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WORST CASE QUEUE LENGTH ESTIMATION IN NETWORKS
OF MULTIPLE TOKEN BUS SEGMENTS.

Henrik Schigler M.Sc.EE, Ph.D, Niels Ngrgaard Nielsen
M.Sc.EE, Jens Dalsgaard Nielsen M.Sc.EE, Ph.D and Niels Jgrgensen M.Sc.EE
Dept. of Control Engineering
Inst. of Electronic Systems
Aalborg, Denmark

Abstract

The paper describes a a novel methodology for estimating worst case queue lengths in real time communication
networks of connected segments each of token bus type. A general non probabilistic traffic model is suggested,
which is believed to be applicable even where a probabilistic model traditionally is the first choice, e.g. alerting and
user interface handling. Completion time theory is provided justifying the correctness of an iterative estimation
scheme for worst case queue lengths, and numerical results illustrating the virtues of the algorithm are presented.

1 Introduction

A variety of local area network technologies are suggested to serve communication medium in hard real time
environments such as distributed proces control systems, where hard bounds on communication delays are required
to guarantee the functional correctness of e.g. closed loop control across the network and high level system
diagnostics. Among the more recent suggestions is TTP [1] where a TDMA scheme quarantees a fixed bandwith to
each node, a tight clock synchronization between nodes as well as direct information about liveliness and internal
state. In [3] and [5] approximate network preemptivness as well as prioritization among nodes is assumed in order
to facilitate the translation of results from scheduling theory ([?], [2] and [?]) to real time network communication.
In this paper an existing network technology is analyzed w.r.t. real-time properties. We consider a network, where
a number of token bus segments are connected by a number of gateways in an arbitrary configuration as depicted
in fig. 1
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Figure 1: Owerall network topology

Throughout the network different patterns of traffic are mixed, so that both periodic and aperiodic sources of
traffic reside on the same segments. Periodic traffic is for example generated by sensors transmitting measured



values for logging, supervision, control and presentation, whereas aperiodic traffic might be commands from the
operator to machinery level or alerting in the opposite direction.

When a message is generated in some node it initially is placed in some queue of outgoing messages served
according to a FIFO discipline, in turn it is transmitted to another node on the same segment. If the receiving
node is a gateway to another segment the message is statically routed forwards and put into a queue of outgoing
messages of the gateway. Thus to reach the end receiver the message has to travel across a number of network
segments. Since outgoing messages have to advance through queues of outgoing messages transmission delays and
queue lengths are closely linked. High transmission delays can be accomodated for w.r.t. alert messages or errors
reported from low level error detection, by introducing priority queuing in nodes generating traffic of different
priority as well as in gateways. Oppositely to facilitate timing related system diagnostics on a high level, it is
of major importance that hard bounds (worst case estimates) on transmission delay can be established even for
regular low priority traffic.

From control theory it is well known that in-loop delay might introduce a serious deterioration of performance
and robustness to closed loop control systems or it may even destabilize the loop. If closed loop control is performed
across the network it is therefore of vital importance that only a predictable and bounded delay is introduced by
the network. In this paper a general methodology for establishing worst case bounds on transmission delays and
queue sizes in a network of connected segments of token busses.

The paper is organized as follows. First a non probabilistic traffic model is sugggested, which is a generalization
of a pure periodic traffic model. The validity of the model is briefly argued. Then a completion time theory for
unprioritized token bus networks is developed identifying an extreme scenario regarding transmission instants and
in turn queue lengths. The extreme scenario is subsequently utilized in an estimation scheme, where worst case
queue lengths are minimized iteratively. Next a numerical example is given illustrating the main virtues of the
method. Worst case estimation of transmission delays is discussed and the case of multiple segments is treated.
Finally conclusive remarks on perspectives and future research are made.

2 Modelling traffic sources.

From the Poisson assumption traditionally made for aperiodic traffic, traffic of any size is possible within intervals
of arbitrary shortness. Thus Poisson traffic does not allow for worst case analysis and is therefore not considered
feasible for analysis of hard real time systems. Therefore traffic sources in hard real time systems are assumed
to produce only a bounded traffic within time intervals below a certain minimum length. Traffic R;(I1) received
within a time interval I1 in node 7 is assumed to be bounded by

Ri(Ir) < Ri(|I7]) = Ci + a; - (|I7]) (1)

Assume that a lowest interarrival time T; as well as a maximum message size ¢; can be identified for some source
then (1) is fulfilled for a; = % and C; = ¢;. Likewise if a number of such sources characterized by parameters C;

n
and a; j € J; produce traffic to the same node ¢ the total received traffic is bounded by
Ry(Ir) < Ri(|Ir)) = ) Cj+ (D o) - |Ir| (2)
JE€Ji JE€Ji

Thus the above bound is invariant to convergence of traffic sources.

