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NetLabeller: Architecture with Data Extraction and
Labelling Framework for Beyond 5G Networks

Jimena Andrade-Hoz, Jose M. Alcaraz-Calero, and Qi Wang

Abstract—The next generation of network capabilities coupled
with artificial intelligence (AI) can provide innovative solutions
for network control and self-optimisation. Network control de-
mands a detailed knowledge of the network components to
enforce the correct control rules. To this end, an immense number
of metrics related to devices, flows, network rules, etc. can be
used to describe the state of the network and to gain insights
about which rule to enforce depending on the context. However,
selection of the most relevant metrics often proves challenging
and there is no readily available tool that can facilitate the
dataset extraction and labelling for AI model training. This
research work therefore first develops an analysis of the most
relevant metrics in terms of network control to create a training
dataset for future AI development purposes. It then presents a
new architecture to allow the extraction of these metrics from
a 5G network with a novel dataset visualisation and labelling
tool to help perform the exploratory analysis and the labelling
process of the resultant dataset. It is expected that the proposed
architecture and its associated tools would significantly speed
up the training process, which is crucial for the data-driven
approach in developing Al-based network control capabilities.

Index Terms—Data wrangling, labelling tool, networking
dataset, self-optimisation, 5G.

I. INTRODUCTION

HE next generation of networks (NGN) is demanding

a very sophisticated network control to advance 5G
and beyond network architectures. Modern network control
techniques boost concepts such as multi-tenant network iso-
lation, network slicing, mobile network management, fine-
grain quality of service control and firewalling capabilities.
Artificial intelligence (AI) is having a crucial role to play
in the development of such network control, allowing these
network capabilities to develop in an optimal way. In this
context, Al algorithms empower networks with the ability to
autonomously detect, heal, and protect themselves, ensuring
seamless and uninterrupted service delivery. This is why sixth
generation (6G) cellular networks are expected to utilise a
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wide range of Al services from the core network to end
users focused on the continuous optimisation of 6G networks
[1]. This is achieved by following an Al-driven approach
where intelligence will be an intrinsic feature of the 6G
architecture [2].

Self-optimisation capabilities in 5G networks require ad-
vanced network control. Such control involves the dynamic
generation of network policies and the subsequent execution of
those policies, requiring less human intervention and effort [3],
[4]. The anatomy of such policy (or control rule, indistinctly)
consists mainly of two differentiating parts. Firstly, the match-
ing part is used to determine which packets/network flows the
rule will apply to. Secondly, the targets are used to determine
what will be done with those packets/flows [5]. Examples of
control rules are performing a drop to a malicious traffic,
prioritising specific traffic flows, setting concrete bandwidth
limitation or guaranteeing a particular bandwidth to specified
traffic. The dynamic generation of such rules imposes a level
of complexity for the understanding of these rules that is
very difficult to process in acceptable response times even
for the most expert network administrators. This problem is
exacerbated when it is foreseen the ultra-fast next-generation
network such as 100GbE networks where the latency budget
is very reduced, in terms of 1 nanosecond.

As a result, our network control policies are far from
being optimised for several reasons. First, the vast majority
of network control systems rely on the usage of only one
particular datapath technology to perform the enforcement of
such control, for example, OpenFlow [6] or XDP (eXpress data
path) [7]. By doing so, these solutions are simply ignoring the
benefits or drawbacks that can be brought by using a wider
set of technologies available for the same purpose. Examples
of these are Linux traffic control (TC) [8], Netronome BPF
offloading, Mellanox offloading and Linux iptables [5], among
others. Second, when network control rules are enforced into
the system, they are already applied and considered the best
decision taken. This fact clearly ignores the possibility of
optimising such already enforced rules by i) making use of
a more efficient datapath technology; ii) rewriting the rule in
a more efficient way; or iii) reallocating the rule in a more
efficient place. Third, the selection of the datapath technology
used to enforce the rule, if any, simply ignores the current
state of the system. Leveraging insights into the network’s
current state, one can make informed decisions to effectively
utilise existing resources while simultaneously maximising the
quality of user experience. And fourth, it is crucial to note that
the decision-making process regarding the selection of data-
path technology often neglects the significant considerations
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of bandwidth, packet losses, and latency associated with the
chosen technology. Consequently, situations arise where the
desired quality of services cannot be fulfilled due to decisions
regarding technology selection.

The use of Al can significantly address this current de-
ficiency in optimising network policies. Al can make the
continuous optimisation of control rules feasible when it
is combined with a high level of automation [9]. In this
way, the Al can generate decisions considering all available
possibilities. Not only considering all possibilities related to
the type of technology to use, but also the state of the network
at any given moment. This Al-native approach enables the
network to be agile, intelligent and able to learn and self-
adapt to changing network conditions [10]. In addition, these
decisions will be made much faster than if compared to any
network expert. This speed is essential, especially when these
network policies are intended to deal with network attacks, one
of the most important concerns of 5G operators nowadays [11].

To achieve so, it is essential to first learn which datapath
technology is the most appropriate for each specific use case.
This decision will depend on multiple factors, in particular,
the state of the network at any given time, the type of rule
to be enforced and the number of rules currently enforced
in every datapath technology. For example, in a use case
were a drop rule is desired to be optimised, we will prioritise
speed of execution, choosing datapath technologies located at
the lowest point in the software stack, such as XDP [12].
Another example in the same scenario, taking into account
other criteria such as having a lot of rules enforced in XDP,
we could optimise the insertion of a new rule using a faster
one such as Open vSwitch (OVS) [13]. Considering all these
variables and the range of applicable use cases in a beyond
5G network, it is imperative to have a novel framework with
the necessary tools to monitor it. This will allow to extract
as much information as possible regarding network status,
control and management [14]. Developing a framework with
these characteristics will allow to access to network metrics,
metadata, network topology, and rule-specific information,
thereby enabling the generation of comprehensive datasets.
These datasets will enhance the knowledge of what is the state
of the network and how is it performing. Subsequently, such
datasets can be utilised to extract multitude of insights. Also,
to identify potential patterns that can facilitate the labelling
process in terms of the datapath technology selection. Finally,
the generated datasets would be used for training AI models
for the creation of more optimised rules. To the best of our
knowledge, we have not encountered any existing framework
that adequately addresses the extraction, storage, and labelling
of the current state of a network infrastructure. This knowledge
gap can be attributed, in part, to the complexity involved
in real-time extraction of underlying metrics, coupled with
the need for a comprehensible tool tailored specifically for
network engineers to interpret such information. Moreover, it
is crucial to highlight the challenges associated with extracting
metrics and topology in a heterogeneous network environment
like that of a 5G network.

