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Abstract: In the era of Autonomous Networks (ANs), artificial intelligence (AI) plays a crucial role for
their development in cellular networks, especially in 5G-and-beyond networks. The availability of
high-quality networking datasets is one of the essential aspects for creating data-driven algorithms in
network management and optimisation tasks. These datasets serve as the foundation for empowering
AI algorithms to make informed decisions and optimise network resources efficiently. In this research
work, we propose the IW-IB-5GNET networking dataset: an infrastructure-wide and intent-based
dataset that is intended to be of use in research and development of network management and
optimisation solutions in 5G-and-beyond networks. It is infrastructure wide due to the fact that
the dataset includes information from all layers of the 5G network. It is also intent based as it is
initiated based on predefined user intents. The proposed dataset has been generated in an emulated
5G network, with a wide deployment of network sensors for its creation. The IW-IB-5GNET dataset
is promising to facilitate the development of autonomous and intelligent network management
solutions that enhance network performance and optimisation.

Keywords: networking dataset; network control rules; network management; network optimisation;
5G; intent-based networking

1. Introduction

Network management and network optimisation are key aspects in the development
of 5G-and-beyond (B5G) networks and their success and viability in supporting the forth-
coming demands of communication services and applications. The AN revolution is poised
to have a profound impact on B5G networks, ushering in a new era of smart connectivity
and communication. As traditional networks are constrained by their limits in terms of
system capacity, operation efficiency, etc., autonomous systems are emerging as a solution
to address these challenges and unlock unprecedented levels of performance. This tech-
nology evolution leads to the introduction of new levels of intelligence and automation in
the management and provisioning layers of the 5G network [1]. By leveraging advanced
technologies such as AI, machine learning (ML) and software-defined networking (SDN),
ANs can gain advanced abilities of self-management, self-optimisation and self-healing. A
B5G AN refers to a network infrastructure that combines the capabilities of 5G-and-beyond
technologies and autonomous networking principles. ANs are composed of virtualised
components, automated agents and intelligent decision engines able to perform closed-loop
controls [1].

In terms of B5G networks, an AN leverages the evolution of traditional cellular net-
works by incorporating advanced features such as network slicing, virtualisation, softwari-
sation and edge computing. In order for ANs to be established in our actual infrastructures,
it is necessary to have management networks capable of carrying out all these advanced
features. One of the paradigms commonly used nowadays is the Intent-Based Network
(IBN). According to [2], an IBN is a network that can be managed using intent. The primary
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objective of an IBN is to establish an autonomic network by simplifying its management
and operation. To this end, an IBN conceives the creation of a complete autonomous
network framework [3], improving the robustness of the network and achieving dynamic
operation and maintenance [4]. An IBN supports management functions guided by the use
of intent. Intent is a high-level description of a set of operational goals and outcomes that
a network should meet and is supposed to deliver, respectively [2]. It defines objectives
and outcomes in a purely declarative manner, rather than specifying the detailed network
configuration [5] or how to achieve it. Intents are then translated into network policies,
which provide much more specific details concerning network configurations [3]. Such net-
work policies will result in the execution of network actions, achieving the desired outcome
specified in the intent. Examples of intents in a 5G network are as follows. (i) “Ensure the
deployment of the network slice meets the specified service-level agreement (SLA) with
regard to latency, bandwidth, and reliability”. (ii) “Assign the highest priority to critical
application traffic, ensuring low-latency and guaranteed bandwidth, while maintaining
a minimum level of service for standard traffic”. (iii) “Eliminate any traffic flow exhibit-
ing malicious behaviour or unauthorised access attempts, without disrupting legitimate
network traffic”.

ANs pursue Intent-Based interactions, moving from human–machine interaction to
closed-loop resource interaction [1]. In this context, AI emerges to enable this transition. AI
has become a key feature in both network management and optimisation for B5G networks.
Meanwhile, before AI training and development, some data-related steps are indispensable.
This includes not only the implementation and deployment of network sensors and data
collectors but also the further processing and adequacy of the data. Such procedures allow
not only data extraction coming from every resource of the network topology but also
gaining significant insights on real-time networking processes [6]. This enhances network
optimisation because such data can now be used in ML models to perform quicker and
better decisions. Decisions that traditionally are taken by slow human interactions can now
be autonomously performed by ML algorithms.

Despite all the benefits that ML-based solutions can bring to B5G networks, their
practical implementation is difficult and introduces a number of challenges. First of all, AI
systems need a wide variety of data for training. This implies having access to a realistic
(real or emulated) network and also having the possibility and the necessary tools to access
and extract real-time data. Another option is to utilise an existing reliable and adequate
dataset. For the latter approach, the scarcity of public networking datasets is evident.
Furthermore, most of them are out of date and unreliable. This is due to the speed of
change that networks, especially cellular networks, experience over the years. This change
in network behaviours and patterns demands more dynamically generated datasets [6].
Such new datasets reflect not only the traffic flows and different types of attacks but also the
inventory of the network topology where the data are being captured. Thus, the datasets
are infrastructure-wide aware, taking into account all infrastructure levels: network-level,
node-level, interface-level and technology-level. The capture of such data will make these
datasets comprehensive, reproducible, modifiable and extensible. The above challenges
have motivated this research. This paper proposes and presents a novel comprehensive
dataset for network management and optimisation purposes in AI-driven B5G networks.
This dataset in composed of infrastructure-wide (IW) and intent-based (IB) data, extracted
from a B5G network. Such data are extracted in real-time using a closed-loop framework.

The rest of the manuscript is organised as follows. Section 2 summarises the state-of-
the-art related to existing available network-related datasets. In Section 3, the materials and
methods used to create the proposed dataset are exposed. The study area, a 5G multi-tenant
network, together with the data collection sources and network sensors, are presented.
Section 4 describes the scenario emulation for the dataset generation. This section includes
the implementation details and the design and execution of the experiments. Section 5
provides a detailed explanation of the dataset structure. The dataset analysis and validation
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is then presented in Section 6. The discussion is included in Section 7. Finally, the conclusion
is provided in Section 8.

2. Related Work

In order to ensure that AI models are effective in addressing real-world B5G network-
ing challenges, it is essential to have access to real and complete datasets. Such datasets
must accurately represent the network traffic, network topology and activities that the
model is intended to analyse and predict. In this section, a deep explanation of different
networking datasets is presented. These datasets are described in Table 1, which contains
different categories specified in rows. First, in row “Network type”, it is specified what kind
of network infrastructure has been developed to generate the dataset. Then, some rows are
designated to describe the dataset’s information. The “Topology” rows refer to the level of
detail of the network topology reported in the dataset. We refer to the “infrastructure-wide
dataset” as a dataset that includes information from all network layers specified in the
topology rows. Finally, there are some rows dedicated to specifying whether the dataset
has metadata and metrics according to the different infrastructure-level components: host,
port (or network interface), data-plane technologies in each port, data flows, port queues
and data-plane technology port rules. The datasets described are placed in the columns, di-
vided into three different types. Type 1 includes datasets extracted from common network
architectures such as LAN, military network or cloud. Type 2 focuses on IoT (Internet of
Things) networks integrated into 5G networks and Type 3 collects datasets extracted from
a 5G network. Below is a summary of them.

Table 1. Table comparing different networking datasets (np: not provided) (✘: No, ✔: Yes).

