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Dynamic Al-IoT: Enabling Updatable AI Models in
Ultra-Low-Power 5G IoT Devices

Mohammad AlSelek, Jose M. Alcaraz-Calero and Qi Wang

Abstract—This paper addresses the challenge of integrating
dynamic Al capabilities into Ultra-Low-Power (ULP) IoT devices,
a critical necessity in the rapidly evolving landscape of 5G and
potential 6G technologies. We introduce the Dynamic AI-IoT
architecture, a novel framework designed to eliminate the need
for cumbersome firmware updates. This architecture leverages
Narrowband IoT (NB-IoT) to facilitate smooth cloud interactions
and incorporates tailored firmware extensions for enabling dy-
namic interactions with Tiny Machine Learning (TinyML) mod-
els. A sophisticated memory management mechanism, grounded
in memory alignment and dynamic Al operations resolution, is
introduced to efficiently handle AI tasks. Empirical experiments
demonstrate the feasibility of implementing a Dynamic AI-IoT
system using ULP IoT devices on a 5G testbed. The results
show model updates taking less than one second and an average
inference time of approximately 46 ms.

Index Terms—Artificial Intelligence, Internet of Things, 5G,
NB-IoT, TensorFlow, ESP32, Fipy, Pysense, Micropython.

I. INTRODUCTION

HE combination of 5G, IoT and Al technologies creates

limitless possibilities for novel and future-proof commu-
nication systems. IoT devices are key sources of data in 5G
and beyond systems, while Al goes hand in hand with IoT for
smart pervasive services. When coupled together, Al and IoT
reshape the digital transformation mechanisms. Making ultra-
low-power 5G-enabled IoT devices smart has a significant
impact in terms of a wide range of use cases such as improving
prediction and automating new processes. Moreover, dealing
with low-power and ULP devices means that we can maintain
the power consumption at a lower level, resulting in more
sustainable end products and/or applications.

The 5G architecture embraces 10T, allowing diverse vertical
IoT applications, such as Industrial IoT (IloT), Smart Agri-
culture, and Smart Cities, to be instantiated across a shared
physical network and cloudified 5G infrastructure [1]. Such
infrastructure allows Al models to be dynamically loaded and
executed by low-cost, low-power, 5G-enabled IoT devices, and
thus the technological game changes dramatically.

However, many current ultra-low-power IoT devices lack
sufficient support for training and executing Al models. When
such support is available, it is often fixed, making these
devices vulnerable to obsolescence and inflexibility over time.
Specifically, we are referring to real ultra-low-powered tiny
IoT devices (less than 250mA) with limited resources, unable
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to accommodate an embedded Linux-based system. Instead,
they utilize a tiny mini-OS embedded in an 8Mb-32Mb
memory size. Updating these devices necessitates re-flashing
the firmware, creating challenges for many use cases. This
requirement demands either in-situ re-flashing or remote re-
flashing via Over-the-air (OTA) technology [2]. Such a require-
ment presents significant challenges in various IoT scenarios,
exemplified by scenarios where a timely and smooth update
process is crucial, like in industrial automation or healthcare
applications.

In response to the above gaps in the state of the art,
this research has focused on allowing the execution and
dynamic loading/updating of Al models into low-power IoT
devices. The proposed new enabling architecture, referred to as
Dynamic AI-IoT, will be based on an ESP32 microprocessor
using Micropython as a scripting language to provide dynamic
Al capabilities of the Al models.

The proposed system offers several advantages and contri-
butions, which include:

o First, Dynamic AI-IoT enables the execution of Al mod-
els into ULP IoT devices, thereby removing a major
barrier in today’s Al-empowered IoT use cases.

« Second, Dynamic AI-IoT enables the dynamic updating
and re-configuration of Al models without the need to
re-flashing the IoT devices, enabling further development
into more advanced Al approaches such as “online learn-
ing” and “federated learning”.

o Third, Dynamic AI-IoT enables the dynamic loading of
different Al models to achieve a multi-proposed Al-
empowered [oT device in 5G systems. Therefore, a single
IoT device can be involved in multiple use cases depend-
ing on the loaded AI model.

« Forth, Dynamic AI-IoT enables connectivity with various
networks such as Lora, LTE-M, or NB-IoT, among others.
For example, we use a 5G network as a connection bridge
between Mobile Edge Computing where the Al model is
generated, and the ULP IoT devices where the transferred
Al model is executed.

« Fifth, Dynamic AI-IoT has been prototyped to achieve a
fully functional system. The system has been tested and
empirically validated against two different Al use cases:
hand gesture recognition and sine wave recognition.

The rest of the paper is laid out as follows. Section II
presents the state-of-the-art. Section III outlines the proposed
architecture of the dynamic AI-IoT system. Section IV ex-
plores the system’s process and diagrams. Section V details
the AI-IoT firmware development. Section VI showcases two
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validation use cases. Section VII summarizes experimental
outcomes. Section VIII discusses limitations and challenges,
and, finally, Section IX concludes the paper and suggests
directions for future research.

II. RELATED WORK

Table I presents a comparison of the current state of Ultra-
Low-Power (ULP) IoT devices and their Al capabilities,
providing a basis for evaluating our contribution. The table
enables readers to understand how our work contributes to the
existing state of the art.

Recent efforts have been made to implement ML on IoT
devices, marking advancements in both hardware and software
domains [13]. On the software side, ML libraries like Tensor-
Flow, Scikit-Learn, and PyTorch have been adapted for use on
resource-constrained devices [14]. Simultaneously, hardware
manufacturers are striving to improve chips by integrating
advanced technologies. For instance, the incorporation of a
dedicated co-processor, such as a Tensor Processing Unit
(TPU), can effectively support the primary computing unit in
ML tasks. While this approach enhances computational perfor-
mance, it is less common due to its significant impact on price,
power consumption, and processing platform complexity.

Furthermore, the concept of Edge Intelligence, which rep-
resents the convergence of Edge Computing and Al [15], has
emerged as a pivotal paradigm for extending Al capabilities
to the network’s edge. This extension empowers real-time
decision-making while simultaneously reducing latency [16].
In the context of these developments, Edge Impulse Studio, a
cloud-based platform dedicated to embedded machine learn-
ing, has played a vital role in facilitating model training,
evaluation, and subsequent deployment on IoT devices at the
network’s edge [17].

Most IoT devices are designed to use low power, whether
they are in idle or active mode. The primary chip in their ar-
chitecture, referred to as a Micro Controller Unit (MCU) such
as ESP32 and STM32, should have the capability to integrate
low-power units. Developing applications on MCUs has led
to the creation of compatible technologies. For instance, the
term TinyML is used instead of ML when implementing Al
on MCUs. Some Al frameworks have been adjusted, such as
TensorFlow Lite Micro (TFLM), which is a modified version
of TensorFlow. Concerning the programming language, Mi-
cropython has been developed to provide access to alternative
Python libraries for interaction with MCUs.

TFLM simplifies the deployment of TinyML models on
hardware with limited resources by prioritizing portability

and flexibility [18]. A straightforward approach for creating
a TFLM model is to convert an already trained TensorFlow
model. The optimized models, supporting various algorithms
from the Neural Network (NN) class, can operate on diverse
platforms like smartphones, embedded Linux systems, and
MCUs. Specifically for MCUs, the optimized code is written
in C++ and is compatible with 32-bit processors. It has been
successfully applied to devices such as the Arduino Nano, as
well as other architectures like the ESP32 and ARM Cortex-M
series processors [14].