The previous challenges have motivated this research work.
The main contribution of this manuscript is multi-field. First,
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the creation of a data extraction framework able to compile
real-time network-related datasets from the most novel net-
works available today including cloud infrastructures, mobile
edge computing infrastructures and beyond 5G networks,
among others. Second, to perform a deep analysis of the
features and metrics that are involved in the selection process
of a particular datapath technology of network control. The
main intention is to allow the identification of all possible rel-
evant metrics gathered from network devices, network flows,
network rules and other contextual elements required to take
an informed decision in the network. Third, this analysis is
complemented in a tailored labelling tool specially designed
to perform the visualisation and labelling of network-related
datasets. This exploratory data analysis (EDA) process is used
to visually represent the knowledge embedded deep in the
extracted data from the network. The proposed technique helps
to generate inferences from the resulted dataset. The following
list enumerates the contributions provided with respect to the
state of the art:

1) To provide a novel architecture to allow the extraction,
analysis and labelling of data from a live beyond 5G
network for future training of an AI model to perform
optimised decisions.

2) To perform the analysis of different network features
among the immense number of available metrics in
the network related to network flows, network devices,
network queues, network rules, etcetera.

3) To provide a novel mechanism to allow the visualisation
of network-related datasets that will help to perform the
labelling process to enable the training of Al models
based on real testbeds.

To describe the main contribution, this paper has been
layout as follows: Section II provides a state of art in avail-
able frameworks for visualising and labelling network-related
datasets. Section III introduces the architecture proposed to
fulfil our contribution along with an overview of data flow
in a 5G/Pre-6G network infrastructure. This section provides
the reader with an easy way to understand our work within
a NGN. Section IV provides the analysis of the most rele-
vant network features that will compose the 5G networking
dataset. Section V presents the design of our contribution,
emphasising the workflow and the necessary elements for the
correct functioning of the framework. Section VI provides
the implementation details in terms of hardware and software
used for the deployment of the framework and the testbed
used for executing the experiments. Section VII presents some
analytical experiment results of the framework proposed and
its performance. Finally, conclusions are drawn with future
research activities outlined in Section VIII.

II. RELATED WORK

Supervised machine learning algorithms use pre-labelled
datasets to train models. This fact leads to the need for tools
that make the labelling process as fast, easy, accessible and
effective as possible for data engineers. Table I compares the
key features addressed in this research work that are essential
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TABLE I
COMPARISON OF DIFFERENT LABELLING TOOLS (NP: NOT PROVIDED).
=
2 0 o
s 3 | g £ 2 2
< = S = -
8 Té 8 % 5 = Input Output Other
S
1(2]3(4(5/6[7|8|9(10|11|12|13|14 |15 16 17|18
[15]| V| V| V| X| X| - XV [ X |V | X |X |[np - v |np
L6l |v| V| /| X[ X|-|-|X|/|/ |/ |/ | X|X |- - v |np
71| V|V |V | X|X|-|-|X|V/|V/ |V |V | X | X |CSV - v | BSD-3-Clause
[18] | X| V|V | X|V/|V/|V/|V/|V/|X | X |V |/ | X |Image, video and text gﬁzﬁ}ﬁf XML, v |np
Audio, HTML, TImages, [Json, NumPy 2d arrays,
IL oy | v|v|v|X|/| V||| V|X |/ |/ |/ | X |Paragraphs, CSV, TSV, txt, | PNG images, COCO, |v | Apache 2.0
json CoNLL2002, CSV, etc
o1 | x| v v x|/ v]vx[x|x v [x]v [x g::‘; tabular, image, and 1og | g,/ v | Apache 2.0
RIIX| V| V| X| V| /|| V| X| X | X |/ |/ | X |Image, video Image formats v | Open source, enterprise
CSV, JSON, MySQL, Mon-
goDB, Elasticsearch, AWS
221| V| V| V|V | X]- |- |||V |V |V |V |np CloudWatch, Azure moni- |~ v | AGPLv3
1 tor, GC monitoring, etc.
231|V|V/|V/|V|X]|-|- |||V |V |V |/ |np]|Elasticsearch data - v | Elastic license 2.0
Google apps, CSV, Ama-
R4\ V||| V| X - |- |||V |V |V |V | X |zon Redshift, MySQL, Post- | - X | np
greSQL, etc.
v R5]1|/|V| /| X| V| X[npX|/|V |V |V | X | X |np n.p v | MIT
Our |[V/|V|/|V/|V|X|V|X|/|V |V |V | X |/ |CSY, JSON, MySQL CSV v | Apache 2.0
TABLE II
DESCRIPTION OF THE CHARACTERISTICS ANALYSED IN TABLE I.
Clasification capabilities Description
1 | Graphs The tool has the functionality to add graphs.
Data 2 | Data exploration visualisations | The tool allows the user to explore and interact with the data being displayed.
visualization | 3 | Multi-feature dashboard The dashboard allows displaying multiple features.
4 | Dashboard personalisation The tool allows the user to personalize the dashboard.
Data 5 | Dataset labelling The tool allows the user to label the dataset displayed.
labellin 6 | Cooperative labelling The tool has functionalities that enable collaborative labelling.
£ 7 | Automatic label navigation During the labelling process, the tool automatically moves on to the next instance to be labelled.
8 | Multi-modal data The dataset contains features coming from more than one data representation mode.
Dataset 9 | Multi-feature data The dataset contains more than one feature.
) ‘e 10 | Time-series data The dataset contains features coming from a series of data points indexed in time order.
suyport 11 | Discrete feature data The dataset has features that come from a limited number of values.
pp 12 | Continuous feature data The dataset has features that come from an unlimited number of values.
13 | Multi-media The dataset has features that come from image, audio, animation, graphics, etc.
Input 14 | Streaming support The dataset is being consumed from a streaming data source
P 15 | Format Describes the different formats the dataset can have.
Output [ 16 [ Format Describes the different formats the exported dataset can have.
Other 17 | Open source Describes whether the software is designed to be publicly accessible.
18 | License Expecifies the type of legally binding guidelines for the use and distribution of the software.

to be present in a labelling framework in order to fulfil the
innovations characteristics mentioned in the previous section.
Such comparison is done with respect to the state of the art
and the analysis presented has led to the identification of some
gaps described below. The features have been classified into
six categories: Data visualisation, related to the way that data
is visualised; data labelling, related to the fact whether the
tool has the functionality to label datasets or not; dataset type,
describing the different data types that are possible to represent
and label using the framework; input: related to the data source
given as input to the framework; output: describes the labelled
dataset formats; and finally, open source and license. Each

category subtypes are numbered from 1 to 18 due to space
limitations and their respective description together with an
explanation of the feature is shown in Table II. Table I also
shows a logical grouping of some of the analysed research
works using roman numbers for such grouping purpose. The
information that has not been provided is represented in the
table as n.p (not provided).