TYPE 1 TYPE 2 TYPE 3
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Network Type Military LAN Edge-IoT IoT 5G 5G

D
at

as
et

in
fo

Extraction tools tcpdump tcpdump, Zeek Zeek pcap capturing pcap capturing
Linux
scripts,
Python tools

Purpose NID NID NID NID NID NMC *
Format csv csv csv different sets pcap, csv csv

Resolution n.p n.p timestamp timestamp timestamp timestamp
Simulated Yes Partial No No No No
Features 42 86 61 n.p 112 101

Year 1999 2021 2022 2019 2022 2023
Available [7] [8] [9] [10] [11] [12]

To
po

lo
gy

Host ✘ ✔ ✘ ✘ ✘ ✔

Port ✘ ✘ ✘ ✘ ✘ ✔

Technology ✘ ✘ ✘ ✘ ✘ ✔

Flow ✘ ✔ ✔ ✔ ✔ ✔

M
et

ad
at

a

Host ✘ ✘ ✘ ✘ ✘ ✔

Port ✘ ✘ ✔ ✘ ✘ ✔

Technology ✘ ✘ ✘ ✘ ✘ ✔

Queue ✘ ✘ ✘ ✘ ✘ ✔

Flow ✔ ✔ ✔ ✔ ✔ ✔
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Table 1. Cont.

TYPE 1 TYPE 2 TYPE 3
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Network Type Military LAN Edge-IoT IoT 5G 5G

M
et
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cs

Host ✔ ✔ ✘ ✘ ✘ ✔

Port ✔ ✔ ✔ ✘ ✔ ✔

Technology ✘ ✘ ✘ ✘ ✘ ✔

Queue ✘ ✘ ✘ ✘ ✘ ✔

Flow ✔ ✔ ✔ ✔ ✔ ✔

Rule ✘ ✘ ✘ ✘ ✘ ✔

* Network management and control.

Starting with the datasets included in Type 1. The KDDCUP99 dataset was created in
order to develop a network intrusion detector. This dataset has been widely used over the
past years for anomaly detection problems [13]. More than 20 attack types are simulated in
the dataset, which can be divided in four categories: Denial of Service (DoS), Remote to
Local (R2L), User to Root (U2R) and probing. To achieve the generation of the dataset, a
wide variety of instructions were simulated in a military network environment. However,
this dataset has been detected to have significant issues that highly affect the performance
of IDSs. To overcome such problems, other datasets were generated from this one. For
example, the NSL-KDD dataset proposed by Tavallaee et al. in [14]. In [15], Ferriyan et al.
proposed the dataset HIKARI-2021, an IDS dataset that presents encrypted network traffic
in a real-world environment. The dataset is labelled with different network attacks. It has
up to 86 features extracted with the Zeek tool, which includes hosts and flows metrics.

Focusing now on other type of network datasets, we have highlighted Type 2 in
Table 1. In [9], Ferrag et al. present the Edge-IIoTset, a cybersecurity dataset of IoT and IIoT
applications. The authors prepared a IoT/IIoT testbed with different IoT devices. In such a
scenario, they identified and analysed different attacks related to IoT and IIoT connectivity
protocols. Additionally, Koroniotis et al. present Bot-IoT [16], a network traffic dataset that
includes Botnet scenarios in a realistic IoT network. It is an intrusion detection dataset
that trains models to detect various botnet attacks in IoT networks. Both works come out
with realistic and high-quality IoT network traffic datasets for NID. However, both of them
are based only on flow metrics and are not infrastructure aware. Furthermore, another
drawback is that neither of them have been deployed in a 5G network architecture.

Finally, Type 3 includes the 5G-NIDD dataset, presented by Samarakoon et al. in [17], a
fully labelled dataset built on a functional 5G test network. The network has the presence of
different attack scenarios and non-malicious traffic from real users. The dataset is focused
on NID, with a total 112 features including flow metadata and metrics.

All these exposed datasets were created with the same purpose: attack and anomaly
detection. For this reason, all of them have similar characteristics regarding the topology
level and its metrics and metadata at both port and flow level. However, there is a need
for a dataset that records the network topology in more depth, along with its intent-based
data, that is, data that reflect metadata and metrics associated with network policies, which
are linked with network intents. Thus, the dataset would provide not only information
related to network monitoring, but also information related to network control. In addition,
to the best of our knowledge, none of the datasets found include intent-based data in a 5G
network architecture. A dataset with such specifications could be used for autonomous
network management, control and optimisation. This has been the principal motivation of
the current research.
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3. Materials and Methods

In this section, the study area of the dataset is presented. This refers to a 5G multi-
tenant and intent-based network. In Section 3.1, a brief explanation of the principal
components of a common 5G network is introduced to better contextualise the problem to
be addressed. This explanation provides the reader with a clearer understanding of the
underlying sources of the various network features discussed in the following subsections.
Section 3.2 provides an explanation of the proposed IBN. Finally, in Section 3.3, the data
collection sources of the 5G-IB network are presented. This pertains to the extraction of
essential data from various network sensors and the subsequent storage process.

3.1. Reference 5G Infrastructure Architecture

Figure 1 presents a reference 5G multi-tenant network infrastructure, where network
services are softwarised and virtualised on the same physical infrastructure. In such
infrastructure, the traffic remains isolated between tenants in consequence of virtualisation
capabilities and traffic tunnelling across network segments. The 5G architecture is divided
into five different network segments: Radio Access Network (RAN), Edge network segment,
Transport segment, Core network segment and Interdomain segment. Only data-plane
components have been represented in the figure.

Figure 1. Overview of a 5G multi-tenant infrastructure data plane.

The data flow traverses every segment, each serving a distinct purpose. Starting with
the RAN segment, it represents the interface between user equipment devices (UEs) and
the 5G network. It consists of antennas (Radio Units, RUs), the Distributed Units (DUs)
and other equipment, responsible for transmitting and receiving wireless signals. The RAN
is connected to the Edge segment through Centralised Units (CUs), which are virtualised
and deployed in the Mobile/Multi-access Edge Computing (MEC) Network [18]. The
Edge segment provides computing and storage resources closer to the end users, reducing
latency and improving service quality. Edge and Core segments are connected through the
Transport segment. The Core Network is the central part of the 5G network. It provides
advanced functions such as session management, mobility management and authentication
through different control plane components. It is connected to the Interdomain segment,
which encompasses the interconnection between different administrative domains or ser-
vice providers. Finally, as shown in Figure 1, the 5G system is composed of different
stakeholders described in [5] by the 5G PPP (5G Public Private Partnership). These include
Infrastructure Service Providers (ISPs) and Digital Service Providers (DSPs), both involved
in the provisioning of network resources.
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The presented architecture supports the quest for network automation that is achieved
through cognitive loops. Autonomous network capabilities empower the network to self-
manage and self-optimise its operations. Such automation is conducted by the deployment
of different network layers, which are the compute, service and management layer. These
network layers are represented as blue boxes in Figure 1. The compute layer plays a crucial
role in enabling autonomous network capabilities as it provides the processing power
and storage capacity necessary to support services and applications. The service layer
encompasses the creation, deployment and management of services provided over the
5G network infrastructure. It focuses on delivering a large set of services that meet the
diverse requirements of end-users and applications. This layer leverages automation, virtu-
alisation and orchestration techniques to ensure efficient service provisioning, scaling and
customisation. Finally, the management layer is responsible for supervising and controlling
the network’s operation and resources. It makes use of advanced analytics and AI algo-
rithms to monitor, analyse and optimise different network characteristics such as security,
performance and resource allocation. This layer utilises data and information coming
from the compute and service layers to create informed decisions and automate network
management processes. The integration of these three layers in the 5G network allows
the development of closed-loop capabilities such as adaptation to changing conditions,
self-protection against attacks and optimisation of the resource utilisation [1].