Currently, there is a growing focus on investments in Low-
Power IoT and TinyML. In this context, researchers have made
significant progress by considering factors such as chip ar-
chitecture, programmability support, Al support, programming
language, connectivity for Al, and power consumption. These
factors are the main elements of our comparison, as illustrated
in Table I. To simplify, we have categorized this table into
three groups, each representing recent Al-empowered IoT
devices. The first group pertains to devices equipped with high
computational processors, the second highlights low-power
IoT devices, and the third category involves low-power/ULP
Micropython-enabled IoT devices. Despite their differences,
all these IoT devices share the common feature of efficiently
executing Al models.

The authors in [3] and [4] fall into the first group, demon-
strating the capability to deploy Deep Learning (DL) inference
models directly on IoT end-nodes. Their focus was on reducing
the size and compressing high-accuracy DL models to suit
the characteristics of the target IoT devices. These devices
have resources that enable them to smoothly run large Al
models, regardless of their complexity. For instance, in [3], a
TensorFlow Al model was deployed on Raspberry Pi 3 Model
B+, and in [4], a PyTorch Al model was trained and executed
on Raspberry Pi 4 Model B. While these efforts have made it
possible to run AI models on IoT devices, real-time processing
of large Al models is power-intensive and can consume several
Watts. For example, in an empirical test on an RPi 4 with 4
busy cores, it was found to consume around 6 Watts of power.

In [5], [6], [7], and [8], the authors proposed generating pre-
trained TinyML models and adapting them to the constraints of
MCUs. They explained the tools that typically take inference
engines from well-known ML libraries such as TensorFlow,
Scikit-Learn, or PyTorch and adapted their code for execution.
The results demonstrate the feasibility of running Al models
on Low-Power resource-constrained IoT devices.

However, using the "train-then-deploy" approach raises
uncertainties about how to manage the complete separation



between the learning/training and runtime inference phases.
Consequently, the second group of IoT devices resorts to
using static AI models that cannot adapt to newly collected
data without on-site data collection, analysis, and manual
fine-tuning. If the edge has the necessary data to generate a
new Al model, updating the AI model on an MCU requires
manual intervention. Although the Spresense board used in
[8] supports CircuitPython, providing some dynamic program-
ming capabilities, this CircuitPython board does not support
TensorFlow.

The third group aims to address the challenges identified
in the second group. Researchers recognized the feasibility of
achieving on-device TinyML inference and began exploring
ways to dynamically interact with TinyML models. They
realized that enabling Micropython in these devices could
unlock various capabilities, particularly in supporting Al tasks
like dynamic loading and execution of AI models.

Micropython implements a subset of Python functions and
class libraries that directly replace Python libraries while
considering the limitations of MCUs, such as RAM speed
and size, process frequency, and the reduced number of cores.
Micropython seamlessly handles TinyML functions, such as
returning lists of data structures, iterating through lists, sorting,
and filtering. These tasks can be instantly executed on the
MCU. In contrast, using other languages requires users to
delve deep, ensuring the code is correct, the firmware has
been successfully built, and flashing it to the MCU has been
executed smoothly.

There is currently no published paper detailing how to
extend Micropython to incorporate Al. Nevertheless, some
researchers have made progress on the technical aspects of
this endeavor. For instance, in [9], [10], and [11], the integra-
tion of the TFLM library into Micropython has been imple-
mented. They successfully compiled Micropython firmware,
including a pre-trained TinyML model, which can be flashed
into IoT Low-Power devices. These researchers drew inspi-
ration from OpenMV projects [12], specifically Micropython-
powered TFLM-integrated products [19]. OpenMV has been
dedicated to developing machine vision modules for running
machine vision algorithms on STM32.

While each of the existing studies offers distinct advantages,
none has successfully addressed the challenges associated with
the "train-then-deploy" design, resulting in static intelligence
models. This static nature often impacts applications, making
smart sensor platforms unreliable when deployed in the field.
Additionally, the exchange of ML/TinyML models between
the Edge and IoT devices remains unimplemented due to
the requirement for a high-speed connection. Furthermore,
none has developed dynamic Al model configurations, such
as tensor arena size and Al operations resolving, leading to
limited memory management.

Our contribution aims to provide a dynamic and robust
solution to these challenges by leveraging 5G connectivity.
This involves using 5G as a bridge between Edge and Low-
Powered IoT devices, enabling the deployment of different
TinyML models for various scenarios. The solution involves
working with our implemented 5G infrastructure alongside
our 5G-enabled, TFLM-integrated, and Micropython-powered

IoT devices to facilitate dynamic exchanging and updating
of Al models. Additionally, 5G offers an environment for
seamlessly connecting a massive number of embedded devices
by allowing scalability in data rates, power consumption, and
mobility.

It is worth mentioning that none of the mentioned research
endeavors can dynamically update Al models and optimize
memory management with each update. Additionally, none of
them have utilized cellular connectivity to enable Edge-to-IoT
Al knowledge transfer. These advanced capabilities serve as
the primary motivation for our contribution.

III. PROPOSED AI-IOT SYSTEM FOR DYNAMIC Al MODEL
UPDATES IN ULTRA-LOW-POWER 5G 10T DEVICES

5@, IoT, and AI can be integrated into end-to-end cloud-
based scenarios, enabling rapid, distributed, and intelligent
real-time decision-making. With IoT devices linked to the
5G edge, a single IoT device gains the intelligence to make
predictions without relying on a central computing unit. Im-
plementing Al technologies on IoT devices not only reduces
latency but also enhances link capacity and network security
[20].

The acceleration in the development of cellular IoT devices
necessitates expandable and power-efficient communication
technology. While 4G can connect around two thousand de-
vices, 5G technology can support connectivity for up to one
million devices over 1 Km?. Managing such density without
proper oversight could significantly drain device batteries. To
address this, Narrowband IoT (NB-IoT), a cellular low-power
wide-area (LPWA) connectivity standard, is used. NB-IoT
allows IoT devices to send data directly to the cloud without an
intermediary gateway, improving power consumption in user
devices. The need for intelligence in IoT devices becomes
crucial, especially in scenarios with high traffic from all
connected nodes. Therefore, incorporating an Al layer into
the 5G-IoT architecture ensures the capability to process big
data with minimal latency, reliability, and continuous network
service accessibility [21].

Our novel contribution aims to offer a Dynamic Al-IoT
solution for application on ultra-low-power 5G-enabled IoT
devices. This represents a significant step toward implementing
federated learning for constrained-resource devices.

A. Dynamic AI-1oT System Architecture

Dynamic AI-IoT is an approach to automatically utilize Al
capabilities in IoT systems connected to a 5G network. This
design aims to develop an Al-enabled IoT component that can
communicate with the Al Development Engine in 5G envi-
ronments. The general workflow of the proposed architecture
is presented in Fig. 1. 5G network offers a high data rate,
wide bandwidth, acceptable latency, and a massive number of
connected IoT devices. The Al Development Engine is capable
of designing, training, compressing, and converting AI models.
The Al-enabled IoT component then can exchange data and
make an inference on an IoT device associated with dynamic
updates of Al models.
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Fig. 1: Overview Architecture of a Dynamic AI-IoT in 5G infrastructure

In the context of this design, it is essential to recognize that
the forthcoming 6G connectivity era holds significant potential
benefits for our system. With 6G’s projected ultra-high-speed,
low-latency connectivity, our architecture can achieve even
faster response times, support more complex AI models,
and offer improved efficiency and reliability. Moreover, the
expanded bandwidth and reduced latency characteristic of 6G
networks can pave the way for new horizons in Al-powered
IoT ecosystems.