The first group in Table I represents some recent research fo-
cused on the visualisation and exploration of different-purpose
datasets. For example, Stopar et al. [15] presents an interactive
web-based visualisation tool called StreamStory that helps to
interpret and analyse data coming from time-varying systems
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such as weather, GPS and wind data. The purpose is to provide
a high-level conceptual summary of such data, allowing users
to interactively identify and interpret large multivariate time
series datasets. Another example is the provided by Philip et
al. [16], whose work presents an exploratory and visual
data analysis for diabetes disease datasets. The analytic is
implemented in the R programming language and represents
the first steps in a framework development, but it has not been
implemented at the end. Finally, an EDA process of COVID-
19 data was carried out by Dsouza and Velan S. [17] using the
Python libraries MatplotLib and Seaborn. These three research
works reveal two key points: i) There is a tendency to perform
EDA on datasets as a step before labelling data and ii) the
lack of tools that allow visual analysis and labelling of the
data being observed in the same software.

Therefore, the next group analysed (see group II in Table I)
corresponds to specific labelling data tools. Four different
labelling tools have been examined: Colabeler [18], Label
Studio [19], DAML [20] and Diffgram [21]. As is shown in
Table I, some of them allow to include graphs, and user in-
teractive visualisations. Furthermore, multi-feature dashboards
are common in all of them. Remarkably, all of them are
very sophisticated in terms of data labelling characteristics,
allowing them to be used by more than one person at once or
to move to the next item to be labelled automatically. Finally,
recall that all these tools are open source. The results show
that there is high popularity in labelling tools whose purpose
is to label multi-media datasets, such as images, videos and
text, but there is a clear lack of labelling tools whose purpose
is other different from these three ones.

For the reason mentioned above, some visualisation tools
(see group III in Table I) have been examined in which it
is possible to create personalised dashboards. Visualisation
frameworks such as Grafana, examined by Chakraborty and
Kundan [22], Kibana, studied by Sharma [23] or Google
Looker Studio, Snipes [24], are appropriate in terms of vi-
sualising time-series, discrete and continuous data in complex
dashboards. Furthermore, they allow a wide range of input data
types. These frameworks would be suitable for our purpose if
it were not for the fact that they do not allow the labelling of
the data being displayed. Finally, Chegini et al. [25] present a
system called mVis as a visual analytical approach that allows
interactively labelling datasets. This system is the closest to
what it is being looked for in this research because it facilitates
interactive visual interfaces for data exploration, allowing the
meaningful selection and labelling of records based on insights
gained by the user. The tool has many graphs to represent the
data, but on the downside, it is not possible to customise a
dashboard or add data that is not representable in a form of a
graph.

Finally, a further search not only for labelling tools, but
also for frameworks that included data extraction and network
labelling has been carried out. The explicit methodology for
searching such related work has been the following. First, the
search was conducted in major scientific research sources in
the field of Computer Science, namely, IEEE Xplore, Elsevier
via Scopus and SpringerLink. In addition, we performed the
same search on GitHub, for extending the search to code-based
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results. Second, we performed the same advanced search with
the following terms: “Network dataset” AND “labelling tool”
AND “labeller” AND “5G”. We restricted the results to articles
and conferences in the period of the last 10 years, i.e., from
2014 to 2023. The results obtained were as follows. Elsevier
obtained 95 results, after reading their title, any reader can
easily see that none of them are related to our work and that
the search engine is not as accurate as other engines. The same
was the case for the 2 results obtained on SpringerLink and
the other 2 on GitHub. All of them were out of the context
of our research work. Two results relevant to our subject
were found on IEEE Xplore. Lee et al. presented in [26]
a network collector system, data analyser and a 5G-based
labelled dataset. Similarly, Lee et al. proposed a system that
performs data labelling, filtering, preprocessing, and learning
for 5G network flow and security event data [27]. Despite
being closely related strategies, the authors do not present an
in-depth analysis of these frameworks’ performance.

As the reader can see, from the state of the art no research
work delivering a proper framework that facilitates network
data extraction, visualising and labelling has been found. This
has been the main motivation of this research work together
with the impact associated with our proposal.

III. OVERVIEW OF THE PROPOSED ARCHITECTURE FOR
DATA EXTRACTION AND LABELLING

This section presents the proposed architecture over a Be-
yond 5G network infrastructure. Fig. 1 has been divided into
two parts. At the bottom of the figure, the reader can see the
managed infrastructure where a 5G network architecture in a
multi-tenant environment is depicted. At the top of the picture
is the management infrastructure. Each of them are described
in detail in the following subsections.

A. Managed Infrastructure

The managed infrastructure presents a 5G network where
physical resources are shared through virtualisation by mul-
tiple tenants (e.g., network operators) in a multi-tenant envi-
ronment. Virtual tenant networks are depicted with different
colours representing the isolation of each tenant’s virtual in-
frastructure. Five different network segments are shown: Radio
access network (RAN), edge network, transport network, core
network, and inter-domain network. The RAN segment is part
of the 5G network communication system infrastructure that
facilitates the connection between UEs (user equipments) and
the core network [28]. It corresponds to a distributed collection
of antennas and radio units (RU), where the radio frequency
signals are transmitted, received, amplified, and digitised. Each
RU has its own distributed unit (DU) associated, which is
connected to a centralised unit (CU). These two components
form what is called the gNB (next-generation node B) and
form the computation parts of the base station, sending the
digitised radio signal into the network. They handle the control
plane and the data plane through different interfaces. There
is a single CU for each gNB, but one CU controls multiple
DUs. As shown in Fig. 1, the gNB is located in the Edge
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Fig. 1. Overview of the proposed data extraction and labelling architecture in a 5G multi-tenant infrastructure.

Network segment. The Edge constitutes geo-distributed servers
with virtualisation capabilities that provide an IT service
environment and cloud computing capabilities at the edge of
the mobile network [29]. Deploying edge computing at the
base station enhances computation and avoids bottlenecks and
system failure [30].

Edge and core networks are connected through the Transport
Segment. The core network segment is where access for the
user to other networks is provided. The 5G core network
functions are divided into seven components, split up by
service. Six of them handle the control plane: Core access and
mobility management function (AMF), session management
function (SMF), policy control function (PCF), application
function (AF), authentication server function (AUSF) and user
data management (UDM). In summary, these components are
responsible for UE authentication, UE management and IP
addresses, session management for the data transfer, policy
control and UE data storage. Finally, the user plane func-
tion (UPF) handles the data plane and provides Internet access
or operator services [31].