3.2. Description of 5G Intent-Based Architecture

Figure 2 represents our IBN approach in order to achieve the closed-loop capabilities
in the reference 5G network. Such an IBN approach automates the process of network
configuration, provisioning and assurance by reducing human expert intervention. The
proposed architecture consists of the three layers explained above, which are management,
service and compute, in detail. Multiple network components (sensors and actuators)
allocated in these layers work together to accomplish such autonomic features.

Our proposed IBN system establishes a closed-loop platform, where high-level service
requirements are autonomously orchestrated and executed in the network. The full process
since the intent is inserted into the network until the moment that is removed from it,
consisting of five different steps [3]. Each of them are indicated in Figure 2 by yellow boxes
and black arrows. The process is explained as follows:

1. Intent profiling. It is the first step of the IBN, where the user interacts with the system
to specify the desired intent.

2. Intent translation. The intent statement is translated into a network policy, which
will consist of a series of network rules and configurations. A policy is a set of rules
defining what to do under what circumstances [19].

3. Intent resolution. It must be taken into account that multiple intents can happen
in the network at the same time. For this reason, during the intent translation it is
essential to prevent the network from leading to contradictory and conflicting network
configurations.

4. Intent activation. The next step after confirming there are not any conflicts with other
intent statements on the network is the intent orchestration and activation. This step
includes the network configuration and provisioning of the requested network policy.
As shown in Figure 2, this process results in the enforcement of a rule (or more than
one) that will be reflected in the data plane.

5. Intent assurance. This ultimate step entails ensuring that the network indeed complies
with the desired intent once it has been achieved. To accomplish it, our IBN comprises
multiple sensors capable of monitoring the status of the network in near real time.
Such components report metrics back to the management layer (see “5” yellow boxes
in Figure 2), which is in charge of assuring the intent fulfilment. Depending on the
type of intent, after Step 5, the intent-process will be finished or not.
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Figure 2. Design of the proposed IBN and overview of the different data sources of the IW-IB-
5GNET dataset.

With the completion of these five steps, the closed loop is complete. Such a loop
operates as a self-contained system, responding autonomously to identified tasks and
ensuring that the network aligns with the user-specified intent without requiring human
intervention throughout the entire process.

3.3. Proposed Framework for Data Collection

This subsection describes the different software components necessary not only for
the achievement of intent, but also for the dataset creation process. The data extraction
process is detailed in Figure 2 by orange arrows and red circles. The infrastructure network
approach is in line with the self-managed protection architecture proposed in [20]. It
consists of a set of network software components distributed in the three layers previously
defined working together to conform a cognitive closed-loop system. Each component
runs a specific task and the combination of all of them leads to the accurate enforcement of
network control rules. Such control rules have been previously translated from an intent. As
depicted in orange in Figure 2, the communication and data exchange between components
are facilitated by a message bus software through a publishing and subscription architecture.
The red circles represent the type of data being exchanged in each case, while the orange
arrows represent whether it is a subscription or a publication to that data exchange. The
software components are described below.

• Resource Inventory Agent (RIA). It is a network component in charge of publishing
topological network information in real time. Such information is related to both
physical and virtual devices, ports and connections between ports and devices avail-
able on each machine. The RIA discovers the topology of the 5G network, where it is
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instantiated and publishes it for the rest of the network components. The performance
and capabilities of this component are presented in [21].

• Security Monitoring Agent (SMA). It has two differentiated functionalities. First, it
is in charge of enhancing and extending the capabilities provided by a traditional
IDS. The reason behind this limitation can be attributed to the inadequacy of the
capabilities possessed by traditional Network Intrusion Detection Systems (NIDS),
which are unable to fully leverage the potential offered by the 5G infrastructure and the
accompanying network information. Hence, the SMA works together with Snort [22]
extending the information provided by this traditional NIDS. Second, it supplies
information about network flows, providing an inventory of all flows traversing each
of the network interfaces and traffic alerts. It also provides metrics associated with the
reported network flows. This sensor and its capabilities are presented in [23].

• Resource Monitoring Agent (RMA). It allows the monitoring of different network
resources. This agent extracts metrics from network devices, network ports (physical
and virtual network interfaces) and data-plane technologies previously discovered
and published by the RIA component. The monitored metrics are configured using a
configuration file and can be easily extended by modifying such a configuration file.

• Cognitive Policy Manager (CPM). This component performs four differentiated tasks
in order to generate network policies. First, it translates the user intent statements
in network policies. At the same time, it is analysing flows and resource metrics
provided by the SMA and RMA, together with the RIA’s spatial information. Thus, it
is able to generate an intensive analysis of the current status of the network. Taking
into account the network policy, it generates a decision using such analysis, which
includes what action should be taken, where and with what data-plane technology.
Such information will be used to complete the network policy. Depending on the
intent type, the consequent policies can be diverse. Network policy examples are as
follows: performing a drop, mirroring traffic, redirecting specified traffic, prioritising
a concrete flow, etc. Once the action to be performed is decided, it performs the
computation needed to complete the policy information, which is as follows: what
action to enforce, in which interface of the network, how to enforce it and for how
long will the policy be active. Once all this information is completed, it orchestrates
the policy and publishes it in the message bus [20].

• Flow Control Agent (FCA). It exposes network traffic control capabilities to the man-
agement plane. The FCA is subscribed to the policy exchange and when it receives
one, it translates the policy into specific network configurations and rules that can
be executed by the network infrastructure in the data plane. The FCA is distributed
across the whole infrastructure and it is an abstraction layer on top of different data-
plane control technologies such as OpenFlow, SNMP, Linux Traffic Control (TC), Open
Virtual Switch (OVS) and iptables. Once a rule is enforced in the network, the FCA also
provides metrics associated with such a rule periodically. An extensive explanation of
this agent and its performance can be found in [24].

• Data Collectors. All data exchanged on the network through the message bus, such as
the topology, extracted by the RIA, the metrics, collected by the RMA, and SMA and
the rule metrics reported by the FCA, are collected by the Data Collectors. The Data
Collectors are in charge of transforming all data in SQL queries and insert them into a
database in real time. As shown in Figure 2, there is a specialised collector for each
data type. The collectors extract the information published by the network agents,
adapt the data and store it into a SQL database. As a result, the management layer
keeps an up-to-date database with all the network information published in real time.

• Dataset Generator. The Dataset Generator is the last component needed to have the
resultant dataset and is the one in charge of creating the dataset. It is a software
component that extracts, shapes, sorts and adapts to CSVs (comma-separated values)
for the data stored in the SQL Database. The extracted data constitutes the different
features of the dataset, which will be described in Section 5.



Sensors 2024, 24, 783 9 of 25

After providing an overview of the data extraction and collection framework, we will
now proceed to delineate the specific requirements pertaining to the dataset. Additional
details on the framework used can be found in our recent publication [25].

4. Scenario Emulation and Dataset Generation

This section describes the testbed infrastructure for the scenario emulation and details
how the data are collected to generate the IW-IB-5GNET dataset.