Next consider some queue subject to incomming traffic characterized by a and C'. If it is guarateed that the queue
length will not exceed a value of K, the outgoing traffic is characterized by @ and C + K. Thus the form (1) is
invariant to queueing of bounded queue length.

The bound on received traffic by an afine function, even for aperiodic traffic, is illustrated by the following 2
examples

e When an alarm goes off it will at least take the minimum repair period before an alarm from the same source
goes off again (a firealarm should not be transmitted twice before the fire has been put out). Thus a minimal
period can be identified.

e Command messages should not be transmitted closer than the biological reaction time of the human initiating
them, once again yielding a minimal period of transmission.



3 Completion time theory for token bus networks.

Based on the traffic model derived in the previous section a non probabilistic framework for estimating queue

lengths and in turn transmission delays is developed in the sequel. The traffic model of the previous section can be
viewed as a generalization of pure periodic traffic models and includes as well aperiodic traffic, where a minimum
interarrival time can be identified. This work is inspired by the basic results from scheduling theory and especially
the critical instant theorem of [?], stating that for a periodic task set, where execution times and periods are fixed,
the worst case situation is when all tasks are reported ready simultaneously. In [5] the results from scheduling
theory are applied to a shared communication channel of ring topology with periodic traffic sources. The basic
assumptions regarding prioritization among tasks and preemptivness are translated into prioritization among nodes
and a fixed small packet size respectively. Both are bound to introduce a significant overhead to the system and in
turn decreasing the data efficience of the network. Instead we consider token bus networks without priorities and
with packet lengths of arbitrary lengths.
For simplicity token passing overhead is assumed to be negligible in the following. Likewise nodes are assumed to
transmit according to a bounded and gated unprioritized FIFO discipline, where the traffic residing at a queue at
token capture time is transmitted up to a certain maximum network packet size. We consider an extreme situation
where maximum traffic is received from a common critical instant. This situation is compared to a set of sitations
where traffic is assumed to be received in packages of fixed size below the maximum mentioned above. First consider
an instant to where queue lengths Q;(to), i = 1,2,.., N are not all zero, that is

SQ(to) = z Qi(to) >0 3)

Assume then for any t > to that SQ(t) > 0. When only one queue is not empty, all time is spent transmitting so
that

N
SQ(t) — SQ(to) = ZRi([to,t]) — (t—to) (4)
N N =

< Zci'i'(zai—l)'(t—to) (5)

Thus if Zil a; <1, 5Q(t) needs to cross zero for some ¢t > tg. More specifically, because all queue lengths
initially are zero SQ(t) < Ef;l ¢; and the time for reaching zero obeys

N
dim1 G
N
1= o

Thus all queue lengths can at most be away from zero for a time interval of length T7,.
Let Sp, 1 (Q1,..Qn) denote the set of scenarios over ¢ > ¢y where

t—to <T.=

(6)

® Qr(to) =0
o Qilte) <Qifori#k
o Ri([to,t]) < Ri(t—to), i=1,2,..,.N

e Node h is the first node to transmit after ¢

and let Sy (Q1,.-Qn~) be the one scenario in S (Q1,..Qn), where
e Qi(te) =Qifori#k
o Ri([to,t]) = Ri(t —to), i=1,2,..,. N

Next we define the following symbols



e succ: N — N is the usual successor function according to the ring topology, i.e.
succ(id) = i+1 for i< N
succ(N) = 1 (7)
e pred: N — N is the inverse of succ

e SUCC : (1..N)® = (1..N)? is a three place successor function defined by

SUCC(h,i,7) = (succ(i),j) for succ(i) # h
SUCC(h,i,j) = (succ(i),j + 1) for succ(i)=h
(8)

That is if (4,7) denotes quantities associated to the j. th token capture of node i in Sp x(Q1,..-QN) then
SUCC(h,1,j) relates to the token capture following immediately after.

e S;;: Amount of traffic transmitted from the ¢ th. node between its j th. token- capture and -release after to

o t; ;: Time for j th. token capture, i.e.
tsucc(n,ig) = tig + Sij 9)
e T; ;: Total amount of traffic transmitted from the ¢ th. node after its j th. token release after to, i.e.
Tij=Tij-1+ S (10)