Above the physical infrastructure, the NetLabeller agents
are placed. These components are part of the management

infrastructure but, as is shown in Fig. 1, they are deployed
in the managed infrastructure as agents distributed across
the infrastructure. For this reason, they will be explained
subsequently.

B. Management Infrastructure

Three different types of NetLabeller agents are deployed
in each of the computers available in both Edge and Core
(see purple boxes in the managed infrastructure of Fig. 1).
They publish different network information using the Rab-
bitMQ message broker. The first one is the resource inventory
agent (RIA) presented by Sanchez-Navarro ef al. [32]. It is in
charge of publishing topological network information in real-
time. It discovers both physical and virtual machines where
the agent is deployed and their topological connections.

The second one is the resource monitoring agent (RMA). It
allows the monitoring of metrics extracted from the physical
machine where the agent is deployed and its virtual machines.
The metrics to be monitored and published are configured in
a configuration file and can be easily extended using such
configuration file. This allows extensibility to our architecture,
making it suitable for multiple use cases. Notice that such
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metrics are extracted from devices, device ports (physical and
virtual network interfaces), processes, operating systems and
datapath technologies (e.g., OpenFlow metrics, XDP metrics,
Linux TC metrics, IPTABLES metrics, etc.), among others
depending on the use case addressed. This agent makes use of
the list of technologies available on each of the network ports
previously discovered and published by the RIA.

The third one is the flow control agent (FCA) presented
by Matencio Escolar et al. [33] as Slice Control Agent. It is
in charge of exposing network traffic control functionalities.
These functionalities can be divided into two. On the one
hand, it provides a unified technology-independent control
interface for enabling wired and wireless programmable data-
path technologies, allowing the enforcement of rules for every
packet that traverses the different datapath technologies in the
network. On the other hand, it monitors and publishes the
control metrics coming from the enforced rules. The topology,
extracted by the RIA, the metrics, collected by the RMA and
the rule metrics reported by the FCA are published into the
RabbitMQ message bus as it is depicted in Fig. 1. RabbitMQ
is an open-source message broker that manages asynchronous
messaging. From this point, the published data follow a series
of actions divided into 4 steps. It is important to highlight
that this research paper exclusively focuses on the initial
two steps, which are data storage, extraction and labelling.
However, a comprehensive presentation of the infrastructure
is provided to enhance the reader’s comprehension of the
proposed framework’s utility. The steps are described below.

1) Data storage: The first step is the data storage where the
network topology and metrics information are consumed by
the data collector component (see 1 in Fig. 1). This component
extracts the information published by the NetLabeller agents,
adapts the data and stores it into a MySQL database. Note
that the information associated with the control rule to be
optimised is also stored. The architecture is generic enough to
make use of any SQL and non-SQL database but it has been
used MySQL for convenience. As a result, this step generates
and updates a database with all the network information
published in real-time. It is important to mention that both
topology and metrics have associated metadata to each of the
values in order to allow the identification of the producer of
the data (see monitoringResourceld in Listing 1), the source
of the data (monitoredResourceld), the time the data have
been produced (reportedTime) and other relevant metadata
information shown in Listing 1.

"MetricSample": [

{

"monitoringResourceId": "QG54TY8U",
"monitoredResourceId": "YTR56HJ8",
"metricName": "devicePortSpeed",
"metricValue": "1000000",
"startSamplingTime": 1659107373856,
"resourceId": "4BA92944",
"reportedTime": 1659106981511
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Listing 1: Example of the metadata stored in the database
associated to a metric.

2) Data extraction and labelling: The next step involves
both data extraction and data labelling where data is extracted,
shaped, sorted and adapted to comma-separated values (CSV)
format ready for Al training. To achieve so, firstly, the data
extractor control agent (DECA) connects with the database
and carries out a continuous loop of queries to extract the
selected data periodically (see 2 in Fig. 1). Then, the data
is sorted and written in a CSV file, which is represented as
the unlabelled dataset in Fig. 1 (see 3). A new instance of
the CSV file is generated each time the data is extracted. The
dataset contains as many columns as features selected and as
many rows as instances have been written. As we we will
be facing a supervised machine learning problem, once the
dataset is completed, it is necessary to label each instance of it.
This process must be done manually by a network expert and
ideally with the help of a tool that facilitates the visualisation
of each of the values in the CSV file. The labelling tool
NetLabeller is in charge of this task, allowing the visualisation
of the values in a user interface that allows labelling each of
the instances of the dataset. As a result of this phase, the
dataset is labelled and ready to be used in supervised learning
(see 4 in Fig. 1).

3) Al workflow: The next step is the Al workflow, which
consists of three different stages. In the Al training network,
an Al model will be trained with the training dataset. This
step consists of adjusting the model over the training to fit
the objectives that have been set. Once the desired accuracy
has been achieved, the final AI model will be attained (see
5 in Fig. 1). Note that the labelling and Al training boxes
are enclosed by dashed green lines, meaning that these steps
will be done only during training. Then, the Al-driven policy
engine will execute the Al model with the real-time data
published by the NetLabeller Agents. As a result of this step,
the output of the Al model will be obtained (see 6 in Fig. 1).

4) Rules management: Finally, the rules management step
is composed by a policy engine that will generate an automatic
policy. This automated policy leads to the generation of an
optimised network rule (see 7 in Fig. 1). Then, such optimised
rule is published in the RabbitMQ message broker. The
FCA NetLabeller agent will consume this message and will
enforce the rule where appropriate, closing the Al-driven self-
optimisation loop.

IV. BEYOND 5G NETWORKING DATASET FOR AI-DRIVEN
SELF-OPTIMISATION PURPOSES

A. Running Example

In order to a better explanation of the usage of the pro-
posed architecture for labelling, this section aims to indicate
a concrete problem to be addressed by an Al model as a
running example throughout the whole manuscript. It is worth
indicating that the proposed architecture is generic and not
tailored to any particular use case. Therefore, this proposed
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infrastructure holds potential for application in various other
Al-driven use cases. However, it will improve the readability
of the reader and will allow them to understand the complete
methodology followed.