In this design, a new IoT firmware has been implemented
to support the Dynamic AI-IoT architecture by integrating
Micropython, NB-IoT, Al capabilities and ULP unit. Flashing
this firmware into IoT devices allows the tackling of the
interactions with the AI Development Engine in a holistic
manner. As depicted in Fig. 1, our proposed design shows
that the AI Development Engine will be in the 5G edge
computing. On the other hand, the IoT devices with the
developed firmware can be connected to the 5G RAN, which
oversees continuously receiving and sending the data to the 5G
edge and then receiving and sending updates to IoT devices.

The proposed architecture in Fig. 1 shows how feasible it
is to overcome the challenges raised in Section II. This is a
logical change that should be put in place to support federated
learning in smart IoT applications. For example, the inference
computing processes, Al model configurations, and Al model
memory management should be done on IoT devices, resulting
in a significant reduction in the communication overhead with
the connected 5G Edge.

In the previous section, the architecture overview provided
a better understanding of how our contributions add value
to 5G networks. In this section, the internal components of
our proposed AI-IoT architecture are explored. As shown in
Fig. 2, there are three layers: the IoT Layer, Al-IoT Layer,
and Al Layer. These layers are explained in the following
subsections. It’s worth mentioning that this figure, for all the
layers, does not cover all the functional blocks but includes
key components used in our design.

1) AI Layer: The Al layer belongs to 5G edge computing,
where networking, computing, and storage services are offered
with high availability and low latency. A substantial number of
mobile and IoT devices can benefit from these services. On the
other hand, the Al models are generated on this layer by our
Al Development Engine which runs into multiple development
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Fig. 2: Proposed Dynamic AI-IoT Architecture

phases to eventually give different versions of TinyML models
available for different AI-IoT use cases.

Data Generating: Predictive models are based on the collec-
tion of data, which can be gathered from a variety of sources.
The more error-free the data collection is, the more accurate
the predictive models are.

Data Splitting: Datasets are commonly divided into train-
ing, validation, and test subsets [22]. The validation dataset
assesses model accuracy, while the test data evaluates model
predictions against actual values.

Model Definition: Model development begins with neural
network design, focusing on layer architecture and connec-
tivity. The neural network should be designed to effectively
capture patterns from the training data.

Model Training: Training involves setting various param-
eters, such as input-output pairs, epochs, and batch size.
Validation data is used to monitor model performance during
training.

Model Compression: Efficient network algorithms like Mo-
bileNets and SqueezeNet are used to reduce model size.
MobileNets uses depth-wise and point-wise convolutions to
build lightweight deep neural networks, while SqueezeNet
downs samples the data using special 1 x 1 convolution filters.
Quantization [23] and pruning [24] techniques further enhance
efficiency by reducing model weight size and computation
[25].

Model Conversion: To make the model IoT-compatible, it



needs to be converted to a suitable format, such as a C array
[26] or serialized file. This conversion facilitates integration
into IoT applications.

In the realm of developing efficient Al models for IoT
devices, TensorFlow variants like TensorFlow Lite (TFLite)
and TFLM have emerged as optimized frameworks for running
models on small, low-powered devices such as mobile phones
and microcontrollers. These variants offer compact binary
sizes and minimal dependency requirements, making them
ideal choices for resource-constrained IoT environments where
standard C or C++ libraries may not be readily available [27].

2) AI-IoT Layer: This layer is a logical bridge between
the Al and IoT layers with three main tasks.

Firstly, dynamic updating of TinyML models to improve
the accuracy in real-time. After making an on-device inference
and analyzing the model performance, there will be an option
to send back some useful information from the IoT device
directly to the Al Development Engine in the Al layer. Then,
the AI Development Engine will consider the changes to re-
train the model and ensure that the IoT device has an updated
model.

Secondly, dynamic loading, reloading and executing multi-
ple TinyML models to prevent any delay caused by adapting
the IoT device to new models. The IoT device will be able
to load multiple TinyML models and choose one of them to
be executed at a time. Re-loading an updated model is done
automatically so the IoT device can make new predictions.
The only limitation would be the memory capacity of the IoT
device. Therefore, the more available memory the IoT device
has, the more TinyML models can be loaded at the same time.
This seems to be an obvious capability but instead, it has not
been yet achieved in the literature and we are proving the
suitability of this approach.

Thirdly, dynamic memory optimization to enable efficient
memory usage of IoT devices in real-time and without re-
flashing the firmware. Three main key components can be
optimized.

1) Memory alignment: Ensuring the starting memory ad-

dress of the model is aligned correctly.

2) Tensor arena: Any model reserves only a required

amount of memory regarding its size.

3) Registration of the model’s operations: Only the oper-

ations used in the model’s design are assigned to take
memory space for execution.

In the context of the AI-IoT Layer described in Subsection
III-A2, Micropython emerges as the best language for IoT
devices to execute the three critical tasks:

1) Dynamic Model Updates: Micropython simplifies real-
time model updates based on on-device inference, al-
lowing for improved accuracy.

2) Dynamic Model Loading: It supports the dynamic load-
ing and execution of multiple TinyML models, prevent-
ing delays during model adaptation.

3) Dynamic Memory Optimization: Micropython enables
efficient memory usage without the need for firmware
re-flashing, optimizing memory alignment, tensor arena
utilization, and model operation registration.

Micropython’s origin in Python 3.5 and its compatibility
with various microcontrollers make it an ideal choice for IoT
solutions. Its integration with IoT development tools like Atom
further streamlines the development process.

3) IoT Layer: The IoT layer is the target environment for
executing TinyML models, offering end-to-end Al solutions.
At its core, the MCU handles inferences and data processing,
utilizing RAM and flash memory for storage. Networking
and peripherals facilitate interactions with the environment,
including other IoT devices, sensors, and actuators.

Furthermore, the Fipy platform, as depicted in Fig. 3 and
powered by the Espressif ESP32 System-on-Chip (SoC), with
its support for Micropython, an Ultra-Low-Power mode, and
compatibility with five distinct network technologies, includ-
ing NB-IoT cellular technology for direct cloud connectivity
[28], has been selected as the foundation for our develop-
ment. This choice is predicated on the platform’s enhanced
functionalities, rendering it particularly well-suited for the
implementation of AI-IoT applications.
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IV. DESIGN OF THE DYNAMIC AI-IOT SYSTEM

In this section, we delve into the intricate design aspects
of an AI-IoT system that exhibits dynamic adaptability in
response to changing conditions, facilitating real-time insights
and actions. The subsequent subsections systematically dissect
the various components of this system, unveiling its dynamic
processes, interactive sequences, state transitions, and struc-
tural hierarchies.

A. Dynamic Al-1oT Process

In this section, we define the Dynamic AI-IoT Process,
which is a framework for dynamically updating TinyML
models on IoT devices efficiently and smoothly.
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Fig. 4: Dynamic AI-IoT Process

Let M = {L,C, W} represent an Al model, where L stands
for layers, C denotes connections between layers, and W
represents the weights of artificial neurons within each layer.
We distinguish two types of Al model updates:

1) M; ={L’,C’, W'} represents a total model update where
all model components are updated, denoted as L’ for
layers, C” for connections, and W’ for weights.

2) M, = {L,C,W’} represents a partial update, focusing
solely on weight updates (W’) as a result of further
training.