4.1. Implementation Details

All software components described in Section 3.3 have been designed, deployed and
validated in a realistic 5G mobile edge computing infrastructure. The vast majority are
implemented in Java 17 (RIA, SMA, RMA, CPM and Collectors), with the exception of
the FCA and the Dataset Generator, which are implemented in Python 3.8. The SMA
component uses Snort 3.0 underneath to perform the attack detection. RIA utilises a
collection of tools including OpenStack, OpenAirInterface 5G (W44 2022 or higher), LLDP,
CDP and iproute2 (v1.9 or higher) in the Linux stack to detect the network topology. The
message bus is implemented with RabbitMQ 3.6. The SQL database is MySQL 8.15. The
Cognitive Rule Manager is a java implementation based on a MySQL 8 engine in order to
allow the usage of SQL to reveal analytical, decision-making and planning policies. The
FCA relies on Linux TC qdisk, OVS 2.17.3 and iproute2 (v1.9 or higher) to enforce the
actions. The Dataset Generator is implemented in Python 3.8.10.

The emulation tool used for the creation of the network topology is the Common
Open Research Emulator (CORE) [26]. It utilises Linux Network Namespaces (netns)
to emulate (rather than to simulate) the different devices and networks that form the
infrastructure. Each device or network operates within its own private network and
process environments, while still sharing the same file system and kernel. Additionally, the
Linux Ethernet bridging tools available in the Linux environment enable the emulation of
any network type, including wireless mobile networks, thus realistically representing the
detailed infrastructure described in this research. CORE was used for the implementation of
a system that allows the creation, configuration, provisioning, emulation and execution of
different experimental scenarios in 5G multi-tenant networks. More in-depth specifications
of the system used can be found in [20].

In the context of our emulated 5G network, it is imperative to highlight the realism
of the generated network traffic. The importance of this statement lies in the fact that the
entire network is emulated, with the only exception of the link connecting the UE and
the RAN component, which is simulated. Despite this limited simulation element, the
veracity of the network traffic remains intact. This authenticity is maintained by meticulous
prototyping of network components, protocols and behaviours, which ensures that the
emulated traffic patterns closely reflect real-world scenarios. For instance, we use real
core network elements provided by Osmocom (SGSNEmu [27] and GGSN [28]) and also
by OpenAirInterface [29]. We also emulate multi-tenancy infrastructure making use of a
custom Openstack Neutron-like SDN controller that populates isolated tenant networks
using OpenVSwitch. Furthermore, the traffic is modelled to support both mobility and
multi-tenancy through tunnelling protocols used in 5G architectures such as VXLAN and
GTP. Full End-to-End topology emulation has been achieved using Linux containers to
perform the deployment of each of the network functions on the relevant emulated devices
to create a realistic 5G multi-tenant deployment. Therefore, all data traversing our emulated
5G network reflect genuine (non-synthetic) network traffic, and the emulated environment
faithfully represents real-world network dynamics. This approach not only facilitates
robust testing and analysis, but also reinforces the credibility of our emulation as a valuable
tool for network evaluation and experimentation.

The experiments were run in a physical machine with an Ubuntu release 20.04 LTS
distribution with kernel version 5.15.0. In terms of physical resources, it has a 56-core
Intel(R) Xeon(R) CPU E5-2660 v4 @ 2.00 GHz and 128 GB DDR4 2400 MHz of RAM.
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4.2. Experiment Design

Network security is one of the most important concerns of 5G operators [30]. For this
reason, we decided to focus on security and collect the dataset based on the following
intent: “Eliminate any traffic flow exhibiting malicious behaviour or unauthorised access
attempts, without disrupting legitimate network traffic”. Distributed Denial of Service
(DDoS) constitutes the 38.18% of the global network and application layer attack traffic
according to Cloudflare radar [31]. In addition, the most popular DDoS attack type is
UDP, being 54.4% of the total. In accordance with this fact, we decided to subject our
network to UDP DDoS attacks, so that the resulting dataset records the state of the network
while the intent is being fulfilled. Thus, the extracted dataset can be used to generate AI
modules capable of making optimal decisions during the intent process. These decisions
will be optimal as the specific network policy can be generated according to the state of the
network at any given time rather than by default.

Multiple experiments have been designed and carried out in order to obtain a wide
variety of data. The parameters studied in our research are as follows: the type of scenario
executed, the type of policy to be performed within the network, the data-plane technology
employed to execute the policy, the packet rate at which data are transmitted and the packet
size used in these transmissions.

A total of four substantially different scenarios have been developed to achieve a more
complete dataset. The four scenarios differ substantially in the number of edges, as well as
the number of UEs connected to each edge. These are described below:

• Scenario 1. It is composed of two UEs and one edge. Thus, both UEs are connected to
the same edge.

• Scenario 2. It consists of four UEs and two edges. There are two UEs connected to
each edge.

• Scenario 3. It has eight UEs and two edges. Thus, there are four UEs connected to
each edge.

• Scenario 4. It is composed of sixteen UEs and two edges. There are eight UEs connected
to each edge.

The design of Scenarios 1 and 2 are displayed in Figure 3. Scenarios 3 and 4 follow
the same design as Scenario 2, including a higher number of UEs connected to each edge.
They have not been added in the figure for simplicity. For the same reason, network control
layers have also not been included in the figure. Note that the number of UEs connected to
the RAN has been chosen for specific use cases to have variety. However, this number can
be extended, as well as the number of edges connected to the core network. This extension
of the architecture is easily achievable using the CORE emulator, being a widely scalable
network.

The type of action dictates the aspects of the network’s performance, behaviour and
operations we will focus on and examine closely. In this present work, we have been
focusing on the network’s behaviour while eliminating any traffic flow exhibiting malicious
behaviour or unauthorised access attempts. This involves the choice of the policy to be
carried out and the data-plane software technology with which to enforce it on the network.
These decisions will profoundly influence the network behaviour. Three network software
data-plane technologies have been studied in our research work, which are iptables, OVS
and TC. Finally, variations in packet rate and size directly impact the performance metrics
in terms of throughput, packet loss, bandwidth utilisation and congestion. For this reason,
the variation of the packets traversing the network consisted of varying (i) the packet size:
32, 128, 256, 512 and 1024 bytes and (ii) the packet rate: 50 and 100 packets/s/UE. This
provides a rate of packets per second reaching the victim between 100 in the lowest case and
1600 in the highest case (16 UEs and 100 packets/s), which are considered low-rate DDoS
attacks, according to [32]. Specifically, constant low-rate DDoS attacks were generated. This
type of attack consists of sending packets at a constant low rate [33].

The variation of these two parameters, together with the number of UEs, makes 40 ex-
ecutions for each data-plane technology, achieving a total of 120 executions for gathering
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data for the dataset. It is important to mention that depending on the number of UEs, each
execution will contain different number of data files, according to the number of network
rules active in the network. This means that the more UEs attacking the network, the more
network policies from the intent will be processed to drop the malicious traffic.

Figure 3. Architecture design of Scenarios 1 and 2.

4.3. Experiment Execution

This section explains how the data are generated and collected in order to create the
dataset. As mentioned in the previous section, the final goal of each experiment is to gather
data from different points of the network while malicious traffic is being eliminated from
the network. The configuration of each experiment is the same. All the experiments have
a duration of 3 min. Once all parameters specified in the previous section are set and the
experiment is run, these are the steps followed by the autonomous system in order to
compose the dataset:

1. Every software component involved in the cognitive closed-loop (described in
Section 3.3) is started and operate in a standby mode.