As introduced in the Section I, the most modern infrastruc-
tures today are making use of innovative datapath technologies
for network control such as network accelerators (Mellanox,
Netronome, Intel, etc.), kernel bypass technologies (DPDK,
AF-XDP, etc.) on top of the traditional and well-established
kernel technologies (traffic control, iptables, etc). This het-
erogeneity of technologies is no more a matter of choosing
one of them to be used but now they all are available at the
same time in the same network interface. It causes a lot of
confusion as it is incredibly difficult for network administrators
to determine which one is the best technology to implement
a concrete network control rule. This is because it depends
on a significantly wide number of parameters such as the
current status of the system, the anatomy of the rule and
its usage, and other related metrics and metadata. Thus, this
is where an Al model can help to determine which one is
the best technology to materialise a given network control
rule in a given acceptable response time. For this particular
example, the output of the model will be the optimal datapath
technology for every enforced rule on the network.

B. Analysis of Features

This section provides an analysis of different network met-
rics related to the edge and core of a beyond 5G network. The
characteristics come from each network element (hardware
and software) capable of reporting any information related
to the control and data plane. This information includes the
actual status about network flows, network devices, network
interfaces, network queues and network rules.

As a datapath technology is desired to be selected depending
on the state of the network, the vast majority of the metrics
are associated with network interfaces. Such network interface
will be henceforth referred to indistinctly as device port.
Furthermore, each datatpath technology for network control
available in each device port will be henceforth referred to as
datapath point. Fig. 2 shows a physical network interface with
some datapath point technologies represented as orange dots.
It is worth noting that a high-level overview of the various
stages of the input data path is provided. This allows the reader
to better understand what a datapath point is and how data
flow passes through them. The data flow goes through the
network interface crossing each datapath point as indicated
by the arrow. Every point represents stages where various
operations can be performed on network packets. Note that
the existing number of datapath technologies might vary when
it comes to a virtual interface. The reader can see in Fig. 2
the firmware used to refer to hardware-offloading rules. The
driver is to refer to those rules enforced before the packet
arrives at the kernel network stack. Then, the traditional kernel
hooks within the Linux kernel that allows packet filtering,
network address translation (NAT), and other network-related
operations. Examples are the libpcap interface to perform
network monitoring, the Linux traffic control (TC) used to

deal with quality of service rules, the OVS control and the
iptables control.

NETWORK INTERFACE

KERNEL NETWORK STACK
FIRMWARE DRIVER ( LIBPCAP TC BRIDGE IPTABLES

SXOLCICIONS),

Fig. 2. Identification of the data flow through the different datapath points of
a network interface (input path).

USER SPACE

FLOW

>
>

The feature analysis is done in a top-down approach, starting
with device features, then device port features, datapath point
features, queues and finally, features related to network flows.
Fig. 3 shows a device, i.e., a physical or a virtual machine in
purple, with a device port coloured in grey. The device port
depicted in this example consists of two different datapath
points coloured in yellow as a mere simplification to improve
readability. Each datapath point may or may not have rules
to be enforced for every packet that traverses it. These rules
are represented in the figure in red. Arrows represent the
direction of data flow: ingress and egress. Fig. 3 also presents
34 features located in both the bottom and the top part of
the figure. They are coming from these components and are
coloured with the same colour of the entity they belong to.
This allows the reader to understand if they are metrics related
to device, device port, datapath points, rules , queues or
flows. They have been divided into control plane features and
data plane features, which will be explained in detail in the
following subsections.

C. Data Plane Feature Metrics

Data plane metrics are depicted in the lower part of Fig. 3
(number 16 to 34). Within network metrics, we can distinguish
between received (RX) and transmitted (TX) network metrics.
These metrics can be bytes or packets. In the diagram, different
types of queues are schematically represented according to the
datapath point concerned. For instance, datapath point 1 has a
single transmit and receive queue. For simplicity, the receive
and transmit queues are represented as a single queue. On the
other hand, as shown in the figure, datapath point 2 has two
queues for reception and 2 for transmission.

Starting with flow metrics, the type of encapsulation and
the sense is included. By analysing the encapsulation type
and flow direction, we can determine the behaviour of dif-
ferent traffic types and understand how they impact network
performance. Also, the size of each packet of the flow and
the total packets is gathered. With the use of these two
metrics we can calculate the overall data volume transmitted.
This information helps in analysing bandwidth utilisation
and identifying potential bottlenecks or congestion points.
Focusing now on the metrics related to datapath points, both
packets and bytes transmitted and received per second have
been selected. Packets dropped describe dropped packets of
data not reaching their destination during data transmission.
This group of metrics gives us insights into whether there is
network congestion. The packets dropped per second indicate
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Fig. 3. Identification of 5G network features in different network resource levels: device, device port, datapath point, flows and queues.

if the network traffic is hitting its maximum limit at the
moment, while the total packets dropped specifies the idea
of how often the network reaches its limit and needs to drop
packets. Regarding rule metrics, it is essential to know how
many packets and bytes are matching each rule in total (total
matched packets and bytes), at the moment (current matched
packets and bytes) and on average. These metrics can be
compared with the datapath point metrics to determine what
percentage of packets are being matched compared to all
packets passing through the network. This gives us an idea
of the rule efficiency. The last matched time indicates when
the last time a packet was matched. Finally, the activated rule
time specifies how many seconds has a rule been activated.
We conclude the data plane metrics with the queue current
usage, which describes how congested each of the queues of a
datapath point is. This metric, when compared to the maximum
values described in the control plane, can estimate whether the
network is in a nearly congested state that will lead to packet
loss.

D. Control Plane Feature Metrics

Control plane feature metrics are depicted in the upper part
of Fig. 3 (number 1 to 15). Device metrics are represented
in purple. The IsPhysical represents whether the device is
physical or logical/virtual. This feature has some relevance
for technology selection, since it has already been mentioned
above that certain datapath points are not found in virtual
network interfaces. Device metrics also include context switch-
ing related to the number of times the CPU is performing
context switching between processes. Device port metrics are
represented in grey. The device port speed indicates the port’s
network interface card (NIC). Knowing the speed limit of the
NIC can be helpful to diagnose performance issues related to
the bandwidth and the performance expected. Datapath point
metrics are depicted in yellow. The Datapath Point NIC Speed
is included as it may differ from the device port speed. Indeed,
this is a typical bottleneck that happens in today’s networking
stack where we do have a 10 Gbps card but the Linux kernel is
only able to provide 4-5 Gbps due to limitations in any of the
technology available. The time search complexity represents
the difficulty in terms of the time it takes for a datapath point
to locate a rule. Some datapath points have lists of rules, for
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example, TC or OVS, some others have hashmaps or ternary
content address memory (TCAM) structures to deal with the
time search complexity.

In addition, several data path point technologies provide
support for network queues. Therefore, queue metrics are also
included in the diagram, coloured in white. They indicate how
many queues the datapath point has (number queues), the
length of each queue (queue length), the maximum bandwidth
of the queue and the queue discipline, which describes the
scheduling algorithm determining the formation of a queue or
queues [34]. The information related to the queues will give
us an idea of the maximum capacities of the queues and their
respective limits.