Our proposal supports both types of updates: M; and M,,.
The algorithmic representation of these updates is provided
in Algorithm (1). It outlines a process for dynamically and
efficiently updating TinyML models on an IoT device. The
following list describes the specific steps involved in this
process:

1) Initialization (Step 1): The algorithm begins with the
initialization of the IoT device, which is assumed to be
equipped with an existing TinyML model and Micropy-
thon Al-supported Firmware.

2) Firmware Flashing: The algorithm proceeds by flashing
the Micropython Al-supported Firmware onto the IoT
device. This firmware contains the necessary infrastruc-
ture for handling TinyML models.

3) Connecting to the AI Development Engine: The IoT
device establishes a connection to the Al Development
Engine.

4) Model Inference Loop (Step 2): With the model
configured, the algorithm performs an inference, which
means it uses the model to make predictions or perform
specific tasks based on incoming data.

5) Data Transmission (Step 3): After performing infer-
ence, the IoT device sends relevant data, which could
include the results of the inference or other information,
back to the Al Development Engine.

6) Model Reception (Step 4): Every N times (100 by
default), The IoT device requests a model update from
the Al Development Engine. The IoT device receives
either an updated version of the existing TinyML model
or a completely new one.

7) Model Loading (Step 5): The received TinyML model
is loaded into the RAM of the MCU on the IoT device.

8) Model Configuration (Step 6): The algorithm config-
ures the loaded model as needed. This step involves

setting up the model’s parameters, input/output formats,
and any other necessary settings.

9) Edge Reception (Step 7): The Al Development Engine
may generate a new TinyML model, possibly based on
the data it has collected and processed.

10) Model Generation (Step 8): The AI Development
Engine may generate a new TinyML model after N
numbers of received values based on the data it has
collected and processed or will load a completely new
model if it has been requested by the administrator.

Algorithm 1 Dynamic AI-IoT Model Updates

Require: [oT Device, TinyML Model, Micropython Al-
supported Firmware

Ensure: Updating the IoT device with the new TinyML
Model

1: IoT device: Initialize() > Step 1
2: IoT device: Flash(uPython Firmware)

3: IoT device: Connect(Edge), Inferences=0

4: while IoT device: True do > Step 2
5: Output=Infer(Inputs, Model)

6 Inferences=Inferences+1

7 Send(Edge, Output) > Step 3
8 if Inferences % 100 = O then

9: Model = Receive_Last_Model(Edge) > Step 4
10: Load(Model.L, Model.C, Model. W) > Step 5
11: Configure(Model) > Step 6
12: end if

13: end while

14: Edge: Samples=0

15: while Edge: True do

16: Store(Output) > Step 7
17: Samples = Samples +1

18: if Samples % 100 == O then > Step 8
19: if Partial_Update() then
20: LastModel=Train(LastModel,Output)
21: end if
22: if Full_Update() then
23: LastModel=Load(Model.L.,Model.C,Model. W)
24: end if
25: end if

26: end while

This algorithm enables an 10T device to continuously update
its TinyML model, ensuring that it can adapt to changing data
and requirements without the need for firmware re-flashing or
significant device downtime.

B. Dynamic Al-IoT Sequence Diagram

The data flow in the system is illustrated by a sequence
diagram in Fig. 5. The main components exchanging data
in the system are the Firmware Development Engine, Al
development Engine, Fipy as an IoT device, sensors and
actuators. The data is propagated through the network from
one component to another as follows:

1. The foundation for any IoT device to execute Al models
and make predictions consists of two essential components:
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Fig. 5: Data Flow between the System Components

Al-supported firmware and an Al model. In our system,
the Firmware Development Engine is where our customized
Pycom Micropython firmware with TFLM extension has been
developed and ensured to be executable on Fipy. Additionally,
Fipy is equipped with the ability to update its firmware while
still running, enabled by OTA update. The combination of OTA
alongside NB-IoT provides Fipy with the capability to connect
to 5G Edge through RAN and remotely update its firmware
when updates in the capabilities of the Al IoT framework are
required.

2. Meanwhile, the Al Development Engine generates Al
models for various use cases, and only those TinyML models
that can run on Fipy’s MCU can be transferred. Transferring
TinyML models is facilitated through RAN after enabling NB-
IoT on Fipy. For simplicity, if Fipy is involved in two different
use cases, two models (models A and B) are developed inside
the Al Development Engine and then sent to Fipy.

3. To commence using the TFLM model, it needs to be
loaded into Fipy’s RAM, where the ESP32, the main chip of
Fipy, can swiftly access the model’s addresses. Loading the
model into the RAM is one of the functions we developed to
be executed from within Micropython. In Fig. 5, we illustrate
the process of loading Model A into Fipy.

4. If Model A has been updated or there is a need to switch
to Model B, the load function can reload the updated model
or switch to a new model on demand. Importantly, this can
be done without re-flashing the firmware; only the file of the
new model needs to be transferred to the FiPy, providing a
new level of flexibility.

5. Once the model is loaded, it should be configured
dynamically. All the configuration functions were explained
in the implementation section.

6. Sensors play a crucial role in enabling any IoT device to
interact with the surrounding environment. In the case of Fipy,

it is an extensible platform that allows connection to any sensor
using widely supported buses. Several hats are available for
Fipy, such as the Pysense shield, enabling end-users to sense
the environment using five different sensors: accelerometer,
light, pressure, temperature, and humidity. Once the data is
collected, it can be processed to obtain useful information for
Al-IoT applications.

7. The next step is to prepare the model’s input. Two
essential methods have been developed to obtain the input’s
size and type from a dynamically updated model. These
methods make it easy for Micropython to generate the input.
The AI model may have a single input that can be stored in a
variable, or multiple inputs that need another method to store
them, such as arrays.

8. Once the model is loaded, and the input is defined, it
is possible to insert the input into the model and make an
inference. The model’s output, whether it is a single prediction
or multiple ones, can be obtained and saved for later use.

9. The ability to remake the inference is available. Enabling
this functionality is significantly useful, especially when the
model’s input is a real stream, and the IoT device should keep
predicting, creating an effective prediction pipeline.

10. For each prediction made, different actions can be taken.
The Al-driven action could be as simple as changing an
onboard LED’s colour, and it could be as sophisticated as
turning on a production line in a factory.

11. A dynamic AI-IoT system requires continuous improve-
ments. Therefore, performance data and updates related to the
model are sent to the Al Development Engine.

12. The AI Development Engine collects all the data coming
back from Fipy and uses it to regenerate more accurate Al
models.

13. Fipy will be waiting to receive the updated model
or even a new one. This model shapes the purpose of the
Dynamic AI-IoT application, whether it is only for continuous
improvement or starting a completely new use case.

C. TinyML Model’s State Diagram

Re-load/
Load another Model
Init Initialized Load I Loaded Lolve Resolved
Re-load/ Interprete
Load another Model
ond 1. F ( 1 Invok
Freed & Invoked & Interpreted
Re-invoke

Fig. 6: State Diagram

The state diagram illustrated in Fig. 6 depicts how a TinyML
model transitions from one state to another in a Dynamic
AI-IoT application. For each state, there is a corresponding
function designed to ensure seamless movement to the next
state. These functions have been detailed in the implementa-
tion section. The process begins with initializing the model,



wherein sufficient memory space is reserved for the model
to operate efficiently. Once reserved, the model enters the
initialized state. Following this, the model is loaded into
the IoT device’s RAM. In this state, multiple models can
be loaded, with consideration given to the latest one. The
subsequent state involves configuring the model, and upon
completion, the model transitions to the resolved state. After
configuration, the interpret function ensures the model is ready
for inference, moving it to the interpreted state. The invoked
state is the subsequent logical state, occurring when the model
has made predictions. This state can be revisited as needed, but
only if the previous state was the interpreted state. The final
state for any TinyML model is the freed state, where memory
is cleared if there is no need to invoke the model any longer.
In our Dynamic AI-IoT system, it is possible to load a new
model or reload an updated model as needed. This capability
is reflected in the state diagram, where the model can return
to a loaded state from resolved, interpreted, or invoked states.
This stands out as one of our key contributions.