2. The intent is inserted in the network using a command-line interface (CLI) (see Step 1
“Intent Profiling” in Figure 2). The intent is the same in every experiment: “Eliminate
any traffic flow exhibiting malicious behaviour or unauthorised access attempts,
without disrupting legitimate network traffic”.

3. The CPM translates the intent into a Policy template (see Step 2 “Intent Translation”
in Figure 2), waiting for any traffic alert.

4. The UEs start sending two types of traffic. Bonesi [34] is the tool used for the DDoS
attack traffic, while hping3 is used for the benign traffic (see Figure 3).

5. The software components in the service and compute layers of the ISP edge start
extracting data as the traffic from the UEs cross the network. The exchanged data are
shown in Figure 2 by red circles.
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6. The SMA detects the malicious traffic and notifies the system of the attack through
the message bus, using the traffic alert exchange.

7. The CPM performs all the steps described in Section 3.3 and generates a network
policy. It is then published into the message bus. The policy specifies what to do,
where and how. In our experiment, a drop action is performed in a network interface
using concrete data-plane technology. The decision of the data-plane technology has
been previously defined in the configuration of the experiment and is included in the
policy template. On the other hand, the decision of the location (network interface) of
where to perform the drop is calculated by the cognitive loop. Thus, depending on the
data-plane technology to be used, the drop action will be performed on a particular
network interface. In our specific scenario, as we are handling a DDoS attack, it
is desirable to stop it as early as possible. This means that the drop action should
be performed as close to the UEs as possible so that the malicious traffic does not
traverse the network. Figure 3 highlights three different network interfaces where it is
possible to perform a drop action. Data-plane technologies OVS and TC are available
at interfaces eth0, eth6 and eth7. However, iptables will be available only at eth0. For
this reason, when OVS or TC technology is selected, the drop will be performed at
eth6 and eth7, respectively. On the other hand, in case iptables is selected, the drop
action will be performed at eth0 as it is not feasible to enforce the action earlier in the
network. After all these decisions and the policy is finished, Step 3 “Intent Resolution”
is completed.

8. The policy is published in the message bus. An example of the policy message is
shown in Listing 1.

9. The FCA receives the policy and translates it into a network rule, which is to drop
the malicious traffic. As shown in Listing 1, the policy has also specified which
network interface (eth6) and with what data-plane technology (TRAFFIC_CONTROL)
to enforce the rule. As mentioned, the FCA is capable of performing the drop action
with the following data-plane technologies: iptables, OVS or TC. This completes the
Step 4 “Intent Activation” in Figure 2.

10. Once the rule is enforced on the network, the malicious traffic is dropped at the speci-
fied network interface by the data-plane technology defined in the policy. Meanwhile,
all components continue reporting network behaviour metrics (“Intent Assurance”).
With this final step, we can consider the loop has been successfully closed as now the
network restores to its standby mode.

11. The experiment execution continues to complete in 3 min. During this time, the UEs
continue sending malicious traffic. Such traffic is being stopped at the edge of the
network. In the meantime, all the information and metrics generated during the
execution of the experiment have been stored in the database and transformed into
the resulting dataset.

Listing 1. Example of network policy.

{
‘‘Policy ’’: {

‘‘actionType ’’: ‘‘INSERT ’’,
‘‘actionName ’’: ‘‘DROP ’’,
‘‘priority ’’: 1,
‘‘flowId ’’: ‘‘4BA92944 ’’,
‘‘reportedTime ’’: 1659106981511

},
‘‘Params ’’: [

{
‘‘paramName ’’: ‘‘interfaceName ’’,
‘‘paramValue ’’: ‘‘eth6 ’’

},
{

‘‘paramName ’’: ‘‘technology ’’,
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‘‘paramValue ’’: ‘‘TRAFFIC_CONTROL ’’
},
{

‘‘paramName ’’: ‘‘device ’’,
‘‘paramValue ’’: ‘‘edge1 ’’

}
]

}

5. Dataset Description

This section provides an in-depth description of the dataset proposed and created in
this research, with emphasis on its structure, the type of data gathered and the characteris-
tics of its instances and features.

5.1. IW-IB-5GNET Dataset

The IW-IB-5GNET dataset is composed of several files. As it is an intent-based dataset,
each file is associated with a network policy, translated from an intent. As a result, the
number of files generated will correspond to the total number of active network policies in
each experiment. For each file, the features are ordered topologically. This means that the
features are organised in a top-down approach, starting with the device features, followed
by the network interface features, data-plane technology ones, queues, network flows and
network rules. The aggregation of the features corresponding to all levels of the 5G network
topology makes it an infrastructure-wide dataset.

After the execution of each experiment described in Section 4, all the instances of each
resulting file have been merged into a single csv file. This file forms the IW-IB-5GNET
dataset. As a result of the 120 executions, a total of 700 csv files have been assembled. The
dataset has a final dimension of 64,290 × 107, i.e., a total of 64,290 instances and 107 features.
An excerpt of the dataset consisting of 1000 instances is available online (see Supplementary
Materials at the end of the document).

5.2. Features Description

Dataset IW-IB-5GNET comprises 107 features related to the edge and core of a 5G
network. Table 2 lists all the features and their positions in the dataset. The features are
ordered topologically, starting with the metadata and metrics associated with the device
(see 1–3 in grey in Table 2), followed by the device port (see 4–5, yellow), data-plane
technologies and their queues (see 6–33, blue), traffic flows (see 34–49, red) and, finally,
the network control rules (see 50–106, green and orange). Features 50 to 61 comprise the
metrics and metadata of a particular network rule, enforced and monitored on a particular
network interface (specified in feature 4, iface). Features 62 to 106 comprise analytical
information related to all the network rules currently enforced in the network. With respect
to RAN features, it is worth mentioning that we have decided to not include any value that
is not coming from a trusted source. Thus, no physical layer feature is included, as it is the
only link in the network that is simulated.

Based on their nature and the kind of information they represent, the features can be
categorised into four different types as listed below.

• Boolean features. They refer to binary values, indicating the presence or absence of
a particular attribute. The IW-IB-5GNET dataset has a total of four boolean features,
enumerated in Table 3.

• Metadata features. They are composed of both categorical, numerical and text features.
They are mixed together in the same category as they represent characteristics of
every particular experiment. Most of them describe basic network characteristics and
are essential to understand each specific use case. In addition, most of its values do
not change throughout the experiments. However, it is important to keep them in
the dataset in order to have a complete description of the network at each particular
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experiment execution. The metadata features are listed in Table 4. The table describes
the data type of each feature. In the case of categorical features, the values they can
acquire are specified. In addition, a brief description of what each of these features
represent is included.

• Numerical features. They represent continuous or discrete numerical values. There
are a total of 74 numerical features in the IW-IB-5GNET dataset. Such features are
related to metrics measured in real time, at different network topology levels: device
host, interfaces, flows, data-plane technologies, queues and rules. The names given to
these metrics are sufficiently descriptive for the reader to know what they represent.

• Date/Time features. They represent specific points in time. There is only one date
feature in the IW-IB-5GNET dataset, timestamp, which represents the moment when
a concrete extraction has been performed. It is represented using the Unix timestamp.

Table 2. List of features in IW-IB-5GNET dataset. Color indicates topology level: (grey-device),
(yellow-interface), (blue-technology), (red-flow) and (green, orange-policy).