The intiuitive locations of the above symbols are depicted in fig. 2. All quantities denoted ~ are defined to relate

Figure 2: Location of defined symbols.

to Sth(Ql, QN) - - B
Now tp,1 = tp,1 = to and because Qp > Qn(to), Sh,1 > Sk, and in turn tyyce(n),1 > tsuce(n),1 implying

Rsucc(h) (fsucc(h),l - tO) > Rsucc(h) ([th tsucc(h),l]) and

Ssucc(h),l > Ssucc(h),l (11)



The reasoning follows the same line all trough the first token rotation. Now assume that for some token rotation !
and some node n that

Ei,j >t5, t=1.N, j <l

(12

tij > tij, i=h,.,n, j=1 (13
Tij>Tij, i=1.N, j <l (14
T;; >T;j, i=h,.,n, j=1 (15
(16

— — N ——

and further that TSUCC(h,n,l) < TSUCC(h,n,l)- This implyes that gSUCC(h,n,l) < SSUCC(h.,n,l); which can only
happen when the queue is exhausted in the former situation, i.e.

Qsucen)Esucc(nnty) — Ssucc(hmngy =0 (17)

Up until the [ th. token capture of node succ(n)_all nodes transmitted more in the first situation, that is Ti, i > T
so that tsycco(nnt) > tsucc(an,y and in turn Reyee(n) (Esucc(n,n,gy = to) > Reuce(n) ([tos tsucco(n,n,p]) so that

0 = Qsucetn)Esucc(nn) — Ssucc(hn)
= Qsuce(n) + Rsuce(n) Esucchny — to) — Tsucc(hn
> Qsuce(n)(to) + Rsuce(n) ([to, tsucc(hnnl) — Tsvcoh,n
= Qsuce(n)(tsucc(r,ny)) — Ssucc(hn)
(18)

which is not possible, because it would mean that node succ(n) should transmit more than it has queued up at
tsucc(n,n)- All together it is proved by the 2. principle of induction that

tij >t
T;; > T;

i=1,.,N,Vj>1 (19)
i=1,.N,Vj>1 (20)

2Jo
2Jo
Thus S,k (Q1,--Qn) is extreme in the above sence within S,k (Q1,..Qn). Next we show that Syuce(r),x(Q1,--Qn)
is extreme for node k among all possible values of h. In this case

fk,j > Tk, Vi>1 (21)

Ty,j 2T, Vji21 (22)

We now redefine notation slightly so that ~relates to Sh,k(Ql, ..Qn) and quantities without ~ relates to

Ssucc(h),k (Ql: QN) _ _ B _

To easen up notation let m = succ(h). Then th,1 = to and tm1 = th1 + Sk > to = tm,1- Consequently
Ry i(tm,1 = to) > R 1([to,tm,1]), S0 that Sy 1 > Sy and in turn Zsyce(m),1 2 tsuce(m),1- The argument follows
similarly all through the first token rotation, so that tpreqn)1 > tpred(n), and Spreacn),1 = Sprea(n),1 SO that
th2 > th1- ~ ~ o _
Assume for the sake of contradiction that Th.2 < Th,1. Then Sp 2 < Si,1, which can only happen if Qp(th,2) —Sh2 =
0. Now

0 = Qh(fh,z) - Sh,Z
= Qn+ Ru(tha—to) —Tho
Qn(to) + Ru([to,th,1]) = Thy =
= Qn(th1) — Sk (23)

which is a contradiction as stated previously. Now assume generally that

\%

ti; > tij, i=1.N,i#h, j<lI (24)



thjrr > tn; j<l (25)
ti; > tij, i =succ(h),..,n, j=1 (26)
Ti; > Tij,i=1.N,i#h, j<lI 27)

Thjyr > Thyj<l (28)
T;; > Ty, i=succ(h),..,n, j=I (29)

(30)

and for the sake of contradiction that Tsycc(nngy < Tsucc(m,n,i), then as before Ssycco(nng < Ssucc(mni)
which implyes that Q suce(n)(Esucc(nn,)) — Ssucco(h,ngy = 0 so that

0 = Quuce(n)Esucc(nny) — Ssucc(nn,)

qucc(n) + Rsucc(n) (ESUCC(h,n,l) - tO) - TSUC’C(h,n,l)
> qucc(n) (tO) + Rsucc(n) ([to, tSUCC(m,n,l)]) - TSUCC(m,n,l)

Qu(tsucc(m,ny)) — Ssucc(mn,)

(31)
Once again by the second principle of induction
tij >tij, i=1.N, i #hVj>1
Tpj > Tij, i=1,.,N, i#hVj>1
(32)

From the above it is concluded that when the starting node A is rotated one location in token direction, then #j ;
and T} ; becomes smaller for k # h. This proces can be repeated from h = succ(k) until h = k and all steps reduce
values for t ; and Ty, ;. Thus h = succ(k) is extreme.

