,0q) and the remaining part which cannot
be modeled (Xunmoq) With these variables.
In PCA, the modeled part can be expressed as a function
of the calibrated latent variables P and the unknown sample
score t,, and, hence:

vee(Xy) = Pty + emod + vee(Xunmod) (2)

where e,0q 1S the vector of residuals not fitted to X4 by
the PCA model with 4 principal components (notice the
relationship e,=e;0q+vec(Xynmoda)). In the absence of
unexpected components, em.q=€p, Which will contain
elements of the order of the instrumental noise. However,
if anything having a bilinear structure is present in Xynmod
which rises above the noise level, it can be modeled using
PCA, which is normally carried out through singular-value
decomposition (SVD). This allows one to estimate profiles
for the unexpected components (b,,x and ¢,,x) and hence
Eq. (2) can be represented as:

vee(Xy) =Pty + Vec[ um<bunx(cunx)T + ey (3)

The RBL procedure consists in keeping the matrix P in
Eq. (3) constant at the calibration value, and varying t, in
order to minimize the norm of the residual vector e, (||e,]|)-
During the minimization, profiles for the unexpected
components are continually updated through SVD of a
matrix obtained after reshaping e, (Eq. 1):

(gunX7 bunx; cunx) == SVDI (Ep) (4)

where E, is the JxK matrix obtained after reshaping the
JKx1 e, vector, and SVD, indicates taking the first
principal component. It is important to notice that it is in
Eq. (4) where the reshaping operation of e, folds the (trans-
formed) data into a matrix, and this permits the achieve-
ment of the second-order advantage, even when the data are
unfolded for calibration purposes. RBL is thus only
possible with second-order data, which can be meaningfully
arranged into a matrix. It should be remarked that RBL will
succeed provided X,,moq does not contain spectral compo-
nents which are collinear with those in X,o4.

Minimization of ||e,|| can be carried out starting with a t,
vector as given by the projection of the test sample responses
on the space spanned by the calibration 4 principal
components. Minimization of residuals is performed through
the Gauss—Newton approach. It is carried out until the
difference between successive values of ||e,|| is lower than
certain previously set tolerance limit. Repeating the minimi-
zation a number of times for a given sample did not produce
significantly different results.

Should it be necessary to consider a larger number of
unexpected components (Nyyx) in the SVD analysis of E,
(Eq. 5), then N, can be assessed by comparing the final
residuals s, with the instrumental noise level, with s, given

by:
Su = ||eu||/[JK — (4 +NunX)]l/2 (5)

where e, is from Eq. (3). Typically, a plot of s, computed
for trial values of N, will show decreasing values, starting
at s, when N,,=0, until it stabilizes at a value compatible
with the experimental noise, allowing location of the
correct number of unexpected components. If N, >1, the
profiles provided by the SVD analysis of E, would not
resemble the true profiles for the unexpected components,
because the principal components are restricted to being
orthonormal. While the first component may resemble a
chemical constituent in the sample, the remaining ones will
not be comparable to true spectra.

Finally, once the correct test sample scores t, have been
found, they are introduced into the input neurons of the
trained ANN, providing the analyte concentration as output.
Complementarily, the test sample scores obtained before
and after the RBL procedure can be plotted in a score plot
together with the calibration sample scores in order to
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visualize if the test sample data have been freed from the
effect of the interferents [6].

U-PLS/RBL

The U-PLS/RBL methodology has already been described
in detail in the relevant literature [14]. Since it is able to
cope with mild deviations from linearity by including
additional factors in the model, it was one of the chosen
second-order methodologies applied to resolution with the
aim of further comparing the prediction results with those
obtained from ANN/RBL.

MCR-ALS

The well-known MCR-ALS algorithm [13, 18] was also
employed to manage the present analytical problem. For
that purpose, simultaneous analysis of several sets of
correlated D; sub-matrices of spectra recorded during the
flow injection process, arranged as column-wise augmented
D data matrices, was performed.

Before starting resolution, determination of the number
of contributions to each D data matrix was performed by
applying singular-value decomposition (SVD). The S™-type
initial estimates were then built by selection of the purest
spectra based on SIMPLISMA [19].

Given D and S”, appropriate constraints (i.e. non-negativity
for spectra and concentration profiles and correspondence
between common species in different runs) were implemented
to drive the iterative optimization to the right solution.