No. Feature No. Feature No. Feature No. Feature
1 Hostname 28 TC_rx_bytes 55 currentMatchedPackets 82 OVS_mean_crr
2 ContextSwitchesPerSecond 29 TC_RX_dropped 56 lastMatchedTime 83 OVS_median_crr
3 AbstractionLayer 30 TC_RX_packets 57 ruleComplexity 84 OVS_st_crr
4 Iface 31 TC_TX_bytes 58 totalMatchedBytes 85 OVS_q1_crr
5 Iface_speed 32 TC_TX_dropped 59 totalMatchedPkts 86 OVS_q3_crr
6 IPTAB_activated 33 TC_TX_packets 60 actionType 87 OVS_mean_total
7 IPTAB_complexity 34 encapsulationLayer 61 actionName 88 OVS_median_total
8 IPTAB_maxRules 35 encapsulationType1 62 IPTAB_min_crr_currentMatchedPkts 89 OVS_st_total
9 IPTAB_rx_bytes 36 encapsulationType2 63 IPTAB_max_crr_currentMatchedPkts 90 OVS_q1_total

10 IPTAB_rx_packets 37 sense 64 IPTAB_min_total_totalMatchedPkts 91 OVS_q3_total
11 IPTAB_tx_bytes 38 l3Protocol 65 IPTAB_max_total_totalMatchedPkts 92 TC_min_crr_currentMatchedPkts
12 IPTAB_tx_packets 39 dstIP 66 IPTAB_numberRulesActivatedTotal 93 TC_max_crr_currentMatchedPkts
13 OVS_activated 40 macSrc 67 IPTAB_mean_crr 94 TC_min_total_totalMatchedPkts
14 OVS_complexity 41 macDst 68 IPTAB_median_crr 95 TC_max_total_totalMatchedPkts
15 OVS_maxRules 42 l4Protocol 69 IPTAB_st_crr 96 TC_numberRulesActivatedTotal
16 OVS_rx_bytes 43 tos 70 IPTAB_q1_crr 97 TC_mean_crr
17 OVS_rx_dropped 44 outTos 71 IPTAB_q3_crr 98 TC_median_crr
18 OVS_rx_packets 45 dstPort 72 IPTAB_mean_total 99 TC_st_crr
19 OVS_tx_bytes 46 state 73 IPTAB_median_total 100 TC_q1_crr
20 OVS_tx_dropped 47 totalpktCount 74 IPTAB_st_total 101 TC_q3_crr
21 OVS_tx_packets 48 totalBits 75 IPTAB_q1_total 102 TC_mean_total
22 TC_activated 49 packetSize 76 IPTAB_q3_total 103 TC_median_total
23 TC_queueDiscipline 50 programmableTechnology 77 OVS_min_crr_currentMatchedPkts 104 TC_st_total
24 TC_queueLenght 51 activatedRuleTimeSecs 78 OVS_max_crr_currentMatchedPkts 105 TC_q1_total
25 TC_complexity 52 averageMatchedBytes 79 OVS_min_total_totalMatchedPkts 106 TC_q3_total
26 TC_crr_bwd_guaranteed 53 averageMatchedPackets 80 OVS_max_total_totalMatchedPkts 107 timestamp
27 TC_maxRules 54 currentMatchedBytes 81 OVS_numberRulesActivatedTotal

Table 3. Description of boolean features in IW-IB-5GNET dataset.

Feature Name Representation Description

IPTAB_activated [True, False] Presence of iptables in the interface.
OVS_activated [True, False] Presence of ovs in the interface.
TC_activated [True, False] Presence of linux tc in the interface.
Sense [ingress, egress] Direction of network traffic flow.

To conclude the data description, as the reader can observe, there is no specific target
associated with the dataset. This deliberate decision was made to ensure the dataset’s
versatility and adaptability to various network control and management use cases. By not
labelling the dataset with a specific target, it provides the freedom to utilise it for different
network management and optimisation purposes, as described in Section 1. This approach
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allows us to explore and apply the dataset to address a range of specific needs, fostering
innovation and flexibility in network management practices. Table 5 comprises a set of
use cases for which our dataset could be used. It describes each use case, as well as its
general purpose: management and optimisation. In addition, it is specified which label to
give to the target column depending on the use case. Finally, the different features that, a
priori, could be more relevant when analysing each specific use case have been emphasised.
Note that this does not mean that these features are the only important ones, but rather
that we try to reflect the versatility of the dataset in terms of its features when dealing with
different use cases. Although the structure of the dataset applies to all these use cases, the
current data obtained with the experiments described in Section 4 can be used for Security
Management and QoS Optimisation. For the rest of the examples proposed in Table 5, more
specific experiments would be necessary.

Table 4. Description of metadata features in W-IB-5GNET dataset.

Feature Name Data Type Categorical Values Additional Info

Hostname text - Data extraction host name.
AbstractionLayer number [0, 1, 2] Level of virtualization.
Iface text - Interface name where data extraction was performed.
Iface_speed number - Network interface speed.
IPTAB_complexity number [8] Level of complexity iptables rules.
IPTAB_maxRules number [4096] iptables rule limit.
OVS_complexity number [4] Level of complexity ovs rules.
OVS_maxRules number [16,384] ovs rule limit.

TC_queueDiscipline text
[noqueue, fq_codel, atm, htb,
prio] Primary iface qdisc queue discipline.

TC_queueLenght number - Max number of packets allowed in the queue.
TC_complexity number [8] Level of complexity tc rules.
TC_maxRules number [4096] tc rule limit.
encapsulationLayer number [0, 1, 2] Number of encapsulations of a traffic flow.
encapsulationType1 number [gtp, vxlan] Type of first encapsulation.
encapsulationType2 number [gtp, vxlan] Type of second encapsulation.
L3Protocol number [ipv4, ipv6, icmp, arp] Layer 3 protocol of flow.
dstIP number - Flow destination IP.
macSrc number - Flow source mac address.
macDst number - Flow destination mac address.
L4Protocol number [tcp, udp] Layer 4 protocol of flow.
Tos number [0] Type of service.
OutTos number [0] Out type of service.
dstPort number - Flow destination port.
State text [active, dropped, inactive] Flow state description.
programmableTechnology text [TC, OVS, IPTABLES] Data-plane technology used to do the action.
ruleComplexity number [1, 2, 3. . .] Rule performance complexity.
actionType text [INSERT, SET, DELETE] Definition of action type.

actionName text [DROP, PRIORITY, QUEUE,
SLICE]

Definition of action name.
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Table 5. Use-case examples in which to use the IW-IB-5GNET dataset.

Purpose Use-Case Description Target Relevant Features

M
an

ag
em

en
t Security

Anomaly detection. Monitoring of unusual activi-
ties to respond to security incidents.

0: Benign traffic
1: Malicious traffic

34 to 49

Traffic
Balancing traffic load across different network in-
terfaces to prevent congestion. Interface 4 to 49

QoS
Defining QoS policies according to the status of the
network and active network policies based on user
intents.

QoS policy definition
6 to 33

62 to 106

O
pt

im
is

at
io

n Resource
Detecting redundant, unused rules to reduce pro-
cessing overhead and policy congestion.

0: keep active rule
1: delete/change active rule

50 to 106

QoS
Predictive modeling to determine the best technolo-
gy/method for implementing and enforcing active
network policies.

Optimal technology for ac-
tive policy 34 to 61

6. Results

In this section, we present the analysis and validation of the resultant dataset. This
section presents the data obtained through tables and graphs, which can help better un-
derstand the dataset. The final objective of this section is to demonstrate the quality and
reliability of the IW-IB-5GNET dataset. For the development of such analyses, we em-
ployed Python 3.9.6 and its libraries for data analysis: Pandas, Numpy, SciPy, Seaborn
and Matplotlib.