D. Class Diagram

This section illustrates the design patterns applied in
firmware development. Adapter and Facade designs have been
combined to provide the user with an interface that grants
access to all the implemented Micropython methods, whether
from general Micropython modules, Pycom modules, or newly
developed modules.

A facade pattern, as depicted in Fig 7, is a structural design
pattern used as a wrapper to conceal the complexities of a
large system by offering a simple interface to the client.
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+ load()
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Client >t !nterprete()
+ infer()
+ setValue()
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+ subsystemBmethod1()
+ subsystemBmethod2()
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'
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+ mp_load() > +load() SubSysem N
+ mp_resolve() + resolve() 4
+ mp_interprete() + interprete()
+ mp_infer() + infer()
+ mp_setValue() + setValue()
+ mp_getValue() + getValue()

Fig. 7: Fagcade and Adapter Diagram

In our development, the user can invoke a Micropython
function from any subsystem without needing to know the
implementation details behind it. Subsystems are hidden from
the client, representing, for this paper, a comprehensive de-
velopment of the TensorFlow module or any other built-in

module. For instance, the user might wish to initialize or load
a new TensorFlow model. In such cases, the Micropython
interface acts as the fagade, simplifying the user experience
by shielding them from the complexities associated with
Micropython objects and their bindings in Subsystem A.

On the other hand, our TensorFlow module, Subsystem A
in Fig. 7, employs a C++ to Micropython adapter for every
class in the TensorFlow library. When an adapter receives a
call, it translates the incoming Micropython data into C++ and
then passes the call to the appropriate methods for wrapping
a TensorFlow object. Here is the process:

1. The adapter acquires an interface compatible with one of
the Micropython objects.

2. Using this interface, the Micropython object can safely
invoke the adapter’s methods.

3. Upon receiving a call, the adapter transfers the request
to the C++ object but in a format that the C++ object expects.

This approach enables the combination of statically com-
piled C++ functionality with the dynamically available capa-
bilities provided by Micropython, facilitating the reprogram-
ming of the device without the need for re-flashing.

V. DyYNAMIC AI-IOT SYSTEM DEVELOPMENT

This section aims to highlight how to fulfill our four
innovations mentioned earlier in the introduction section. To
achieve this end, dynamic intelligent capabilities have been
added to an IoT device to act as an independent smart device,
and dynamically be adapted to the possible changes.

A. AI-loT Firmware Development

The proposed design in Fig. 8 presents how to enable Al
on ESP32 core devices using Micropython to achieve dynamic
AI-IoT solutions. In other words, this section describes how
to compile Micropython firmware after successfully porting
external TFLM C++ modules. We have two frameworks and
a compiler. The compiler used is the Xtensa GCC compiler
that can be configured to report any error during the building
process. The first framework is ESP-IDF in which TFLM C++
modules will be integrated and ready to be compiled, see (1)
in Fig. 8. At this stage, a compiled TFLM C++ library would
be generated and added to the Micropython framework, see
(2) and (3) in Fig. 8. After that, the TFLM C++ library will
be linked and wrapped to Micropython objects to create a
new TFLM Micropython library. The outcome of the second
compilation is a binary file to be flashed into ESP32 core
devices directly. The (4) and (5) steps in Fig. 8 show how to
achieve this end. Next, TFLM C++ and Micropython libraries
will be explained to discuss how the work has been done.

TensorFlow Lite Micro repository has the necessary func-
tionalities to deal with a pre-trained TinyML model. From
loading it properly to making an inference to get predictions.
We have implemented a facade file with the key functions to
be exposed to Micropython. The following subsections explain
each of those functions.
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1) Initialization Functionality: The first function is the ini-
tialize function, responsible for allocating a specific amount of
memory known as the "tensor arena." This memory allocation
reserves space for the model’s input, output, and intermediate
arrays. It’s crucial to note that the memory addresses for
these arrays must align to 16 bytes, and the required size
varies depending on the size of the AI model. Currently,
there is limited documentation in the community on this
process, making it valuable to provide detailed guidance on
the procedure:

1. Get the size required to load the model.

2. Adding 16 extra bytes to guarantee we have enough space
after the alignment. (0x10 in hex);

3. Round down to a 16 bytes dividable address by AND-ing
0xOF (last 4 bits to zeros);

4. The result is aligned to 16 bytes.

2) Loading Functionality: The following function is the
loading of the model, which can be done in two ways: either
as a compressed file or a compressed char array. In our
proposed AI-IoT architecture, we have outlined how the model
is compressed and converted after training. Subsequently,
it becomes essential to develop the logic for handling the
loading of the Al primitive functions for model execution. The
resolve function is introduced to dynamically register only the
operations utilized by the loaded model.

Our approach to this design has not been previously covered
in the existing literature, and it is specifically optimized for
memory-constrained IoT devices. Currently, developers typi-
cally use the AllOpsResolver to register all available operations
in TFLM, resulting in a memory-intensive implementation.
However, since a given model only utilizes a subset of these
operations, developers have turned to the MicroMutableOpRe-
solver to register only the necessary operations. The drawback
of this approach is that developers must manually know and
register all operations beforehand.

Our implementation of the resolve function incorporates an
introspection capability, allowing it to query the Al model to
determine the required operations. It then registers only this
subset, achieving a self-optimization of the memory footprint.
This innovative approach enhances efficiency and addresses
the limitations of the existing methods.

3) Interpreter Functionality: The next essential function is
the interpret function. This function gathers the results of the
preceding functions and combines them to create an object
with complete access to the loaded model. For example, it
retrieves pointers to the model’s input and output tensors for
later utilization, along with pointers to the model’s input and
output types and sizes. Once the input is ready, the interpreter
is activated using the inference function to perform model
inference and populate the predicted values in the output layer.

4) Inference Functionality: It executes the loaded model,
utilizing the information available in the input and producing
results accessible through the interpreter.

5) Generation of the Firmware: The TFLM project, along
with our developed functions, can be integrated into the ESP-
IDF framework and compiled using the Xtensa GCC compiler
to generate the TFLM C++ library. However, directly flashing
the compiled ESP-IDF as a binary file into Fipy, as done by
other researchers, limits the Al capabilities of the device. This
limitation arises because re-flashing the firmware is required
every time a new model needs to be uploaded.

To overcome these challenges, the Micropython framework,
implemented in native C, has been adjusted to incorporate
the compiled TFLM C++ library. This modification enables
the invocation of the previously described facade from C
code, providing complete control over the model. The TFLM
library can be imported, and its functions can be called
within the Micropython scripting language. To achieve this,
a Micropython object must be implemented, allowing the
exposure of a Python library with all the functions described
in the preceding subsections. These functions are, in turn,
implemented using the native C language. Listing 1 provides
an example of creating a Micropython object that calls the
interpret function.