Now it is assumed that traffic arrives at node k as complete network packages, that is if Q(¢x,;) > 0 then Si ; = P,
where P is the size of one network package from node k. Then from #o until some later instant ¢, where Qx(t,) =0

Qr(tr,;) = Ri(tr; —to) — Tk,j—1 (33)
> Ri(tg;—to)—(j—1)-P
> Re([to,tr,;]) — (J — 1) - P = Q(ts,;)

Inequality (33) reveals that Qp(t,;) will not exceed Qp(r,5). Therefore Syyee()k(Q1,--Qn) is extreme also w.r.t.
queue lengths among all possible values of h.

4 Tterative method for estimating maximum queue lengths.

Since Q(t,;) bounds Q(t,;) for all numbers of token rotation j > 1 the maximum queue length @ in node k
can be computed by
Qr=_max Qx(tk,;) (34)
;.1 Eltot-]
Therefore if bounds Q1,..,Qn on queue lengths are known along with maximum traffic bounds ci,..,cy and
ai,..,an it is possible to infer new and hopefully lower bounds on queue lengths by computing Qy k¥ = 1,..,N
using the previous bounds. The following algorithm computes transmission times, transmitted amounts of traffic
and queue lengths for all nodes in the situation

Ssucc(k),k(Ql: QN)

while(sum(queue_length) < PACKET_SIZE)
node=k;
for i=1:NUM_NODES



node=NEXT (node) ;
rec=c(node)+alfa(node)*time;
queue_length(node)=Q(node)+rec-sent (node) ;
tr=min (PACKET_SIZE,queue_length(node)) ;
sent (node)=sent (node) +tr;
time=time+tr;

end

rec=c(k)+alfa(k)*time;
queue_length(k)=rec-sent (k) ;
tr=min(PACKET_SIZE,queue_length(k));
sent (k)=sent (k) +tr;
time=time+tr;

end

If the map T is defined by

r: Ql:"JQNacla"acN;ala"aaN = Qla":QN

(35)
we can construct a non increasing sequence Q!, Q2, .. by
Ap+l Apt+l
@, Q%
= min(Q7, .., Q%
, D(QY,..,Q%,c1-,enyan, .. an)) (36)
As a starting point of the iteration (36) the common value Zi\il ¢; can be chosen so that
N
N = cik=1.N (37)
i=1

since this value is known to bound the total amount of queued traffic it especially bounds traffic queued up on a
single node.

5 Numerical example.

As a numerical example results are presented for a token bus connecting 7 nodes with periodic traffic. Traffic
Node | T C P Q Q Td*
1 1000 | 200 | 100 | 400 | 400 | 2500
2 2000 | 500 | 100 | 1000 | 700 | 5500
3 4000 | 1700 | 100 | 4200 | 2600 | 15800
4 8000 | 200 | 100 | 200 | 200 | 1300
5

6

7

characteristics of the node set are shown in table 5

10000 | 100 | 100 | 100 | 100 | 600
20000 | 1000 | 100 | 1000 | 1000 | 5500
40000 | 500 | 100 | 500 | 500 | 3000

From table 5 we get Zf\;l a; = 0.9725, which guarantees finite time completion of the algorithm, and Efil ¢; = 4200
which defines the starting point of the iteration (36). In the @) column the final worst case estimates of queue lengths.
Every node j for which

of P;

H<—Ft—-1 (38)

T; Yz b



can maximally build up a queue length of ¢;, since even for maximum token turn around time each periodic traffic
reception will be transmitted before the expiry of the associated period. This basic fact has certainly been captured
by the algorithm as can be seen from table 5. The figures listed in column @ indicate maximum queue sizes for a
situation, where all queues initially are zero and all nodes receive maximum traffic from the instant, where node
Jj just released token. This situation is intuitively critical (extreme), and is assumable, that is it may occur. The
worst case results on the other hand may or may not be assumable, so that if they are not, the worst case estimates
will be conservative. If some maximum queue length criterion M L; is defined then

Q; < ML; (39)

guarantees proper operation with respect to queue lengths. In other words the worst case estimates supply a
sufficient condition. On the other hand if

there exists a situation, where the queue length criterion is not fulfilled, so that the figures in the @ column define
a necessary condition. Finally if ML; € [Qj, @] no precise statement can be made.