Experimental
Apparatus

The single-channel FIA system and the chromatographic
procedure were developed using five modules (degasser,
pump, injection valve, autosampler and, detector) of an
Agilent 1100 Series instrument (Agilent Technologies,
Waldbronn, Germany).

The flow injection manifold which is pictorially illus-
trated in Fig. 1 consisted of a carrier channel of 0.2 mol L™"
acetic acid (pH=3.0) at a flow rate of 0.2 mL min ', in
which injections of 100 puL sample solution prepared in
0.2 mol L™ acetate buffer (pH=7.0) were performed. The
pH gradient was generated in a 200 cmx0.12 mm i.d
mixing coil and was shown to be highly reproducible run-
to-run. For each FI peak, spectra were registered in the
range 200-300 nm each 1 nm at regular time intervals of
2 s for 180 s. Therefore, matrices of size 444x101 per
sample were generated, although region selections (in both
dimensions) were applied before multivariate calibration.

@ Springer

Autosampler

Pump

Mixing coil DAD detector

-

Waste

Degasser

Injection valve

Carrier
Fig. 1 Flow injection manifold

HPLC measurements were carried out on a 5-pum Zorbax
Eclipse XDB-C18 column (4.6x150 mm). All chromato-
grams were recorded at room temperature, using a mixture
of 60% (methanol-H,O—phosphoric acid-ammonium dihy-
drogen phosphate 220:300:2:3 g, v/v/v/w) and 40% aceto-
nitrile as mobile phase flowing at 1 mL min ' with
ultraviolet detection at 247 nm [2].

Software

All multivariate algorithms were implemented in Matlab
7.1 [20]. The MCR-ALS algorithms were downloaded
from the Multivariate Curve Resolution web page: http://
www.ub.es/gesq/mer/mer.htm. Routines for applying ANN/
RBL and U-PLS/RBL are available from the authors on
request; these include a graphical user interface which also
provides access to a variety of second-order multivariate
methodologies of the type already described for the first-
order multivariate calibration [21]. Statgraphics Plus 5.1
software was used for all statistical analysis [22].

Reagents and solutions

All experiments were performed with analytical-reagent
grade chemicals. Milli Q water was used for all solutions.
LOR and PES standards were kindly provided by Quimica
Montpellier, Buenos Aires, Argentina. Stock solutions of
LOR (0.6203 g L") and PES (6.0164 g L") were prepared
by dissolving each standard in HC1 0.1 mol L™". A solution
of the excipients usually present in the commercial sample—
propylene glycol, sorbitol, anhydrous citric acid, sodium
benzoate, and sucrose—was also prepared in water, at con-
centrations corresponding to their known value in commer-
cial samples.

Two solutions prepared from glacial acetic acid (Cicarelli,
San Lorenzo, Argentina) and NaOH (Cicarelli, San Lorenzo,
Argentina) were employed to create a double on-line pH
gradient. A 0.2 mol L™ acetic acid solution was prepared for
use as carrier stream and 0.2 mol L™ acetate buffer solution
was used for dilution of the samples.
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Experimental calibration and validation sets

A set of 25 samples corresponding to a five-level full-
factorial design was prepared for calibration. Well-defined
non-linear relationships were observed between the con-
centrations and absorbances measured in the studied ranges
of 6.66-10.00 mg L' and 80.00-120.00 mg L™ for LOR
and PES, respectively (see below).

A validation set corresponding to a central composite
design containing nine samples at different concentrations
from those employed for calibration was also built for
monitoring the ANN training.

An additional six-sample set was built for prediction
requiring the second-order advantage. These samples were
employed neither for training nor for monitoring of the
ANN. They comprised mixtures of appropriate amounts of
stock solutions of LOR and PES, also containing excipients
usually present in the commercial samples at their known
concentrations.

All samples were prepared in 2.00-mL volumetric flasks,
diluted to volume with 0.2 mol L' acetate buffer and
injected twice into the FIA system.

Sample

The analyzed sample was Decidex Plus Oral Solution
(Roemmers, Argentina). This pharmaceutical contains
1.0g L' LOR and 12.0 g L' PES and was diluted 1:120
with 0.2 mol L™" acetate buffer in volumetric glassware
before analysis.

Chromatographic procedure for real samples

Working solutions of LOR and PES were prepared by
dissolving accurately known amounts of each standard in
mobile phase and diluting in the same solvent to concen-
trations of 20 and 238 ug mL ™', respectively. Real samples
were diluted 1:50 in mobile phase. All solutions were
filtered through a 0.45 um membrane filter before injection
of 20 puL. HPLC measurements were then performed as
described above. Finally, peak areas were recorded to
calculate concentrations in samples.