We conclude with the control features introducing the ones
related to the rules. The rule technology specifies the datapath
point technology, which could be any of those shown in Fig. 2
or another one. For our concrete Al model, this will be in
fact the label we want to infer. The rule description includes
extra information about the rule, such as the action type and
the action name. To avoid reaching the maximum number of
enforced rules, it is necessary to know the maximum number
of rules that can be inserted in each datapath point. This
value, together with the number of rules activated in total, will
give an idea of how much percentage of rule resources are
used/available. The rule sense indicates whether the packets
to be affected are ingress or egress packets. Finally, the rule
complexity represents a value that measures the complexity of
the rule to be enforced (the longer, the most complex).

The reader can understand the effort underneath carried out
in order to design, discover, understand, prototype and refine
the system able to extract all these sources of heterogeneous
features in order to allow to have enough data to be used
for training purposes in Al-models. This is probably the first
manuscript we have found in the literature with this deep
reveal of the network metrics involved in the decision taking
process of network control technology selection. It is worth
remarking that all the metrics collected are related to L2-L7
of the OSI stack and there is not any attempt to gather L1
metrics, mainly relevant to wireless interfaces. This is because
we are currently focused on Edge and Core network segments
of the 5G infrastructure.

V. DESIGN OF THE DATA EXTRACTION AND LABELLING
COMPONENTS

As shown in Fig. 1, the management architecture is divided
into four modules. This section will introduce in more detail
the data extraction and Labelling module where the features
described in the previous section are extracted, shaped and
written in a dataset for a resulting EDA analysis and labelling
process. This process has been analysed mathematically in
subsection V-A. Then, subsections V-B and V-C describe the
design of the two most relevant components, these are the data
extractor control agent (DECA) and NetLabeller. Both com-
ponents provide, as a result, a CSV file. The DECA produces
a CSV file with all the metrics and metadata extracted in the
network and the NetLabeller produces a CSV file with labels
added to each instance. The labelled CSV file represents the

networking dataset that will be used for Al purposes. Finally,
in subsection V-D, a sequence diagram is presented to help
the reader understand where all the data extracted by DECA
comes from.

A. Mathematical Analysis of Proposed Architecture

This section provides a pseudo-code-based algorithm for
the proposed data extraction and labelling architecture. The
primary focus lies in the dataset generation part. We first start
with the definition of the origin of the different feature metrics
as well as the resource they are associated with.

We define M = {D,P,T,Q,F,R} as the set of metrics
associated to the device port p where a rule R is enforced.
The specification of all these metrics is detailed below.

D corresponds to the b metrics associated with the device
d on which the device port p is located. It is given by the
following equation:

P corresponds to the ¢ metrics associated with the device
port p, given by the following equation:

T corresponds to the f datapath technology metrics asso-
ciated with the device port p from the x different datapath
technologies available in p. It is given by the following
equation:

T = {1/, .7T)}P, e

Q corresponds to the g queue metrics for each of the g
queues in the datapath technology x from the device port p. It
is given by the following equation:

Q = {Qilpa T lep, Q%Qpa R ngpa T Q}CCI)7 T Qng}
“4)
F corresponds to the /& flow metrics associated with the i
flows affected by the rule R in the device port p. It is given
by the following equation:

F = {FllpR’.‘.’FépR7...7F1ipR7...7F}iPR} 5)

Tlxpa"'aT;p} (3)

R corresponds to the j rule metrics associated with the rule
R and enforced in the device port p. It is given by the following
equation:
R R

The sets D, P, T and Q are provided by the RMA agent.
The sets F and R are provided by the FCA agent.

Let I? R be the instance corresponding to the extraction at
time ¢ of M, given by the following equation:

pR __ D P pp 1p 1p zp
It _{D17...’Db7P17...7PCp7T1 7.“7Tf 7...71"1 EEER
xp 11p 1 12p 2 lxp
T s &1 7"'7quaQ1 7"'7qu7"'7 1 "
f 9 g
p 1pR 1pR ipR ipR ppR
Qgval a"'7Fh 7"'7F1 7"'7Fh 7R1 )
pR
...7Rj }
@)

Then, Algorithm 1 represents the mathematical steps fol-
lowed to perform the extraction and labelling in order to
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Algorithm 1 Pseudo-code algorithm for the extraction and
labelling

1: while n < number_extractions do

2 for R in available R do

3 extract IP7

4; human assign target L; = I} "

5: end for

6 n+<n+1

7: end while

8: I={I,I5,...1,} for a given R over a time z
9: L ={Ly,Lo,...T.} for a given R over a time z

obtain the label dataset. Finally, note that I corresponds to
the unlabelled dataset, while L to the labelled dataset.

As specified in line 4 of Algorithm 1, the time it takes to
label the data is human-dependent. Therefore, this algorithm
is always determined by the time it takes for the human to
respond to the system. Assuming line 4 would be automatic,
Algorithm 1 exhibits a time complexity of O(n?) in Big O
notation, as there are two nested loops iterating The first loop
iterates n times, representing the number of iterations, and for
each of these iterations, a second loop is executed, iterating r
times, which represents the number of rules being monitored.

B. Data Extractor Control Agent

Fig. 4 shows the architectural design of the DECA com-
ponent. The DECA is responsible for data extraction and
data adequacy. Once the component is started, the following
workflow proceeds. First, the database connection is made (see
0 in Fig. 4). Then, once the connection has been successfully
made, it is time for data extraction. Note that the data reported
by the NetLabeller agents have already been populated in the
database by means of the data collector.

The DECA extraction engine (see 1 in Fig. 4) carries
out several tasks. First, it makes a database query to obtain
the topology of the network. Then, it performs in parallel
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the necessary queries to obtain all the features previously
described in Section IV. One query to obtain the device
information, another one to know the features of the device
port and its datapath points. The third query is to obtain
the flow features and, finally, the fourth one to obtain the
metrics related to the rules currently enforced on the network.
In addition, it connects to the configuration engine to store
information related to whether the extraction has a finite
number of instances to be extracted and, if so, how many to
extract. It is also responsible for monitoring a counter to keep
track of the number of instances extracted so far. When the
extraction is finished, the output formatter module starts (see 2
in Fig. 4). It oversees writing all the features corresponding
to an instance in each of the CSV files. Once the writing
has finished, it is checked whether it was set to have finite
iteration instances. If false, the extraction engine starts again,
adding another instance to the counter. If true, the value of
the counter and the number of iterations are compared. If it is
the same, the extraction has finished and the exit agent stops
the component. If not, data extraction continues. The result of
the DECA is a CSV file containing all the network features,
which is represented in Fig. 4 as the unlabelled dataset (see 3
in Fig. 4). This design allows quantifying streaming data in
iterations that are used for training purposes. This is a key
ingredient in addressing the streaming aspect associated with
the dynamics of a fully functional network infrastructure. It
also allows the preparation of the Al training aspect that works
more on batches or iterations.

