
Accepted author manuscript version reprinted, by permission, from Journal for the 
Measurement of Physical Behaviour, 2024, volume 7 (issue 1): jmpb.2023-0026, 
https://doi.org/10.1123/jmpb.2023-0026. © Human Kinetics, Inc.



Comparison of Sleep and Physical Activity Metrics From Wrist-Worn
ActiGraph wGT3X-BT and GT9X Accelerometers During Free-living in

Adults

Duncan S Buchan

Division of Sport and Exercise, School of Health and Life Sciences, University of the West 

of Scotland, Lanarkshire Campus, G72 0LH, Scotland, UK. 

Corresponding author: Email: duncan.buchan@uws.ac.uk. Tel: +44 01698 283100 Ex. 825.

1



Abstract

Background: ActiGraph accelerometers can monitor sleep and physical activity (PA) during 

free-living, but there is a need to confirm agreement in outcomes between different models. 

Methods: Sleep and PA metrics from two ActiGraphs were compared after participants (N = 

30) wore a GT9X and wGT3X-BT on their non-dominant wrist for 7 days during free-living. 

PA metrics including total steps, counts, average acceleration (AA) - Euclidean Norm Minus 

One (ENMO) and Mean Amplitude Deviation (MAD), intensity gradient, the minimum 

acceleration value of the most active 10 and 30 mins (M10, M30), time spent in activity 

intensities from vector magnitude (VM) counts and ENMO cut-points and sleep metrics 

(sleep period time window, sleep duration, sleep onset and waking time) were compared. 

Results: Excellent agreement was evident for AA-MAD, counts, total steps, M10 and light 

PA (VM counts) with good agreement evident from the remaining PA metrics apart from 

moderate-vigorous PA (MVPA) (VM counts) which demonstrated moderate agreement. 

Mean bias for all PA metrics were low as were the limits of agreement (LoA) for the intensity

gradient, AA-MAD and inactive time (ENMO and VM counts). The LoA for all other PA 

metrics were >10%. Excellent agreement, low mean bias and narrow LoA were evident for 

all sleep metrics. All sleep and PA metrics demonstrated equivalence (equivalence zone of ≤ 

10%) apart from MVPA (ENMO) which needed an equivalence zone of 16%. Conclusions: 

Equivalent estimates of almost all PA and sleep metrics are provided from the GT9X and 

wGT3X-BT worn on the non-dominant wrist. 
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The use of device-based measures of physical activity (PA) are common when assessing 

habitual levels of this behaviour and evaluating intervention effectiveness (Troiano et al., 

2014).  The ActiGraph accelerometer is one such device that is often deployed by researchers

given its ability to capture all components of PA including intensity, duration and frequency 

as well as sporadic activity throughout the day (Migueles et al., 2017). Since the release of 

the first ActiGraph model in 1993, newer models have since become available including the 

GT3X+ (2010), wGT3X-BT (2013), and the GT9X (2014). Although the two earlier models 

have identical dimensions (4.6 × 3.3 × 1.5cm, 19 g) they have different dynamic ranges 

(GT3X+: ± 6 g; wGT3X-BT: ± 8 g) which suggests that these two models have different 

internal accelerometers (ActiGraph, 2013). Although the GT9X has the same primary 

accelerometer as the wGT3X-BT (ADXL362 by Analog Devices, Norwood, MA) (Personal 

communication with ActiGraph), these models have different dimensions and unique 

components with the GT9X having a secondary accelerometer and an inertial measurement 

unit and the wGT3X-BT having a lux sensor (ActiGraph, 2019). Furthermore, technological 

advances have seen the GT9X become smaller and lighter compared to the wGT3X-BT 

(wGT3X-BT: 4.6 × 3.3 × 1.5 cm, 19g; GT9X: 3.5 × 3.5 × 1.0cm, 14g). With the GT9X being

used in recent randomized controlled trials (Alley et al., 2022; McDonough et al., 2022; 

Nathan et al., 2021), it is important to establish whether similar outcomes are provided from 

accelerometer devices when newer models become available. 