6.1. Dataset Preprocessing

Prior to the IW-IB-5GNET dataset performance evaluation, we carried out some data
preprocessing to ensure that the dataset was clean, consistent and suitable for analysis.
This preparatory step was essential to mitigate the potential impact of noise, errors during
the experiment executions and irregularities in the data, which can significantly affect the
accuracy and reliability of subsequent analysis.

First, as mentioned in Section 5, it was necessary to consolidate all the CSV files from
various experiments into a single file, simplifying the process of gathering statistics and
conducting analysis. Once all data were in a single CSV file, the following were the four
steps conducted in our data preprocessing pipeline:

1. Delete all rows whose columns were duplicates. This implies that all their columns
have the same value.

2. Delete all rows that satisfied: activatedRuleTime = lastMatchedTime. Columns
that satisfy this condition are the result of an invalid operation in the execution of
the experiment, as they imply that a rule inserted in the network has not matched
any packet.

3. Analyse and delete columns whose values were empty in all iterations.
4. Delete all rows whose columns contained negative values. None of the features were

designed to be negative, so the presence of these values, if any, was due to an invalid
operation during the experiment execution.

The preprocessing of the data resulted in the IW-IB-5GNET dataset, whose dimensions
were already mentioned in the previous section: 64,290 × 107. Its memory usage is 51.2 MB.
Analysis of the different types of features presented in Section 5 are discussed below in
separate subsections.

6.2. Boolean Features Evaluation

Table 6 shows the statistical summary of the Boolean features in the dataset. It specifies
the number of non-null values in each column, the number of unique values in the column,
the most frequently occurring value in each column and the frequency of the top value. This
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summary is useful for gaining a quick understanding of the distribution and characteristics
of boolean data within our dataset. For instance, it identifies the presence of the data-
plane technologies OVS and TC in all the experiments executed where the drop action
was performed (see OVS_activated and TC_activated in Table 6). On the other hand, it
demonstrates that there are more cases where it is not possible to enforce a rule in iptables
due to its absence on the monitored network interface (see IPTAB_activated). The statistics
also reveal that most of the network flows dropped are in ingress (see sense).

Table 6. Statistical values of boolean features in IW-IB-5GNET dataset.

Feature Name Count Unique Top Freq

IPTAB_activated 64,290 2 False 55,569
OVS_activated 64,290 1 True 64,290
TC_activated 64,290 1 True 64,290
sense 64,290 2 ingress 55,569

6.3. Metadata Features Evaluation

As described in Table 4, 28 features comprise the variables categorised as metadata
in our dataset. Most of them provide us with a better understanding of the network
infrastructure, traffic flow characteristics and the network control rule active on each
particular moment of the extraction. Figure 4 shows the number of unique values of
each feature presented in Table 4. For instance, three different network interfaces were
used throughout all experiments to drop the traffic flows. Other relevant features are
the encapsulation of the traffic flows as they are presented. There were two different
encapsulation types. The programmable technology give us the data-plane technology
used to enforce the action on the network. Its value is three, as we have employed three
different data-plane technologies: iptables, OVS and TC. Similarly, there were three different
rule complexities, associated with the enforcement of each data-plane technology. Most of
these features consistently maintain a uniform value throughout the entire dataset. This
consistency stems from the fact that, as explained in the previous section, the metadata
provides us with network-related information that remains relatively static over time.
While this information might not hold immediate appeal, retaining it within the dataset
is appropriate. This is because, if they were to conduct other types of experiments, this
metadata would change, raising its relevance to the dataset.

Focusing now on specific features, Figure 5 reveals interesting information connecting
iface and programmableTechnology variables. The count plot is divided in the three data-
plane technologies (iptables, OVS and TC) used for the enforcement of the network policy.
In addition, such division is classified taking into account where this policy is performed
in terms of its network interface. Thus, we can observe that all actions performed with
iptables are enforced in network interface eth0, while TC and OVS vary between eth6 and
eth7. This graph confirms the successful performance of the autonomous control loop,
since the network policies are performed at the interfaces analysed in Section 4.3.

6.4. Numerical Features Evaluation

As described in Section 5.2, a total of 74 features comprise the numerical variables of the
IW-IB-5GNET dataset. Some of them were removed during the data preprocessing process.
Additionally, features 62 to 106 (see Table 2) already represent analytical information.
Therefore, they were not considered in this data analysis.
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Figure 4. Number of unique values in each metadata feature.

Figure 5. Association between interface and data-plane technology used in the action.

First, we start the data analysis with some descriptive statistics presented in Table 7.
This table shows the statistics of the 22 non-null numerical features in our dataset. The
first two columns indicate the feature name and its unit. The statistics include the mean,
standard deviation, minimum and maximum measures. As can be seen in the table,
most of these features are focused on monitoring packets or bytes per second traversing
different points in the network. We can also observe information related to the number of
packets traversing the network during the experiment and their size in bytes. With these
measurements it is possible to identify congestion points along the network, as well as
which data-plane technologies and on which network interface they are located. Finally, the
last seven variables provide us with information about the effectiveness of the rule currently
enforced on the network corresponding to the intent concerned. We have highlighted this
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effectiveness according to each of the data-plane technologies with which the drop action
was carried out. This reflection can be seen in Figure 6. In this figure, a box-plot for each
of the data-plane technologies is represented: iptables, TC and OVS. On the y-axis, on the
other hand, the total number of packets that match the drop rule is represented. From
this graph, it can be concluded that, for the same duration of the experiment (3 min),
the number of packets that OVS is able to process is slightly higher than that of TC and,
subsequently, that of iptables. These results indicate that OVS is faster in terms of the
network rule processing time and can be taken into account when performing network
optimisation tasks.

Table 7. Descriptive statistics values of numerical features in IW-IB-5GNET dataset.

Feature Unit Mean Std Min Max

ContextSwitchesPerSecond Switch/s 3.78 2.65 0 9
IPTAB_RX_bytes Bytes/s 178,080 495,268 0 3,524,780
IPTAB_RX_packets Packets/s 987 2661 0 14,866
IPTAB_TX_bytes Bytes/s 4,031,111 13,392,294 0 184,598,347
IPTAB_TX_packets Packets/s 5345 17,555 0 151,650
OVS_RX_bytes Bytes/s 9,290,003 12,603,834 9926 78,227,821
OVS_RX_packets Packets/s 20,772 18,092 93 72,736
OVS_TX_bytes Bytes/s 2,135,533 9,334,686 6354 156,582,130
OVS_TX_packets Packets/s 5014 16,145 611 145,377
TC_RX_bytes Bytes/s 2,642,547 7,151,074 0 62,570,352
TC_RX_dropped Packets/s 5145 9556 0 57,989
TC_RX_packets Packets/s 5682 10,507 0 58,842
totalpktCount Packets 6866 3809 840 18,120
totalBits Bits 21,578,431 25,187,493 416,976 148,316,160
packetSize Bytes 395 355 32 1024
activatedRuleTimeSecs Seconds 59 36 1 144
averageMatchedBytes Bytes/s 40,171 37,985 3665 785,862
averageMatchedPackets Packets/s 89 39 42 969
currentMatchedBytes Bytes/s 37,469 91,559 0 9,513,560
currentMatchedPackets Packets/s 83 159 0 11,859
totalMatchedBytes Bytes 2,299,883 2,792,487 5772 16,381,370
totalMatchedPackets Packets 5031 3518 70 14,855