Table III displays a sample of one instance of the dataset
generated by the DECA. Note that features are the ones
described in Section IV. It is also important to highlight that,
for simplicity, only the metrics extracted from the TC datapath
technology are being shown. Therefore, in a network interface
where there are also e.g., IPTABLES and OVS, the number
of features associated with the datapath would multiply.

Once the DECA has finished, the unlabelled dataset is ready
for the next step, to be labelled. With Table III, reader can
gain a profound understanding of the complexity involved in
comprehending and labelling such a vast amount of data in
the absence of a visualisation tool. It is therefore necessary to
use a visualisation and labelling tool such as NetLabeller.

C. NetLabeller: Data Visualisation and Labeller Agent

NetLabeller is the labelling tool in charge of labelling the
dataset. Fig. 5 shows the NetLabeller design. NetLabeller
is a graphical user interface (GUI) that allows the user to
visually interact with a networking dataset and to direct label
it. NetLabeller abstracts all the complexity that a user can find
in a CSV file, as it transforms a bunch of values and commas
into an interface that represents all those values in an orderly
and visually arranged way. As it is shown in the figure, the
design follows a model-view-controller (MVC) pattern. This
pattern is based on the separation of the application domain
model and the user interface in two layers, having the domain
model being unaware of the user interface [35].

Once the application is started, the workflow follows the
steps described below. First, the configuration file is uploaded
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TABLE III
SAMPLE OF FEATURES EXTRACTED BY DECA IN A CONCRETE ITERATION.
Feature name Value H Feature name ‘ Value ‘
Is physical 0 Packet size 284
Context switches 9 Total pkt 8163
Device port speed 109 TC RX pkt/sec 365
TC NIC speed 10° TC RX bytes/sec 118260
Time search complex 8 TC RX pkts drop/sec 269
TC number queues 1 TC TX pkt/sec
TC queue length 1000 TC TX bytes/sec
TC queue discipline noqueue TC TX pkts drop/sec
TC queue max bwd — Total matched pkts 109
Rule technology TC Current matched pkts 109
TC maximum rules 4096 Avg matched pkts 109
Num rules activated 5 Last matched time 0
Rule description Insert DROP || Total matched bytes | 35316
Rule sense INGRESS || Current matched bytes | 35316
Rule complexity 3 Avg matched bytes 35316
Encapsulation gtp Activated rule time 0
Flow sense INGRESS TC queue usage —

NetLabeller

- Y

Ul TEMPLATE

B

UNLABELLED
DATASET

USER

4

LABELLED
DATASET

Fig. 5. NetLabeller labelling tool design.

to the model engine. The configuration file has the information
about what CSV file to upload, among others. This CSV file
is called Unlabelled Dataset in the figure. The model engine
loads all the values contained in the dataset at once and sends
the first iteration to the view module to be displayed in the
user interface (UI). In the meanwhile, the view module loads
the Ul template in which the data from the model will be
displayed. Having the template and the data to be displayed,
the view module renders the GUI and displays it to the user.
The view module allows the user to (i) select the instance
to be displayed, (ii) select the value to put in the label and
(iii) save the dataset. The controller oversees the handling
user inputs. On certain user actions, the controller triggers
model methods that will result in (i) changing the instance
and displaying the new values, (ii) saving the value selected
and moving automatically to the next instance or (iii) grouping
all the values stored and create a new dataset which contains
both the unlabelled dataset values and the labels. This dataset

is represented in the figure as the labelled dataset.

The NetLabeller GUI is presented as follows. Fig. 6 shows
the NetLabeller GUI once it has been run. Before starting
the application, it is necessary to edit the configuration file
to select the dataset to be labelled. Once the configuration
is finished, the Python component can be started. The data
presented in Table III have been used to show their represen-
tation in the NetLabeller tool. Different yellow circles have
been added to the figure for a better explanation of the user
interface. In number 1 it is displayed the actual instance whose
data is being visualised in the dashboard. The user can select
other instances by simply clicking on the input box. On the
cards selected with number 2 and 3, both device and flows
metadata and metrics are displayed. In section number 4 is
displayed the rule information where it can be shown the rule
action type and name, the rule technology, or the different rule
metrics. In the same section, marked with the number 5, some
boxplots are represented to allow the graphical and exploratory
analysis of the metrics gathered separated by mean, quarterlies,
standard deviations and a descriptive quantifier. In summary,
the graph illustrates a descriptive analysis of all the rules
applied to the network, providing a better understanding of the
rule’s performance. These boxplots allow to make an in-depth
exploratory data analysis of the feature metrics extracted.
Specifically, the values corresponding to the currently matched
packages are represented in red and the total matched packages
in TC, respectively. The same has been done with OVS,
in orange, and IPTABLES, in white. The information about
every boxplot can be expanded by simply clicking each of
them. Section VI displays metrics associated with the available
datapath technologies: TC, OVS and IPTABLES in our testbed
infrastructure. The user can select the label to add in the
checkbox marked in number 7 and also save it. Finally, once
the dataset is completely labelled, it can be saved with the
save as CSV button marked in number 8. NetLabeller will
generate a new CSV with all labelled instances. The name of
this dataset must also be specified in the configuration file.

The tool allows resuming an unfinished labelling task and
other user-centric features to achieve an efficient data labelling
process. It is worth mentioning that this dashboard has been
on-boarded as a plugin into the NetLabeller and the tool allows
to customise them for the concrete labelling intention foreseen
by the user.

The exploratory data analysis is achieved by using the GUI.
The EDA process allows the user to understand the data and
gather as many insights as possible from it. Making use of
it, the user performs critical investigations on data that will
result in labelling such data. The GUI template has been
designed to represent all the features of one iteration in the
same dashboard. More specifically, the characteristics of each
technology have been grouped and represented in different
colours. This allows the user to perform a quicker exploratory
analysis by associating the different technologies with different
colours. It is also worth mentioning that this way of represent-
ing all the technologies at a glance, close to each other and
all the contextual information about the technologies in the
same dashboard allows an intrinsic horizontal exploration of
the data. Furthermore, the capability to jump to any iteration
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Fig. 6. NetLabeller GUI for visualising and labelling networking datasets.

available in the dataset allows a vertical exploration of it in
order to establish comparisons among two similar scenarios.