To the best of our knowledge, only two  studies have examined the comparability of metrics 

from the GT9X and earlier ActiGraph models in adults during free-living (Clevenger et al., 

2020a; Shah et al., 2023). In the Clevenger et al., (2020a) study participants wore the GT9X 

and wGT3X-BT at the hip and the GT9X and either the wGT3X-BT or GT3X+ on each wrist

for 4 days during waking hours. In the main, Clevenger et al., (2020a) found good agreement 

between vector magnitude (VM) counts, Mean Amplitude Deviation (MAD) and time spent 

3



in activity intensities at wear locations, regardless of device pairings. The authors did 

however observe a lack of equivalence for Euclidean Norm Minus One (ENMO) at both wear

locations, regardless of the device pairings. Whereas in the study by Shah et al., (2023) 

participants wore a GT3X and an GT9X which were strapped together on their dominant 

wrist for 7 days during free-living, and found that total activity counts and time spent in 

activity intensities were comparable. Whilst these findings are useful, there are limitations in 

these studies.  For instance, Clevenger et al., (2020a) had participants wear devices during 

waking hours only which precludes any comparisons between sleep metrics. Being able to 

establish the extent of agreement between the GT9X and earlier models for sleep metrics 

would be of particular interest to those reporting 24 h movement behaviours. Furthermore, 

whilst Shah et al., (2023) did employ a 24 h wear time protocol, comparisons were made 

between devices worn on the dominant wrist and their analysis was limited to outcomes 

provided by the proprietary software ActiLife only. As the non-dominant wrist seems to be a 

popular location to deploy ActiGraph devices (Migueles et al., 2017), further study is needed 

to address current evidence gaps.

When implementing a 24 h wear time protocol, researchers can use the open-source software 

GGIR to process accelerometer data (Migueles, Rowlands, et al., 2019). This is appealing for 

researchers as sleep and PA metrics can be captured from a single device. Moreover, 

processing acceleration data using GGIR removes the reliance upon proprietary software, can

facilitate reproducible analysis and can incorporate researcher developed external functions 

into data processing (Migueles, Rowlands, et al., 2019). An example of external functions 

that can be applied within GGIR include the Verisense step-count algorithm (Patterson, 

2021), and the actilifecounts R package (Migueles, 2022). Since stepping behaviour is 

intuitive and easily understandable by the general population (Bassett et al., 2017), being able

to quantify steps within GGIR could enhance understanding of the associations between 
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stepping behaviour and health outcomes. Similarly, ActiGraph accelerometers have been 

widely used by researchers to quantity PA and energy expenditure, using the main output 

‘counts’ which is generated within the proprietary ActiLife software. Until now, researchers 

using accelerometers other than ActiGraph were unable to generate count data (Neishabouri 

et al., 2022). Being able to generate count data within GGIR alongside a variety of activity 

and sleep metrics is appealing, since the same non-wear detection algorithms can be applied. 

Recent findings have reported that equivalent estimates of sleep quality and timing are 

provided from a wrist worn GT9X when applying an automated sleep detection algorithm 

against the gold standard Polysomnography (PSG) (Plekhanova et al., 2022). It is unclear 

whether comparable estimates of sleep duration and timing are provided from the GT9X and 

earlier ActiGraph models however. Researchers can apply the automated Heuristic Algorithm

looking at Change of Z-Angle (HDCZA) algorithm within the open-source software GGIR, 

which then combines sleep and activity data across the entire day (Migueles, Rowlands, et al.,

2019; Van Hees et al., 2018). Clearly, understanding the extent of agreement for PA and 

sleep metrics between accelerometer devices is important for researchers using ActiGraph 

devices. Whether that is for pooling outcomes from studies using different ActiGraph models,

or to maximize the pool of devices used in future studies if different models are available. 

Therefore, the aim of this study is to compare non-acceleration, acceleration and counts-

based PA metrics as well as sleep metrics from the wGT3X-BT and GT9X worn concurrently

on the non-dominant wrist during free-living in adults.

Methods

A total of 34 apparently healthy adults (14 females) aged 30.1  5.4 years were recruited 

from South Lanarkshire, Scotland between October 2021, and February 2022. Participants 
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provided informed consent upon study approval from the ethics committee of the University 

of the West of Scotland (Approval number 16792-14091).  