Figure 6. Box-plot of total matched packets depending on the data-plane technology used.
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Following the technical validation of our numerical features, we present Figure 7.
It represents the data distribution graphs of the numerical columns in the IW-IB-5GNET
dataset. A wide variety of shapes in the data distributions can be observed in the figure.
First, we can identify discrete values such as ContextSwitchesPerSecond or packetSize.
Focusing on the packetSize graph in Figure 7, the five different packet sizes chosen for the
experiments can be observed. These are 32, 128, 256, 512 and 1024 bytes. Many histograms
with exponential shapes are also present in the figure, such as the features totalBits
and totalMatchedBytes. The totalBits feature indicates the number of bits actually
traversing a particular network interface, while totalMatchedBytes designates the total
number of bytes that match the network rule being monitored. Finally, we observe a variety
of non-uniform shapes. Most of these have a high maximum value and much smaller
cluttered values around it. Examples of these are totalpktCount or totalMatchedPackets.
Looking at the graph of total matched packages in Figure 7, we can observe that the majority
of values are around the mean, which is 5031. Additionally, its maximum value is 14,855
which indicates that in some of the experiments the rule matches a high amount of packets.

Figure 7. Histogram graphs of numerical features in the IW-IB-5GNET dataset.

To conclude with the technical evaluation of the IW-IB-5GNET dataset, the correlation
coefficients of the numerical features have been calculated. The technique used was the
calculation of Pearson correlation coefficients (PCC), which measures linear correlation
between two sets of data. The coefficient values vary between −1 and 1, which indicates the
strength and direction of the linear relationship between two variables [35]. Figure 8 shows
the correlation matrix obtained from these coefficients. It can be seen that features with
high correlation are represented with a very light orange colour. In contrast, features with
high negative correlation are represented with a dark purple. Features with low correlation
between them are represented with intermediate colours. For instance, there is a clear
positive correlation between bytes and packets of every pair of features associated with
the same monitored instance (i.e., the more packets received, the more bytes received). An
example of this can be found at the second and third features in Figure 8, IPTAB_RX_bytes
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and IPTAB_RX_bytes, respectively, where the very light orange colour representing their
positive correlation can be noted. Focusing on very negative correlations, we look at the
averageMatchedPackets feature with the activatedRuleTimeSecs feature. The more time
a rule is active on the network, the fewer average packets matched that rule. In general
terms, we observe a clear linear relationship in the lower right part of the correlation matrix.
This corresponds to the metrics associated with the network rules, which are highly variable
during the execution of the experiments. On the other hand, there is little linear dependence
of the metrics associated with iptables with respect to the rest of the features. This is due
to the fact that iptables is located at the egress interface of the edge network. Thus, traffic
does not pass through in many of the experiments because the traffic is dropped before
reaching the egress interface.

Figure 8. Correlation matrix composed of numerical features.

To summarise, the correlation matrix gives us a lot of information about the relation-
ship of our data. Depending on the type of problem we expect to address using our dataset,
we will need to pay attention to some patterns or others. For example, multicollinearity
(two or more variables are highly correlated with each other) can be problematic in re-
gression analysis, as it can lead to unstable coefficient estimates. Therefore, depending on
the final objective of the dataset, the results will be taken as adequate or inadequate, and
different actions may need to be taken.

7. Discussion

This section serves the purpose of consolidating and documenting the critical insights
and deliberations derived from our research. This compilation is intended to provide a com-
prehensive resource for future researchers, enabling them to benefit from our considerations
as a valuable foundation for their own scientific research.

Throughout the design and implementation of the proposed framework, we realised
the great importance of performing mechanisms to align IDS from all components of
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the network topology. These are network flows, network ports, data-plane technologies
available on each network port and device hosts. This is critical to allow the subsequent
manipulation of features coming from each of these different entities. We have also re-
alised and understood the real difficulty of achieving this intent-based, infrastructure-wide
dataset, as it requires not only a complete infrastructure with a sufficient level of integration
between the components, but also a complete and fully functional closed-control-loop
running on top of it. Also taking into account that, in addition to the above, there is an
automatic feature extraction system running.

In the context of our research, the utilisation of network emulators assumes a pivotal
role in the generation of diverse scenarios for dataset collections. These emulators enable
us to recreate controlled environments with precision and accuracy, facilitating the rigorous
examination of various network conditions and their impact on our study. Finally, in our
initial prototype, we recognised the significance of establishing interconnections between
network components among timestamps, as they would play a crucial role in facilitating
future AI training at a later stage. Consequently, a fundamental design principle that
emerged was the incorporation of timestamps within every available interface in the
proposed system. This design choice enables a traceability process. This approach aids in
understanding both the context and timing of event generation within the system.

8. Conclusions

In this research, the need for a new dataset that could capture the complexities of B5G
networks has been recognised, including their topologies at various levels and the dynamic
nature of network control rules. This paper has presented a novel and comprehensive
networking dataset, IW-IB-5GNET, which is infrastructure wide and intent based, address-
ing the pressing need for more robust and adaptable data-driven solutions in network
management and optimisation in B5G networks. These solutions can be used by both
ISPs and DSPs to improve the management and optimisation of their network policies
in both the edge and core segments. Our dataset offers several key advantages in terms
of network management and optimisation. Firstly, its infrastructure-wide reach ensures
that it encompasses the entire network ecosystem, providing a broad view of network
dynamics and status. This inclusiveness is vital as networks become increasingly complex
and interconnected. Secondly, the dataset is intent based, achieving the fact that it not only
documents the technical aspects of the network but also takes into account the underlying
intents and control actions that drive network configurations and policies. It is important
to highlight the nature of this dataset, which has been extracted from a closed loop in a
B5G network.

The empirical and analytical results show the wide variation in the data distributions,
as well as their most common values and linear correlations. These results show the state of
the network at its different layers, from which valuable performance metrics are extracted.
In particular, Table 7 and Figures 6 and 7 allow it to perform an exploratory analysis of
the data, an indispensable step prior to the implementation of any model. In addition,
Figure 8 will help us to perform actions such as dimensionality reduction to optimise
data-driven models. The results can be very useful for the generation of AI-based models to
optimise network policies, as well as AI models to improve QoS, for example, the creation
of a classification model to optimise the rules currently enforced in the network, so that
the model can predict which technology is the optimal one to perform a network policy.
Another example would be a model capable of detecting network rules that are not being
used and, therefore, can be removed to improve network policy congestion. Nevertheless,
our dataset also has some limitations. We are aware that it has limited scale, not being wide
enough to capture yet the whole complexity of real-world scenarios. Furthermore, it lacks
diversity in terms of intent coverage, focusing on a particular type of intent for now.

In future work, we will further explore the potential of the IW-IB-5GNET dataset.
We will explore its applicability in a variety of domains, with a particular focus on the
challenges of network management, optimisation and QoS. We will not only evaluate its
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effectiveness, but also apply well-known AI models. In addition, it is our aim to work
on the limitations highlighted above, extending the scale and the coverage of the dataset.
Not only by increasing the type of DDoS attacks, but also by applying other types of
intent statements.

Supplementary Materials: Excerpt from the IW-IB-5GNET dataset: https://github.com/
jimenaandrade/iw-ib-5gnet (accessed on 28 November 2023).
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