Results and discussion
Detection of nonlinearity

As a consequence of the high concentration difference
between LOR and PES in the analyzed commercial sample,
the dilution required to perform the determination of both
analytes simultaneously introduces nonlinearities in the

more concentrated analyte (PES) but may also lead to
deviations from the linear absorbance—concentration range
for the less concentrated drug (LOR).

In order to detect the presence of nonlinearity both
qualitative and quantitative detection tools were implemented
on spectra selected from the maximum FIA peak, i.e. first-
order data were used to perform the following analysis.
Initially, the most universal diagnostic plot, i.e. Mallows
augmented partial residual plot (APaRP), was built for each
analyte to assess a possible quadratic relationship between
some of the first factors and the concentration [23]. For that
purpose, the vector y which contains the individual analyte
concentrations was regressed against the first 4 PLS-1 factors
(LV) of the data matrix and the square of the first LV [24]:

Yi = b() —+ b]LV]i + ...+ bALVAi + b]] (LV],’)Z

+ €Aparp; (6)

where eap.rp; are the elements of a vector containing the
residuals of the APaRP fitting (espsrp). The relevant plot
was then obtained by plotting the sum [eapp.rp+b LV +
LV against LV, [24]. In the present case, the APaRP
plots were constructed including the six first LVs into the
model, for both analytes. Observation of Fig. 2a,b reveals
evidence of mild non-linear behavior for LOR in contrast
with a considerable quadratic non-linear pattern for PES,
present in the data set.

To quantitatively evaluate the degree of non-linearity,
examinations were carried out by applying both Runs and
Durbin—Watson tests. The former examines the number of
series of consecutive residuals with the same sign (runs),
indicating a trend when long runs occur based on the
calculation of the indicator z [24]:

z=(u—0+4+05)/0 (7)
where u is the number of runs, and:

=1+ 2mnf(ny +n) (8)

o> =2nn_(2n,n_ —n, — n,)/ [(n+ +n ) (ny +n_ — 1)}

©)

where n, and n_ are the number of positive and negative
residuals. Non-linearity is present when z exceeds the
critical value of 1.96 (at 95% confidence level). The latter
test considers the null hypothesis (Hy) that there is no
correlation between the successive residuals, versus the
alternative hypothesis that the correlation exists, by
computing the statistic d [25]:

Z?: (ez' - ei—l)2
d= —ZZ > (10)
i=1%i
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Fig. 2 Mallows augmented partial residual plot (APaRP) for LOR (a)
and PES (b) when the six first LVs are included in the model for each

where e; is a given residual, and e;_; is the preceding one.
Comparison of d with the two critical values d (lower) and
dy (upper), leads to the following conclusions:

1. if d<dp the null hypothesis is rejected, indicating
correlation between residuals;

2. if dy <d<dy the test is inconclusive; and

3. if d>dy the correlations are considered to be negligible.

As can be seen, the quantitative results presented in
Table 1 confirm the APaRP plots conjecture, suggesting the
presence of mild non-linearity for LOR and strongly
supporting the non-linear pattern followed by PES.

On the basis of the previously described analysis, we can
clearly state that the present analytical problem is non-
linear and should be treated with appropriate second-order
methodology able to cope with this behavior. Because of
this, ANN/RBL was chosen, although PLS/RBL and
MCR-ALS were also applied.
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Determination of the ANN architectures

Optimization of the ANNs was performed by trial and error
following two different strategies to set the initial number
of input nodes. The stepwise addition approach consisting
of starting with a deliberately small number of input
variables (i.e. the first few PCs) and adding new variables
one at a time until the monitoring and/or prediction
performance of the net no longer improves [17], was
applied to find the most appropriate net for LOR. On the
other hand, the stepwise elimination approach was more
convenient for establishing the best net for PES, starting
with a deliberately large number of input variables and
gradually removing some of them until the monitoring and/
or prediction performance of the net stops improving [17].
Besides, a number of hidden neurons ranging from one to
nine were used to train the nets for each trial number of
input neurons. Parameters for all nets showing acceptable
RMSET and RMSEM were stored in order to be tested
subsequently.

Therefore, in order to assess the robustness of the ANN
results, the best five models for each system were sequen-
tially applied to prediction in the test samples. Table 2 shows
the training parameters for the five best nets obtained for
each analyte. The percentage recovery of the test set
predictions gathered by applying all nets in resolution were
analyzed with both the Bartlett and Tukey HSD (honestly
significantly different) statistical tests [25].