Participants were instructed to wear two ActiGraph accelerometers (one wGT3X-BT and one 

GT9X) on their self-reported non-dominant wrist. Both devices were initialized in ActiLife 

v6.13.3 (ActiGraph, Pensacola, FL, USA) to collect data at 100 Hz, and set to commence 

data collection immediately after distribution. Both devices are able to capture a dynamic 

range of  8g. The “idle sleep mode” in ActiLife v6.13.3 was not enabled. The devices were 

placed next to each other on the wrist with the order of devices randomized (i.e., proximal vs.

distal) between participants. The GT9X was worn using the ActiGraph GT9X Link adjustable

wear sensor wristband whereas a woven nylon wristband was used to feed through the two 

slots at either end of the wGT3X-BT. Participants were instructed to wear the devices for 24 

h a day, for 7 days, but were to remove the devices during water–based activities.

Upon the return of the devices, data were downloaded using ActiLife v6.13.3 and saved as 

60-sec AGD files using 3-axis (VM) with the low-frequency extension disabled, and in raw 

format as .gt3x files. The .gt3x files were subsequently processed using the GGIR package 

version 2.10-1 in R statistical software (R Foundation for Statistical Computing, Vienna, 

Austria, http://cran.r-project.org/) (Migueles, Rowlands, et al., 2019). When using GGIR, 

signal processing includes the detection of abnormally high values which can be replaced if 

specified by the user, detection of non-wear (Migueles, Rowlands, et al., 2019) and the 

calibration of data files using local gravity as a reference (van Hees et al., 2014). Two 

acceleration metrics were also calculated including ENMO and MAD, averaged over 5 s 

epochs and expressed in milli-gravitational units (mg). These metrics reflect body movement 

by removing the gravitational component of acceleration with ENMO reflecting the average 

magnitude of dynamic acceleration, minus 1 g, with negative values rounded up to zero (van 

Hees et al., 2013). Whereas MAD reflects the variability in acceleration around the mean 
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(Euclidean norm of each raw acceleration datapoint minus the mean value for a given time 

period) (Edwardson et al., 2022). Files were excluded from subsequent analyses if post-

calibration error was > 0.01 g, or if participants had less than 1 valid wear day (defined as  

16 h per day) or wear data was not present for each 15 min period of the 24-h cycle (Buchan, 

2022). GGIR imputes missing non-wear data with the average of the same 15 time period of 

other days if available, which helps to enhance participant retention and retain available data. 

As the imputation feature (do.imputation) is the default configuration of GGIR, this setting 

was retained to enhance the generalazability of the findings. Users have the option of 

removing the imputation feature if desired.

To identify valid days, the wear and non-wear time classifications was confirmed numerically

and by comparing the accelerometer traces provided by GGIR with metrics only calculated 

when the same valid days were provided by both devices. The default non-wear setting was 

applied during processing within GGIR whereby invalid data was imputed by the average at 

similar time points on different days of the week (van Hees et al., 2013). 

VM counts were also calculated in ActiLife v6.13.3 using the 60-s AGD files.  Wear time 

was determined using the Choi et al., algorithm provided within ActiLife, modified to include

the use of triaxial data (Choi et al., 2012). To identify valid days, the wear and non-wear time

classifications were confirmed numerically in ActiLife with metrics only calculated when the 

same valid days were provided by both devices. Thereafter, time spent in activity intensities 

were calculated at the non-dominant wrist using cut-points for VM counts (Montoye et al., 

2020). These cut-points were applied to determine inactive time (inclusive of sleep) (< 2860 

counts/min), light-intensity PA (LPA) (2860 – 3940 counts/min) and moderate-to-vigorous 

PA (MVPA) (≥ 3941 counts/min). 
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Metrics provided from each device using GGIR included wear time (days), average 

acceleration (mg) which reflects the overall volume of PA, and the intensity gradient (IG) 

which describes the acceleration intensity distribution across the monitoring period

(Rowlands et al., 2018). When calculating average acceleration (AA), both the ENMO and 

MAD metrics were calculated and are reported as AA-ENMO and AA-MAD henceforth. 