STATIC mp_obj_t interpreting()

{

interprete();

return mp_const_none;

}

MP_DEFINE_CONST_FUN_OBJ_O (interpreting_obj,
interpreting);

Listing 1: Creating Micropython object

o Making the necessary bindings for new Micropython
objects. This can be done in the same file or a separate
file in the Micropython project. In both cases, a pointer
to a new object should be added to the module’s globals
table, which in turn will be linked to the module globals
dictionary, as shown in Listing 2.

STATIC const mp_map_elem_t
microAIoT_module_globals_table[] = {
{ MP_OBJ_NEW_QSTR (MP_QSTR_interprete),
(mp_obj_t)&interpreting_obj },
bi
STATIC MP_DEFINE_CONST_DICT (microAIoT_module_globals
, microAIoT_module_globals_table);
const mp_obj_module_t microAIoT_module = {
.base = { &mp_type_module },
.globals = (mp_obj_dict_t )&
microAIoT_module_globals,

bi

Listing 2: Micropython Bindings Example



« Compiling Micropython project to get the final firmware
with TFLM capabilities.

6) Dynamic Usage of the Library in Micropython: Our
Al-IoT Micropython module can be accessed from a Micropy-
thon program, similar to any other built-in module. The usage
of the microAloT module in Micropython is illustrated in
Listing 3.

import microAIoT

microAIoT.initialize (tensor_arena_size)
microAIoT.load (TFLM_model_byte_array)
microAIoT.resolve ()

microAIoT.interprete ()

microAIoT.setValue (inputNumber, inputValue)
microAIoT.infer ()

microAIoT.getValue (outputNumber)

Listing 3: New Module Usage in Micropython program

VI. VALIDATION USE CASES

Fig. 9 provides an overview of the different use cases used
to validate our AI-IoT contribution. The following subsections
elaborate on each of these use cases in detail.

Pysense

Gestures TFLM-Enabled FiPy

Classified Output

(Acceleration Sensor)

Fig. 9: Overview of Sine Wave Generation and Gesture
Recognition Use Cases

A. Use Case A: Sine Wave Generation

This use case serves as a simple demonstration, illustrating
the fundamental implementation of a fully dynamic AI-IoT
application without introducing complex logic. This straight-
forward example highlights the basic utilization of TensorFlow
Lite Micro. The 2.5 KB model is trained to replicate the
mathematical sine function, capable of approximating the sine
of a number within the range of 0 to 27. Subsequently, the
model is converted for inference on a microcontroller. The
primary aim of the initial experiment is to verify the feasibility
of running the TinyML model on Fipy and dynamically
interacting with it through Micropython.

The neural model’s structure employed in this use case is
outlined in Fig. 10, comprising three fully connected hidden
layers designed for inferring the value of the sine function.

m Dd FullyConnected 2de FullyConnected e FullyConnected ba m

Fig. 10: AI model structure used for Sine prediction

B. Use Case B: Gesture Recognition

Gestures, defined as meaningful movements used to interact
with the environment, are recognized through a process known
as gesture recognition. Embedded devices are increasingly
incorporating emerging technologies to implement Al use
cases involving gesture recognition. In the second experiment,
a pre-trained TinyML model from TensorFlow is employed
to recognize specific gestures. The model utilizes real-time
data streaming from a 3-axis accelerometer as input, providing
a classified set of recognized gestures as output. The source
code for this project is available in the official TensorFlow
repository, specifically the magic wand example.

For the implementation of this use case, Fipy is connected to
Pysense, enabling the utilization of an integrated acceleration
sensor. Data is streamed from the Pysense 3-axis accelerometer
to feed the model’s input. The magic wand TinyML model is
trained to identify three gestures: a clockwise circle or "ring"
gesture, a capital "W" or "wing" gesture, and a right-to-left
"slope" gesture. When one of these gestures is detected, the
onboard RGB LED will illuminate in green, blue, or red,
corresponding to the performed gesture, serving as an example
of Al application.

The model is a 20 KB Convolutional Neural Network
(CNN) trained on a gesture dataset obtained from 10 indi-
viduals who performed four gestures (Ring, Wing, Slope, and
an unknown gesture) fifteen times each. The model’s input
comprises raw accelerometer data in an array of 384 values,
representing 128 times the real X, Y, and Z axes. The output
provides probability scores for the three recognized gestures
and an unknown gesture. The sum of these scores is 1, with a
probability of 0.8 or higher indicating a confident prediction
of a given gesture.

1x42x1x16

Conv2D MaxPool2D

1x42x1x8 1x14x1x16

1x128x3x1

DepthwiseConv2D MaxPool2D FullyConnected FullyConnected

1x128x3x8

Fig. 11: AI model structure used for Gesture recognition

The neuronal network structure for training the CNN model
in this application is depicted in Fig. 11. In contrast to the
first use case, this one involves more operations in build-
ing the model, including FullyConnected, DepthwiseConv2D,
MaxPool2D, and Conv2D operations. The Pysense’s built-in
accelerometer was configured at 50Hz, and data was down-
sampled to 25Hz, aligning with the model’s training rate. The
software accumulates sensor readings until sufficient data (128
readings) is obtained to perform a prediction.

Dealing with accelerometer data can present variations
and unexpected values. To enhance accuracy, the model is
designed to consistently predict the same gesture multiple
times, boosting confidence in predictions. In Micropython,
the previous and current predictions are tracked. If a specific
prediction persists for a defined number of consecutive times,
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Fig. 12: Empirical Evaluation of Performance of the Al-IoT Prototyped Architecture

it is reported as the detected gesture; otherwise, it is identified
as an unknown gesture.

The two previously described use cases are evaluated to
demonstrate the feasibility of Dynamic AI-IoT implementa-
tion. The focus of the test is on loading a TinyML model into
Fipy and executing inference. The experimentation is divided
into three parts: execution time, memory usage, and power
consumption. CPU usage is excluded from this test, as the
CPU runs continuously, even in the absence of processing
tasks, due to the "idle loop" code snippet. All experiments
were conducted in a Micropython environment using Atom
software with the Pymakr plugin.

VII. RESULTS
A. Model Loading Results

To assess the loading time, we conducted an experiment
involving the consecutive loading of the sine AI model 100
times. After this continuous reloading, a deliberate switch
occurred to initiate the reloading of the gesture recognition
model, which was then reloaded another 100 times. As de-
picted in Fig. 12(a), the average loading time for the sine
model was 0.69 + 0.05 milliseconds. On the other hand, the
average loading time of the gesture recognition model was
0.73 + 0.03 milliseconds.

B. Model Inference Results

For evaluating the inference time, we loaded the sine model
and then called its inference function 100 times to improve the



accuracy of the inference time measurement. Following that,
we intentionally switched to calling the inference function of
the gesture recognition model 100 times. As illustrated in Fig.
12(b), the results revealed that the average inference time for
the sine model was 44.63 + 0.08 milliseconds, whereas the
gesture recognition model, on average, had an inference time
of 48.05 + 0.27 milliseconds.

It is worth mentioning that these results allow the tiny IoT
device to provide more than 20 times per second the interface
of the values which is a very decent real-time performance. It
validates the suitability of the proposed approach for close to
real-time applications using Al IoT architectures.