6 Estimating worst case transmission delays.

Two different definitions for transmission delay of some message M of size L can be made; T'd** is the time
from receiving the first bit of M in the transmitting node ¢ until the last bit of M reaches the receiving node j, or
alternatively T'd* is the time from receiving the last bit of M in ¢ until the last bit of M reaches j. We consider only
delays according to the latter definition. Now following the reasoning of the former section an extreme situation
can be identified; the time from node i receives the last bit of M until the last bit is transmitted is largest if it is
received exactly when i releases token and in that instant all queue lengths are maximum and from that instant all
queues receive maximum traffic. Computing the transmission delay in this situation yields a worst case estimate of
Td* when ignoring cable delays. Worst case estimates of T'd* associated with the example in the previous section
are shown in table 5.

7 Multi segment analysis.

For an entire network consisting of a number of segments each of ring topology, the previous consideration only

carry over to a certain extend, that is if the overall network topology is free of directed cycles. A directed cycle is,
in this context, a sequence of segments Si, .., Sy so that traffic travels from S; to S; 41 for i < M and from Sy to
S1, as depicted for M = 2 in fig. 3. When the network is free of such cycles there must be at least one segment
that does not receive traffic from other segments. The analysis of the previous section is initially applied to such
leaf segments. If a gateway G in such a segment S receives traffic from nodes j € J described by parameters c; and
aj j € J and the queue length analysis is carried out on S producing estimates Q; j € J, then G is described by
parameters >, ;(¢; + Q;) and >° jes @j- Subsequently there is at least on segment receiving data only from leaf
segments. The queue length analysis is then performed on such segments using the parameters describing gateways
allready obtained from the analysis of leaf segments. The analysis can be carried on in this way all the way to a
number of top segments which do not transmit traffic to other segments.
When cycles appear, as shown in fig. 3, the following problem arises; the parameters describing gateway 1 effects
the analysis and in turn the queue length estimates of segment B, which effects the parameters describing gateway
2, which effects the analysis of segment A and in turn the parameters of gateway 1. One could imagine an iterative
scheme of analysis alternating between segments A and B. The conditions for such a scheme to be stable remain
yet to be found.

Instead an alternative appoach is considered based on the following assumption concerning the gateways of the
network; a gateway between segments A and B is assumed to consist of 2 queues as shown in fig 4. One queue g4
is receiving traffic from segment A and one queue ¢p is transmitting traffic to segment B. Traffic is transferred
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Figure 3: Network with a directed cycle.
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Figure 4: Gateway divided into separate queues por decoupling segments.

from g4 to gp periodically so that a traffic amount of ¢ is transferred each T time units. The parameters ¢ and T
fulfill the following relationships

c

Tz Z Q; (41)

where J denotes the set of nodes in segment A transmitting traffic through the gateway. In this way parameters
describing each gateway remain fixed and the queue length analysis of each segment can be performed independently.
Assume for some instant to that Q(to) < ¢ and Qa(t) > c for t > to. During the interval [to, ] the receive queue

ga received maximally }°. ;(c; + @; + a; - (t — to)). Because Qa(t) > c, after o, minimally a - (t —t9) — c is
transferred to the transmit queue ¢p in [to,t]. Consequently @ 4 is bounded by

Qalt) < D (¢j+Qj+aj-(t—to)) +c—a-(t—ty) +c
JjEJ
< D (+Q)+2-¢c (42)

JjEJ

8 Summary

A theoretical and operational framework for estimating worst case queue lengths and transmission delays in
networks of connected token bus segments is presented. A non probabilistic traffic model is presented which
bounds received traffic below an afine function. The validity of the model even for traffic sources traditionally
modelled in a probabilistic framwork is argued by examples. On the basis of the assumed traffic bounds a critical
or extreme scenario regarding transmission instants and queue lengths is identified. The extreme scenario is utilized
in an iterative algorithm, which, on the basis of a known set of worst case queue length estimates, computes new
and hopefully less conservative estimates. A valid starting point of the algorithm is found and numerical results
illustrating the virtues of the algorithm are presented. Multiple segments are treated under a non restricitve
assumption concerning the interior operation of the gateways connecting segments. The generality of the suggested
traffic model yeilds hope for the entire methodology to by broadly applicable even outside the area of marine
automation where it was originally developed.
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