Alongside these metrics, ENMO cut-points were applied to determine time spent in inactive 

time (inclusive of sleep) (< 40 mg) (Hildebrand et al., 2017), LPA (between 40 mg and 100 

mg), and MVPA (> 100 mg) (Hildebrand et al., 2014). Finally, the minimal acceleration 

value above which the most active 10 and 30 min/day (M10 and M30) were accumulated 

from the ENMO metric were also reported (Rowlands, Sherar, et al., 2019). MAD cut-points 

were not available for adults and the non-dominant wrist.

ActiGraph counts.min-1 were also provided in GGIR using the actilifecounts R package 

external function algorithm (Migueles, 2022). The actilifecounts algorithm replicates the 

algorithm used in the ActiLife software and allows users to obtain activity counts as recently 

described (Neishabouri et al., 2022). For the count data, only the VM counts are reported 

which were calculated as the square root of the sum of the squared counts in each of the three

axes and reported as counts.min-1. Steps were estimated using the Verisense step-count 

external function algorithm which provided total step counts per day (Patterson, 2021). This 

metric is reported as Total steps. Finally, sleep metrics including the sleep period time 

window (SPT), sleep duration, sleep onset and waking time were calculated using the 

HDCZA algorithm (Van Hees et al., 2018). Focusing on these metrics were informed from 

recent findings which demonstrated they were comparable to PSG measures when provided 

from the GT9X worn on either wrist, and in the absence of a sleep log (Plekhanova et al., 

2022). 
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Statistics

Descriptive statistics were calculated for all measures (mean ± SD) or median (25th –75th 

percentile) following normality testing. Agreement in metrics between devices were explored

using intraclass correlation coefficients (ICC, two-way mixed effects, single measures, 

absolute agreement) with 95% confidence intervals (CI), equivalence tests and limits of 

agreement (LoA) (Bland & Altman, 1986). Depending upon the lower bound 95% CI of the 

ICC estimate, values < 0.5, 0.5–0.75, 0.75- 0.9, and > 0.90 were indicative of poor, moderate,

good, and excellent agreement, respectively (Koo & Li, 2016). The confidence interval 

approach was used to undertake the equivalence tests (95% equivalence test) (Wellek, 2003). 

In the absence of a criterion device, equivalence tests were carried out twice with each device

used as the reference device. Comparisons were only reported as equivalent if equivalence 

was achieved when both devices were used as the reference, and the mean differences 

between devices fell within a minimum required equivalence zone. To establish equivalence, 

the CI of the mean from one accelerometer device had to fall within a defined equivalence 

zone of the mean of the alternate accelerometer. An equivalence zone of ≤ 10% of the mean 

was used to establish equivalence between pairings which is often used in similar studies

(Buchan et al., 2020; Rowlands, Plekhanova, et al., 2019). Finally, Bland-Altman plots were 

used to visualize the extent of the differences in metrics between devices and to assess 

agreement (Bland & Altman, 1986). Statistical analyses were undertaken using IBM SPSS 

statistical software for Windows version 25 (IBM, Armonk, NY, USA) and GraphPad Prism 

9 was used to estimate LoA. Finally, equivalence testing was undertaken in Minitab (v17) 

with alpha set at 0.05.
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Results

From the 34 participants who provided baseline measures and wore the accelerometer 

devices, two participants experienced a device malfunction with their wGT3X-BT device. 

This left data from 32 participants to be processed in GGIR. Data from an additional two 

subjects were removed as they failed to provide at least 1 valid day of wear time from one or 

more of the devices. This left data from 30 participants (12 females) to be used in subsequent 

analysis. No data files were removed due to post-calibration error. Devices were worn on 

average for 5.7 ± 1.2 days with the average wear time being 22.8 ± 2.4h per day. Descriptive 

statistics of PA and sleep metrics are provided in Table 1. Findings from the mean bias, 95% 

LoA and ICC’s are provided in Table 2. Equivalence for PA and sleep metrics are displayed 

in Figure 1a-b. Bland-Altman plots for PA metrics are displayed in Figure 2a-h and for sleep 

metrics in Figure 3a-d. 