The Bartlett’s test was used to verify homogeneity of
variances across each group of predictions. Because both
calculated p-values, i.e. 0.54 and 0.82 for LOR and PES,
respectively, are greater than the critical value of 0.05, there
is no significant difference between variances when test
samples are predicted with any of the five considered nets.
Furthermore, it was established that there is no difference
between the means obtained for each analyte when all pair-
wise comparisons among means were analyzed with
Tukey’s test at a confidence level of 95% (Fig. 3a,b).

On the basis of the latter evidence and on the similar
RMSET and RMSEM between each group of selected nets,
shown in Table 2, we can conclude that the whole tested

Table 1 Results from the Runs and Durbin—Watson tests applied to
the APaRP plots to evaluate the degree of non-linearity

Component Runs test Durbin—Watson test

z value® Conclusion d value® Conclusion
LOR 2.36 Non-linear 1.64 Inconclusive
PES 7.33 Non-linear 1.19 Non-linear

#The critical z and d values for the Runs and Durbin—Watson tests at
a=0.05 are z.;;=1.96, d; =1.32, and dy=1.92
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Table 2 ANN parameters corresponding to training procedure for loratadine and pseudoephedrine sulfate

Parameter® Value

Loratadine
Architecture® 4-6-1 4-7-1 4-8-1 5-8-1 5-9-1
Training cycles® 2953 1575 1285 1598 1182
Absolute (mg L"), relative (%) RMSET 0.41, 4.9 0.44, 5.4 0.44,5.3 0.46, 5.5 0.47, 5.6
Absolute (mg L"), relative (%) RMSEM 0.27,3.3 0.26, 3.1 0.29, 3.5 0.26,3.2 0.41, 5.0
Average recovery (%)° 103.3(7) 105.3(8) 99.7(5) 98.6(6) 103.5(7)

Pseudoephedrine sulfate
Architecture® 8-9-1 8-8-1 8-7-1 7-7-1 7-5-1
Training cycles® 681 1520 3000 1423 1402
Absolute (mg L™, relative (%) RMSET 0.79, 0.79 0.76, 0.76 0.72,0.72 0.90, 0.90 0.78,0.78
Absolute (mg L"), relative (%) RMSEM 2.0,2.0 1.9, 1.9 1.8, 1.8 1.7, 1.7 1.7, 1.7
Average recovery (%) 91.2(3) 95.3(4) 95.6(5) 93.1(4) 91.9(4)

*RMSE, root mean square error; T, training; M, monitoring. Relative percentage errors are calculated with respect to the mean calibration

concentration

® The architecture is given as input, hidden, and output neurons

¢ Learning rate and momentum equal to 0.5

9 Average of twelve determinations, standard deviation in parentheses

nets could be used to suitably deal with the present
analytical system. However, we decided to work with those
of architectures 4-8-1 and 8-7-1 for LOR and PES
respectively, supported on the highest percentage recovery
obtained when prediction of the test samples were done
using them (Table 2). As can be noted, the more complex
architecture necessary to model PES is another fact
supporting the conclusions obtained from the non-linearity
analysis (see above).

Multivariate calibration results
Test samples

Tables 3 and 4 show the results obtained for LOR and PES,
respectively, when the test samples were analyzed. With
respect to U-PLS/RBL, six calibration latent variables were
estimated to be adequate by resorting to cross-validation
[26], indicating that additional PLS latent variables should
be considered with the intention of compensating for non-
linearity. Three unexpected components were also neces-
sary to decrease the prediction residuals, until they
stabilized at a value compatible with the instrumental noise.
On the other hand, the SVD analysis detected five
components for suitable application of MCR-ALS. As
can be seen, better prediction results and statistical
parameters are achieved when the resolution is carried out
with ANN/RBL, with one unexpected component for LOR
and two for PES. Interestingly, results furnished when
applying both linear methods to the non-linear system
(PES) show a remarkable difference from those obtained by
ANN/RBL (although better for MCR—ALS). Anyway, the
recoveries obtained are different from the agencies’ sug-

gested acceptable range (95-105%) [27]. On the other hand,
acceptable predictions for LOR are obtained by applying
the three algorithms, although a high dispersion of the re-
sults is evident for the linear methods. Hence, the application

115
110|
= 108
<105
o
= 100
95" 1

90|

100

95

Mean
[(n]
(=]

|

851 b
A B C D E
Net
Fig. 3 Means and 95.0% Tukey HSD intervals against nets for (a)
LOR, for the following architectures: A=4-6-1, B=4-7-1, C=4-8-1,

D=5-8-1, and E=5-9-1, and (b) PES, for the following architectures:
A=8-9-1, B=8-8-1, C=8-7-1, D=7-7-1, and E=7-5-1
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Table 3 Test concentration and prediction results using PLS/RBL, MCR-ALS, and ANN/RBL for LOR

Sample Actual (mg L") Predicted (mg L™")?