C. Memory Usage in Model Loading

The average allocated memory for loading our two different
models was measured without using Micropython’s available
memory management garbage collector (gc) utility. We loaded
each of the Al models 100 times. Surprisingly, it was observed
that both models consumed the same amount of memory. More
interestingly, the repetitive loading of both similar and dis-
similar models resulted in a significant reduction in available
memory, as shown in Fig. 12(c). This is because there is
no automatic unloading of the previous model when loading
a new one, impacting the available memory for subsequent
model loading. Notably, the standard deviation of the free
memory is approximately 6.5 KB, reflecting fluctuations in
the described mechanisms.

When we enable the Micropython garbage collector, as
shown in 12(e), the results consistently follow a uniform
distribution, with a standard deviation of 0 KB for free
memory. This indicates that the garbage collector effectively
clears 100% of the allocated memory. The garbage collector
is employed just before and after loading our TinyML models.

D. Memory Usage in Inference

An analog experiment was conducted to assess memory con-
sumption during the inference task. Without using a garbage
collector, the average memory allocated for the sine model’s
inference is 0.21 KB + 0.00, and for the gesture recognition
model, it is 0.26 + 0.00 KB, as depicted in Fig. 12(d). The
significant change is evident in the fluctuation of free memory,
which consistently decreases with each execution of the infer-
ence task. To be precise, there is a total decrease of 10.73 KB
for each inference step with the sine AI model and 11.89 KB
for the gesture recognition model. This continuous decrease is
primarily attributed to the preparation of the input and output
of the Al model, both directly handled by Micropython. Once
ready, they are passed to the native C implementation, but this
allocated memory is never freed. Consequently, in the next
step, a new allocation in Micropython for the input and output
is carried out.

The problem is resolved by enabling the Micropython
garbage collector. This has a significant impact as it can free
up all the memory allocated in the previous inference step,
clearing 100% of the allocated memory. These outcomes are
illustrated in Fig. 12(f).

This memory management technique ensures that the Al
model can run for an extended period without experiencing
memory shortages, validating the suitability of the proposed
solution for the prolonged execution of Al models in IoT
devices.

E. Model Update Time

In the context of dynamic TinyML deployment on IoT
devices, it is essential to evaluate the time required to update
and transmit TinyML models to these devices. To provide
insights into this aspect, we measured the time it takes to
transmit two different TinyML models to our IoT device, the
FiPy. The first model, Sine Wave Generation, has a file size
of 2.5 KB, while the second model, Gesture Recognition, has
a larger size of 20 KB. These models represent typical use
cases in the AI-IoT domain, with varying model sizes.

Our results reveal that transmitting the Sine Wave Gener-
ation model to the FiPy device requires approximately 0.068
seconds. In contrast, the larger Gesture Recognition model can
be transmitted in roughly 0.545 seconds. These time frames
account for the complete process of model transfer.

For updating the model, it is important to keep predictions
running smoothly. Therefore, the system is designed to pause
for less than 2 seconds during the update without requiring a
FiPy re-flash or restart.

E. Power Consumption

One of the primary deciding factors for choosing IoT
devices like these over more powerful options such as the
Raspberry Pi 4 is mainly associated with power consumption.
Therefore, measuring power consumption provides insight into
how long the IoT device can function on a given amount of
energy or what power budget is needed for continuous Al
IoT use cases. In this experiment, we utilized a USB Meter,
illustrated in Fig. 13(a), to measure the device’s current and
voltage during a specific task. The power consumption in watts
was calculated from these metrics.

The experiment proceeded as follows: first, the gesture
recognition model was loaded 100 times, followed by 100
iterations of inference on the last loaded model. As shown in
Fig. 13(b), the average power consumption for loading the
gesture recognition model 100 times was 488.8 milliwatts,
while inference consumed 485.89 milliwatts. Both exhibited
similar and consistent trends, with standard deviations of just
27.44 milliwatts for loading and 31.95 milliwatts for inference.

These consumption results are notably more efficient than
other devices like the Raspberry Pi, which consumes around
6 watts when using all available cores and almost 3 watts
in an idle state. This key finding makes this architecture
ideal for prolonged deployments where battery life and lasting
performance are critical elements for the success of the use
case.

G. Overhead Time

To understand the cost of loading and executing AI models
on IoT devices using Micropython, we measured the time
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Fig. 13: Power Consumption Experiment

required for these tasks without Micropython. Specifically,
we used the original C++ implementation and compared the
results. Table IT demonstrates a noticeable difference for Model
A (sine prediction) when loaded and executed in different
languages. On the other hand, for Model B (gesture recogni-
tion), adding dynamic AI-IoT capabilities only increased the
execution time by 6 ms. These values represent averages from
10 different executions.

It is important to note that as the size of the AI model
increases, the difference in inference time between C++ and
Micropython becomes smaller. This overhead adds value by
allowing the uploading of multiple homogeneous and hetero-
geneous Al models in real-time without the need to update
the device firmware. This capability is crucial for advanced
use cases involving federated learning, online learning, and
more.

TABLE II: Overhead time between C++ and Micropython

C++ Micropython
Loading Time (Model A) 0.027ms  0.69ms
Inferencing Time (Model A)  0.226ms  44.63ms
Loading Time (Model B) 0.026ms  0.73ms
Inferencing Time (Model B)  42ms 48.05ms

VIII. LIMITATIONS AND CHALLENGES

The implementation of a Dynamic Al system on the FiPy
device, while promising, presents a set of inherent limitations
and associated challenges.

Resource Constraints and Scalability: FiPy devices are
characterized by limited memory and processing capabilities,
which can include empirically validated limits such as the 2.4
Mb maximum model size allowed. This constraint necessitates
careful consideration when dealing with larger and more
complex Al models, thereby impacting scalability.

Energy Efficiency and Latency Optimization: Achieving
energy efficiency and optimizing latency, especially in real-
time applications, presents a dual challenge. Frequent Al

model updates must be balanced to prevent excessive power
consumption without compromising responsiveness.

Interoperability: FiPy devices are designed to adapt to
various connection technologies. Ensuring smooth transitions
between them can be complex in heterogeneous IoT environ-
ments.

Handling Large AI Models: Transmitting Al models ex-
ceeding 500 KB in size is a significant challenge. Memory
allocation constraints on the FiPy device come to the fore-
front, requiring careful management when dealing with more
extensive models.

IX. CONCLUSION AND FUTURE WORK

In this paper, we have introduced a groundbreaking IoT-
based architecture designed to empower ultra-low-power and
cost-effective IoT devices with Dynamic Al capabilities.
Through the practical implementation of this architecture on
a Micropython-enabled and Al-enhanced IoT device, we have
successfully developed two distinct applications. Notably, our
system demonstrated exceptional performance, with the ability
to load a 20 KB TinyML model for sine prediction over 136
thousand times in less than a second, while executing the same
model over 2 thousand times within the same timeframe.

Our results unequivocally illustrate the transformative po-
tential of our Dynamic AI-IoT system. It equips connected
IoT devices with autonomous Al functionalities, encompassing
self-configuration of internal AI models, memory management
optimization, and dynamic loading and execution of multi-
ple AI models. Furthermore, the utilization of Micropython
enhances code reusability for Al purposes. Significantly, our
system offers a dynamic solution for remote IoT device up-
dates, with minimal impact on system performance, achieving
near real-time inference with power consumption below 0.5
Watts. This outcome holds considerable promise for a wide
range of practical applications.

The system has demonstrated significant potential across
various domains, including industrial IoT, agriculture, smart
cities, healthcare, retail, and environmental monitoring. It of-
fers real-time data analysis, predictive maintenance, efficiency



enhancements, safety improvements, and sustainability. The
Dynamic AI-IoT system stands poised to bring transformative
advancements, promoting efficiency and enhancing the quality
of life in these diverse applications within 5G and beyond
systems.