For the PA metrics, excellent agreement (>0.90) was observed from the ICC’s for the 

intensity gradient, AA-MAD, total steps, M10 and LPA (VM counts) with good agreement 

(0.75–0.9) for AA-ENMO, counts, inactive time (ENMO), LPA (ENMO), MVPA (ENMO), 

M30 and inactive time (VM counts). From the ICC’s, moderate agreement (0.5–0.75) was 

evident for MVPA (VM counts). Mean bias for all PA metrics were low. The LoA for the 

intensity gradient, AA-MAD and inactive time (both ENMO and VM counts) were all below 

10%. The LoA for all other metrics were greater than 10% with MVPA (VM counts) 

demonstrating the widest LoA at 68%. For the sleep metrics, excellent agreement (>0.90)  

from the ICC’s were found for sleep onset, waking time, SPT-window and sleep duration. 

Mean bias for the sleep metrics were low and displayed narrow LoA. 

The equivalence zone needed for PA metrics to be equivalent between the GT9X and 

wGT3X-BT were: AA-ENMO (7%), intensity gradient (2%), AA-MAD (5%), counts (5%), 
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total steps (4%), inactive time (ENMO) (2%), LPA (ENMO) (10%), MVPA (ENMO) (16%), 

M10 (7%), M30 (7%), inactive time (VM counts) (2%), LPA (VM counts) (4%) and MVPA 

(VM counts) (9%) (Figure 1 a). The equivalence zone needed for the sleep metrics to be 

considered equivalent between the GT9X and wGT3X-BT were: sleep onset (1%), waking 

time (2%), SPT-window (2%) and sleep duration (2%) (Figure 1 b). 

Discussion

Findings from this study indicate strong agreement at the group level and equivalence for 

almost all, of the PA and sleep metrics compared in this study. The only metric that 

demonstrated a lack of equivalence between devices was MVPA (ENMO). Whilst the LoA 

were wide, mean bias was less than 8% for MVPA (ENMO). This was similar to the findings 

for the remaining metrics with mean bias for both the PA and sleep metrics being low (below 

10%). Furthermore, the LoA tended to be wide for most PA metrics apart from the intensity 

gradient and inactive time regardless of the cut-point used. In contrast, the LoA were narrow 

for all sleep metrics.  These findings suggest that group, but not individual, estimates of the 

PA metrics could be compared between the devices although caution is advised when 

comparing MVPA (ENMO) estimates between devices due to the lack of equivalence 

observed in this study. Whereas both group and individual estimates could be compared 

between devices for the sleep metrics. 

Equivalent estimates for AA-ENMO from the non-dominant wrist is of particular interest 

given the availability of ActiGraph specific ENMO based cut-points to estimate time spent in 

activity intensities (Hildebrand et al., 2014, 2017). Our findings are in contrast to others who 

demonstrated poor agreement and a lack of equivalence for AA-ENMO between the 

ActiGraph GT9X and wGT3X-BT devices (Clevenger et al., 2020b, 2020a; Montoye et al., 

2018). In these studies, differences between devices were a consequence of larger 
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acceleration values produced from the GT9X relative to previous models. When comparing 

AA-ENMO between the GT9X and wGT3X-BT worn on the non-dominant wrist, Clevenger 

et al., (2020a) reported a mean differences of 14.2 mg. In contrast, AA-ENMO was near 

identical between the devices (27.9 mg and 27.8 mg) in this study. Differences in AA-ENMO

were also observed from the GT9X and wGT3X-BT when worn on the hip in youths during 

free living (mean difference of 13 mg) (Clevenger et al., 2020b) and in adults who wore both 

devices on the hip during an 80-min semi-structured protocol (Montoye et al., 2018). 

Findings from the latter study should be viewed with caution however, given the short 

duration of the protocol which meant it was not possible to calibrate the sensor data for 

gravity. The main difference in this study in comparison to those reporting differences in 

ENMO between the GT9X and wGT3X-BT  devices (Clevenger et al., 2020a, 2020b), relates

to the wear time requirements. Whereas participants were instructed to wear their devices 

whilst sleeping in this study, Clevenger et al., (2020a, 2020b) instructed their participants to 

remove devices whilst sleeping. It is plausible therefore that the different wear time 

requirements between studies explain the contrasting AA-ENMO findings.