PLS/RBL® MCR-ALS® ANN/RBL!
1 8.33 8.62 9.97 8.27
2 7.50 8.52 8.84 8.11
3 9.16 9.54 9.83 9.00
4 7.50 7.01 7.24 7.14
5 9.16 8.78 8.92 9.32
6 8.33 7.83 7.71 7.98
Average recovery (%)° 100.8(8) 105.2(12) 99.7(5)
RMSEP (mg L), REP (%)" 0.56, 6.7 0.95, 11.4 0.33, 4.0

* Average of the two injections into the FIA system for each sample

® Number of latent variables = 6 (established by leave-one-out cross-validation); number of unexpected components = 3

“Number of components = 5 (established by SVD)
9Number of unexpected components = 1
¢Standard deviation in parentheses

"RMSEP = root mean square error of prediction; REP = relative error of prediction

of ANN/RBL can be recommended for the simultaneous de-
termination of LOR and PES in real pharmaceutical samples.

Real samples

Finally, with the purpose of testing the applicability of the
investigated method, the analysis of a real sample (four
replicates) was performed by ANN/RBL, and the results were
compared with those obtained by the HPLC method [2]. In the
case of LOR, the average prediction obtained by ANN/RBL
was 0.95 g L' (95.0% of the labeled amount). This
concentration is statistically comparable with that obtained
using the reference HPLC-based method (0.94 g L', or

94.0% of the labeled amount), on the basis of an independent
t-test. The latter was performed over the results of four repli-
cates processed with each method yielding a probability of
0.57 at a confidence level of 95%. With respect to PES, the
average prediction obtained by ANN/RBL was 11.29 g L'
(94.1% of the labeled amount), which is also equivalent to
the result provided by HPLC (11.57 g L™', or 96.4% of the
labeled amount) furnishing a p-value of 0.42. Finally, U-PLS/
RBL and MCR-ALS were also implemented for quantitation
of the real sample. The differences between average values
were significant, with p<0.05 for both algorithms (LOR and
PES). These results are a good match with those obtained
from analysis of the validation samples.

Table 4 Test concentration and prediction results using PLS/RBL, MCR-ALS, and ANN/RBL for PES

Sample Actual (mg L") Predicted (mg L™')?
PLS/RBL® MCR-ALS® ANN/RBL?

1 114.10 102.51 122.42 104.13

2 90.00 83.67 97.12 82.80

3 90.00 84.48 94.80 84.96

4 110.00 93.80 124.68 113.44

5 110.00 95.66 110.30 110.15

6 100.00 87.81 102.86 92.93
Average recovery (%)° 89.5(3) 106.2(5) 95.6(5)
RMSEP (mg L"), REP (%)" 11.7, 11.4 7.8,7.6 6.3, 6.1

 Average of the two injections into the FIA system for each sample

®Number of latent variables = 6 (established by leave-one-out cross-validation); number of unexpected components = 3

“Number of components = 5 (established by SVD)
9 Number of unexpected components = 2
¢Standard deviation in parentheses

PRMSEP = root mean square error of prediction; REP = relative error of prediction
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Conclusions

A pH-gradient flow injection analysis (FIA) system with diode-
array detection can be used to generate second-order data that
can be conveniently managed for simultaneous determination
of loratadine and pseudoephedrine in pharmaceuticals.

Owing to the high concentration difference between both
active principles in commercial samples, a nonlinear
relationship arises between the concentration and the
instrumental signal for the more concentrated analyte
(PES). This fact results in the application of ANN to obtain
the second-order advantage. ANN is a powerful tool able to
furnish better predictions and figures of merit than those
provided by two well established linear algorithms, MCR—
ALS and U-PLS/RBL.

In the light of these results, the present methodology can
be recommended for quality-control analysis of LOR and
PES in pharmaceuticals in routine laboratories.
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