It is important to note that our current implementation
follows a train-then-deploy approach. However, future work
will explore the integration of the federated and transfer
learning approaches, particularly suited for applications that do
not necessitate full on-device training. Additionally, ongoing
research will focus on incorporating dynamic switching among
various connection technologies, such as Wi-Fi, LoRa, and
Sigfox. This innovation will enable IoT devices to seamlessly
transition between different use cases, thus expanding the op-
erational scope and versatility of the Dynamic AI-IoT system.

ACKNOWLEDGEMENT

This work was funded in part by the European Com-
mission Horizon 2020 5G-PPP Program under Grant Agree-
ment Number H2020-ICT-2020-2/101017226 “6G BRAINS:
Bringing Reinforcement learning Into Radio Light Network
for Massive Connections” and under Grant Agreement Num-
ber H2020-SU-DS-2020/101020259 ”"ARCADIAN-IoT: Au-
tonomous Trust, Security and Privacy Management Frame-
work for IoT.

REFERENCES

[1] X. Hou, Z. Ren, K. Yang, C. Chen, H. Zhang, and Y. Xiao, “liot-mec: A
novel mobile edge computing framework for 5g-enabled iiot,” in 20719
IEEE Wireless Communications and Networking Conference (WCNC),
2019, pp. 1-7.

[2] B. Sudharsan, J. G. Breslin, M. Tahir, M. Intizar Ali, O. Rana, S. Dust-
dar, and R. Ranjan, “Ota-tinyml: Over the air deployment of tinyml
models and execution on iot devices,” IEEE Internet Computing, vol. 26,
no. 3, pp. 69-78, 2022.

[3] T. J. Sheng, M. S. Islam, N. Misran, M. H. Baharuddin, H. Arshad,
M. R. Islam, M. E. H. Chowdhury, H. Rmili, and M. T. Islam, “An
internet of things based smart waste management system using LoRa
and tensorflow deep learning model,” IEEE Access, vol. 8, pp. 148 793—
148 811, 2020.

[4] S. Zhang, S. Zhang, Z. Qian, J. Wu, Y. Jin, and S. Lu, “DeepSlicing:

Collaborative and adaptive CNN inference with low latency,” IEEE

Trans. Parallel Distrib. Syst., vol. 32, no. 9, pp. 2175-2187, 2021.

G. Crocioni, D. Pau, J.-M. Delorme, and G. Gruosso, “Li-ion batteries

parameter estimation with tiny neural networks embedded on intelligent

IoT microcontrollers,” IEEE Access, vol. 8, pp. 122 135-122 146, 2020.

[6] K. Dokic, M. Martinovic, and D. Mandusic, “Inference speed and quan-
tisation of neural networks with TensorFlow lite for microcontrollers
framework,” in 2020 5th South-East Europe Design Automation, Com-
puter Engineering, Computer Networks and Social Media Conference
(SEEDA-CECNSM). 1EEE, 2020, pp. 1-6.

[7] Hoang-The Pham, M.-A. Nguyen, and C.-C. Sun, “AloT solution survey

and comparison in machine learning on low-cost microcontroller,” in

2019 International Symposium on Intelligent Signal Processing and

Communication Systems (ISPACS). 1EEE, 2019, pp. 1-2.

“Get started with TensorFlow lite micro on sony’s spresense,” https:

//blog.tensorflow.org/2021/10/TF-Lite-Sony-Spresense.html, accessed:

2022-3-1.

[91 M. O’Cleirigh, “tensorflow-micropython-examples: A custom micropy-

thon firmware integrating tensorflow lite for microcontrollers and ulab

to implement the tensorflow micro examples.”

On-Device Al Co. , Ltd., “MicroAl: Integrate MicroPython and Tensor-

Flow lite for microcontrollers on embedded linux.”

M. Yan, “esp32_mpy: Master control of robot using esp32 chip with

openmv and tensorflow-lite support.”

“MicroPython libraries — MicroPython 1.15 documentation,” https://

docs.openmv.io/library/index.html, accessed: 2022-2-28.

[5

=

[8

[t}

[10]
[11]

[12

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]
[27]

[28]

R. Sanchez-Iborra and A. F. Skarmeta, “TinyML-enabled frugal smart
objects: Challenges and opportunities,” IEEE Circuits Syst. Mag.,
vol. 20, no. 3, pp. 4-18, 2020.

A. Osman, U. Abid, L. Gemma, M. Perotto, and D. Brunelli, “TinyML
platforms benchmarking,” 2021.

S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: The confluence of edge computing and artificial
intelligence,” IEEE Internet of Things Journal, 2020.

Z. Zhou, X. Chen, E. Li, L. Zeng, K. Luo, and J. Zhang, “Edge
intelligence: Paving the last mile of artificial intelligence with edge
computing,” Proceedings of the IEEE, 2019.

E. Impulse. Edge impulse studio. https://www.edgeimpulse.com/. Ac-
cessed: 2023-10-16.

R. David, J. Duke, A. Jain, V. J. Reddi, N. Jeffries, J. Li, N. Kreeger,
I. Nappier, M. Natraj, S. Regev, R. Rhodes, T. Wang, and P. Warden,
“TensorFlow lite micro: Embedded machine learning on TinyML sys-
tems,” 2020.

“OpenMV cam H7,” https://openmv.io/products/openmv-cam-h7, ac-
cessed: 2022-2-28.

K. Shafique, B. A. Khawaja, F. Sabir, S. Qazi, and M. Mustaqgim,
“Internet of things (IoT) for next-generation smart systems: A review
of current challenges, future trends and prospects for emerging 5G-IoT
scenarios,” IEEE Access, vol. 8, pp. 23 022-23 040, 2020.

N. Javaid, A. Sher, H. Nasir, and N. Guizani, “Intelligence in iot-based
S5g networks: Opportunities and challenges,” IEEE Communications
Magazine, vol. 56, no. 10, pp. 94-100, 2018.

K. M. Kahloot and P. Ekler, “Algorithmic splitting: A method for dataset
preparation,” IEEE Access, 2021.

Gheorghe and M. Ivanovici, “Model-based weight quantization for
convolutional neural network compression,” in 2021 16th International
Conference on Engineering of Modern Electric Systems (EMES), 2021.
G. Tian, J. Chen, X. Zeng, and Y. Liu, “Pruning by training: A novel
deep neural network compression framework for image processing,”
IEEE Signal Processing Letters, 2021.

S. Wiedemann, H. Kirchhoffer, S. Matlage, P. Haase, A. Marban,
T. Marin¢, D. Neumann, T. Nguyen, H. Schwarz, T. Wiegand, D. Marpe,
and W. Samek, “Deepcabac: A universal compression algorithm for deep
neural networks,” IEEE Journal of Selected Topics in Signal Processing,
2020.

M. Saini and U. Satija, “On-device implementation for deep-learning-
based cognitive activity prediction,” IEEE Sensors Letters, 2022.
“TensorFlow lite for microcontrollers,” https://www.tensorflow.org/lite/
microcontrollers, accessed: 2022-2-28.

A. Taivalsaari, T. Mikkonen, and C. Pautasso, “Towards seamless IoT
device-edge-cloud continuum:: Software architecture options of IoT
devices revisited,” in Communications in Computer and Information
Science. Cham: Springer International Publishing, 2022, pp. 82-98.