Previous studies have demonstrated equivalent ENMO metrics between three different 

accelerometer brands (GENEActiv, Axivity and ActiGraph) when worn on the non-dominant 

wrist using either the GT9X (Rowlands, Plekhanova, et al., 2019) or wGT3X-BT models

(Buchan, 2022). These are important findings which suggest that metrics collected from the 

non-dominant wrist may be pooled from different studies if either of these three 

accelerometer brands, and ActiGraph models GT9X and wGT3X-BT, have been used. 

Findings from this study found that AA-ENMO and ENMO based cut-points for estimating 

time spent inactive and in LPA are equivalent between the GT9X and wGT3X-BT devices. 

This is somewhat similar to previous findings who reported equivalent estimates for a 

combined sedentary/light intensity category using ENMO cut-points at the non-dominant 
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wrist when concurrently wearing the GT9X and wGT3X-BT (Clevenger et al., 2020a). These 

authors also observed a lack of equivalence for moderate intensity activity when using 

ENMO cut-points (Clevenger et al., 2020a) whereas in this study, a lack of equivalence was 

evident for MVPA. When applying VM counts cut-points, we found strong agreement and 

equivalent outcomes for inactive time, LPA and MVPA which is consistent with the findings 

of Clevenger et al., (2020a). Establishing equivalence in metrics across accelerometer models

is important if data is to be pooled from different studies. It is encouraging therefore to 

demonstrate similar findings to those previously observed from the non-dominant wrist in 

adults when wearing the GT9X and wGT3X-BT concurrently, for both the ENMO and VM 

cut-points. Indeed, the findings observed from this study will likely support those interested 

in pooling metrics that rely upon ENMO and VM based cut-points from studies that utilized 

the wGT3X-BT and GT9X. 

Good agreement and equivalence were also observed for the AA-MAD metric. This suggest 

that when adult ActiGraph AA-MAD cut-points are available for the non-dominant wrist, 

comparable estimates for time spent in activity intensities may be evident between the 

wGT3X-BT and GT9X. Whilst others have reported that the AA-MAD metric was not 

equivalent between the GT9X and wGT3X-BT when worn concurrently on the non-dominant

wrist (Clevenger et al., 2020a), this is likely a consequence of the 5% equivalence zone used 

to establish equivalence. Although the equivalence zone needed to reach equivalence is not 

provided, from the available data it would appear that the AA-MAD metric was very close to 

reaching equivalence and may be similar to that reported in this study. As the intensity 

gradient describes the pattern of acceleration, the good agreement and equivalence evident 

here is consistent with the findings of previous studies, albeit when comparisons are made 

across different accelerometer brands (Buchan, 2022; Buchan & Maylor, 2023; Edwardson et

al., 2022). 
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The limitations of cut-points to estimate time spent in activity intensities are well established

(Migueles, Cadenas‐Sanchez, et al., 2019). It was encouraging therefore to see good 

agreement and equivalence between devices for the non-acceleration based metrics including 

total steps and counts. Measuring step counts has been of interest to researchers for decades, 

but it wasn’t until around 2011 where interest in step counting by the general population 

became widespread (Bassett et al., 2017). A recent study that calculated steps using the 

Verisene step-count algorithm for wrist-worn accelerometers, demonstrated that more daily 

steps were associated with a reduced risk of all-cause mortality and cancer mortality for up to

10,000 steps/day (del Pozo Cruz et al., 2022). Another important finding reported by the 

authors was that no minimal threshold for the beneficial association of increasing the number 

of daily steps with mortality and morbidity was evident. Being able therefore to generate step 

counts in GGIR from wrist worn accelerometers, may allow future research to disseminate 

recommendations in a manner that is more easily understandable by the general public. 

Whilst these findings are promising, it is important to acknowledge that recording steps can 

vary widely depending on the device, attachment site and the algorithm used in adults (Toth 

et al., 2018; Tudor-Locke et al., 2015). For instance, adults who wore twelve wearable step 

counter devices placed throughout their body for 1 day during free-living, found that the 

number of recorded steps varied from 69% to 220% of actual recorded steps (Toth et al., 

2018). Limited studies have assessed the performance of the Verisense Step Count algorithm 

during free-living. From these studies, findings revealed a modest positive mean bias of 

approx. 8% in steps/day from wrist-worn Axivity and GENEActive devices against the thigh 

worn activPAL during free-living (Maylor et al., 2022). Moreover, a mean bias of approx. 

12% was noted for step cadence during outdoor walking and running activities after applying 

the Verisense algorithm to wrist worn ActiGraph devices compared to the reference device, 
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the hip worn ActiGraph devices (Rowlands et al., 2022). Basing future evidence-based PA 

recommendations using daily steps may be more intuitive for the general population, but 

further work is needed to refine the Verisense Step Count algorithm before such 

recommendations are provided.

Similarly, counts demonstrated excellent agreement and equivalence between devices. 

Activity counts provided by ActiGraph devices has been used extensively in previous studies 

to assess PA behaviour and estimate time spent in activity intensities (Migueles et al., 2017). 

These findings will be particularly relevant for those wishing to compare new data collected 

from the GT9X with data collected from the wGT3X-BT to estimate time spent in activity 

intensities, if processed in GGIR using the actilifecounts external function algorithm. 

Moreover, sleep metrics demonstrated excellent agreement and equivalence between devices.

These observations are in line with recent findings which demonstrated equivalent estimates 

for sleep onset, waking time, SPT-window and sleep duration when applying the automated 

HDCZA algorithm to the GT9X or Axivity and comparing metrics against PSG (Plekhanova 

et al., 2022; Van Hees et al., 2018). The findings reported here demonstrate minimal 

differences for sleep onset, waking time, SPT-window and sleep duration, and shows that the 

automated HDCZA algorithm performs similarly when applied to the GT9X or wGT3X-BT. 

Overall, these findings provide support for the cross-generational comparability of the 

wGT3X-BT and GT9X devices but is dependent upon the outcome being compared. 

There are some limitations to the present study. Agreement and equivalence of activity and 

sleep metrics were only compared between the ActiGraph GT9X and wGT3X-BT devices 

during free-living, and not against a criterion measure. Moreover, our findings are limited to 

the specific population used in the study which hinders the generalizability of the findings to 

other populations. A strength of this study includes the comparison of two devices from the 

most widely used accelerometer brand which were worn concurrently, with data processed 
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identically. A particular strength of the study relates to the findings of the non-acceleration-

based metrics counts and steps which are reported for the first time. As is the comparison of 

sleep metrics between the ActiGraph GT9X and wGT3X-BT devices. 

Conclusions

In summary, equivalent estimates of most PA and all sleep metrics are provided from the 

GT9X and wGT3X-BT when worn on the non-dominant wrist. Nonetheless, caution is 

advised comparing MVPA estimates between devices due to the lack of equivalence observed

in this study when applying ENMO based cut-points.
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Figure 1. Equivalence between GT9X minus GT3X- BT monitors worn at the non-dominant 

wrist for (a) Physical Activity metrics and (b) Sleep metrics. Dashed lines represent the 10% 

equivalence zone. Equivalence = 1 (solid line). The horizontal lines represent the 95% 

confidence interval of the ratio. Counts were estimated using the actilifecounts R package. 

VM cut-points were estimated using ActiLife v6.13.3.

Figure 2. Bland-Altman plot displaying mean bias and 95% limit of agreement level for PA 

metrics between GT9X minus GT3X- BT monitors worn at the non-dominant wrist. Counts 

were estimated using the actilifecounts R package. VM cut-points were estimated using 

ActiLife v6.13.3.

Figure 3. Bland-Altman plot displaying mean bias and 95% limit of agreement level for sleep

metrics between GT9X minus GT3X- BT monitors worn at the non-dominant wrist.
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Table 1. Descriptive statistics of physical activity and sleep metrics from ActiGraph devices (N = 30).

Physical Activity metric wGT3X-BT GT9X 

AA-ENMO (mg/day) 27.9  7.2 27.8   8.1
Intensity Gradient (mg/day) -2.58  0.2  -2.56  0.2 
AA-MAD (mg/day) 40.7  11.7 41.4  11.4 
Counts (counts.min-1)† 79.32  45.7  81.9  26.5 
Total steps (steps) 54328  30183 54930  30715
M10 (mg) 256.7  96.6 262.9  92.3
M30 (mg) 171.2  54.1 178.1   55.7 

ENMO cut-points
Inactive time (min/day) 1141.5  92.4  1137.2  105.7 
LPA (min/day) 203.3  59.3  200.1  71.1 
MVPA (min/day) 96.6  46.8  104.2  49.3 

VM counts cut-points‡

Inactive time (min/day) 1053.2  121.3 1055.4  131.1
LPA (min/day) 197.6  75.5 200.1  76.1
MVPA (min/day) 104.9  62.8 104.5  60.1

Sleep metric
Sleep onset, clock time (Hr  min) 23:34 pm.  88.7 23.33 pm.  87.5
Waking time, clock time (Hr  min) 08:06 am.  92.2 08:10 am.  95.2
SPT-window (Hr  min) 8.5  73  8.6  73
Sleep duration (Hr  min) 7.2  58 7.2  57

Data are presented as mean  SD. Hr, hour. AA-ENMO, average acceleration Euclidean Norm Minus One; AA-MAD, average acceleration 
Mean Amplitude Deviation; M10, the minimum acceleration value of the most active 10 mins; M30 the minimum acceleration value of the most 



active 30 mins; LPA, light physical activity; MVPA, moderate-vigorous physical activity; SPT-window, sleep period time window. † Estimated 
using the actilifecounts R package. ‡ Estimated using ActiLife v6.13.3.



Table 2. Agreement, intraclass correlations and equivalence zones between the GT9X and wGT3X-BT for physical activity and sleep metrics

Physical Activity metric Mean bias (95% LoA) ICC (95%CI) Equivalence zone, %

AA-ENMO (mg/day) 0 (7.2) 0.89 (0.77 to 0.95) 7
Intensity Gradient (mg/day) 0 (0.16) 0.96 (0.91 to 0.98) 2
AA-MAD (mg/day) 0.7 (6.7) 0.97 (0.93 to 0.98) 5
Counts (counts.min-1)† 2.6 (21.6) 0.92 (0.83 to 0.96) 5
Total steps (steps) 937 (7580) 0.99 (0.98 to 0.99) 4
M10 (mg) 6.3 (54.4) 0.97 (0.93 to 0.98) 7
M30 (mg) 6.9 (38.9) 0.95 (0.88 to 0.98) 7

ENMO cut-points
Inactive time (min/day) -4.3 (89.4) 0.91 (0.80 to 0.96) 2
LPA (min/day) -3.3 (60.2) 0.91 (0.80 to 0.97) 10
MVPA (min/day) 7.6 (51.2) 0.86 (0.76 to 0.95) 16

VM counts cut-points‡

Inactive time (min/day) 2.2 (81.7) 0.95 (0.89 to 0.98) 2
LPA (min/day) 2.4 (31.7) 0.98 (0.96 to 0.99) 4
MVPA (min/day) -0.4 (71.3) 0.83 (0.66 to 0.92) 9

Sleep metric
Sleep onset (min) -1.8 (30) 0.99 (0.98 to 0.99) 1
Waking time (min) 6 (18) 0.99 (0.98 to 0.99) 2
SPT-window (min) 6 (36) 0.98 (0.95 to 0.99) 2
Sleep duration (min) -0.6 (24) 0.98 (0.95 to 0.99) 2

LoA, Limits of Agreement; ICC, intraclass Correlation Coefficients; CI, confidence intervals; Hr, hour GT9X vs wGT3X-BT. AA-ENMO, 
average acceleration Euclidean Norm Minus One; AA-MAD, average acceleration Mean Amplitude Deviation; M10, the minimum acceleration 
value of the most active 10 mins; M30 the minimum acceleration value of the most active 30 mins; LPA, light physical activity; MVPA, 



moderate-vigorous physical activity; SPT-window, sleep period time window. † Estimated using the actilifecounts R package. ‡ Estimated using 
ActiLife v6.13.3.
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