D. Sequence Diagram

Fig. 7 shows a sequence diagram representing the detailed
communications between the components of the management
architecture. Such interactions make the operation of the
DECA possible. To achieve a better figure explanation, dif-
ferent numbered labels have been included in the figure. The
numbers represent interactions between DECA and other net-
work agents. The rectangles at the top of the figure represent
all the agents involved. The interactions are time-dependent,
so they happen in the order specified in the figure, from the
top down.

The first step (see label 1 in Fig. 7) involves the DECA
being started and connected to the database. For the con-
nection, it is necessary to extract the database credentials
from the configuration file. For this reason, the database
connection module connects with the configuration engine,
where the credentials are obtained and returned to the database
connection module (see label 2). Then, all the components
represented in Fig. 7 should be started and running. To reduce
the size of the diagram, it is assumed that the components
have been previously started up and are already in operation.

The second step is made by RIA (see label 3). RIA
publishes into RabbitMQ the discovered topology in a JSON
file. Every component subscribed to the topology exchange in
RabbitMQ will receive such information. These are the RMA,
the FCA and the data collector. Once the topology is published,
different actions are carried out in parallel before the DECA

starts its loop. They have been described in a certain order but
executed simultaneously.

o Looking at label 4, the data collector transforms the
information related to the topology into a SQL sentence
and writes the information into the corresponding table.

e In the meantime, looking at label 5, the RMA uses
this topological information to run the scripts that will
output the related metrics associated to the devices and
device ports available in such topological information
and publishes them. It is important to note that, for the
sake of simplicity, the diagram omits the steps of the
components themselves, focusing only on the exchanges
of information between them.

« Focusing on label 6, the data collector is also subscribed
to the metrics exchange. For this reason, once the metrics
form the RMA have been published, it can transform
them into a SQL sentence and store this information in
the corresponding table.

« Additionally, the FCA uses the topology to know where
it can apply rules and publish the associated rule metrics.
Label 7 is inside an optional box (opt) as the FCA will
only publish rule metrics if there are rules enforced in
the network.

« Finally, as shown in label 8, the data collector does the
appropriate with the metrics associated with the rules
enforced on the network.

At this point, the DECA performs the data extraction loop
(see loop box in Fig. 7). That loop gets all the topological
information of the network (see label 9). Then, as many
parallel query threads are created as device ports with enforced
rules are on the network (see the parallel box in label 10). In
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Fig. 7. Sequence diagram representing the connections between components necessary for DECA to extract data.

each thread, a total of four queries are made to obtain the
information related with devices, device ports, flows and rules
enforced. Then, the information extracted is stored in a CSV
file (see label 11) and optionally, in label 12, the DECA is
stopped if there is a limitation in the number of iterations to
extract.

VI. IMPLEMENTATION DETAILS AND TESTBED

This section is divided in two sub-sections. First, it provides
some implementation details of the fully functional prototype
achieved of the infrastructure. Then, information about the
testbed infrastructure deployed in order to validate and eval-
uate the proposed framework is given. A detailed explanation
of the hardware used to deploy the framework prototyped is
also provided.

A. Implementation Details

The complete NetLabeller framework has been designed
and prototyped. In terms of software specifications, the com-
ponents RIA, RMA and the data collector are implemented
in Java openjdk version 17.0.3 and FCA in Python 3.7. The
software used for the implementation of both components,

DECA and NetLabeller, is Python 3.8.10. The DECA compo-
nent basically uses libraries that allow data manipulation and
analysis, such as Pandas [36] and NumPy [37]. NetLabeller
makes use of libraries related to data visualisation in a GUI and
data visualisation in graphs such as Dash [38] and Plotly [39].
Dash allows the deployment of interactive dashboards in a
web application. NetLabeller also makes use of Pandas and
Numpy for data manipulation. Regarding the softwarised 5G
network, the RAN and core of the OpenAirlnterface software
components (git develop branch) [40] were implemented.
Finally, we employ RabbitMq version 3.8.2 as message bus
and MySQL 8.15 as database.

B. Testbed Infrastructure

Fig. 8 illustrates the testbed deployed to carry out the em-
pirical validation and evaluation of the NetLabeller framework
proposed. Our research group has a 500-core mid-size data
centre with a fully operational multi-tenant advance 5G net-
work infrastructure with some prototypical capabilities associ-
ated to beyond 5G infrastructures such as O-RAN Near-real-
time radio intelligent controller (RIC). The infrastructure is
based on Linux Ubuntu 20.04 with Metal-as-a-Service (MaaS)
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Fig. 8. Architecture and workflow of the testbed deployed for the empirical evaluation of the framework.

3.0, Canonical Juju 1.8, OpenStack Wallaby and OpenAirInter-
face (OAI) 5G-RAN and Core. Three physical computers have
been used for the deployment of the complete infrastructure.
Each computer has the following specifications: Dell Precision
T5810 with an Intel Xeon CPU E5-2630 v4 CPU, 10 cores
with hyper-threading, 32794 MB of RAM and 512 GB SSD
hard disk. The operative system is Ubuntu release 20.04.4 LTS.
For the radio unit (RU), a universal software radio peripheral
(USRP model b210) and a BLUESPOT mini antenna have
been used. For simplicity, there is only one user equipment
(UE) connected to the RAN and one tenant (represented in
green colour on the figure). As shown in the figure, the testbed
is composed of three different machines connected to the
same LAN. In machine 1 the OAI DU and CU have been
deployed. Also, the purple box inside the edge represents
the compute layer where NetLabeller agents are deployed. In
machine 2, the OAI Core components have been deployed. It
can be seen the same compute layer containing the NetLabeller
agents deployed in the core machine. Finally, the whole
management framework has been deployed in machine 3. It
includes the RabbitMq message bus, the data collector, the
MySQL database, the DECA and the NetLabeller software.
Finally, we have deployed a component called Rule Publisher
whose purpose is to publish rules in the network. It is a way
to insert rules in a programmatic way, thus impersonating a
user administrator to insert a control rule in the network. It
was develop for conducting the following experiments.

VII. SYSTEM VALIDATION AND PERFORMANCE

This section presents the NetLabeller framework valida-
tion and performance. In subsection VII-A, the methodology
adopted to execute the different experiments and analyse the
results is presented. Then, in subsections VII-B and VII-C,
some results showing the validation of the framework are
illustrated.

A. Experiments Description

Along the complete execution of the experiments, the UE
is simply sending a packet capture (PCAP) file to machine 2
using the Linux command tcpreplay. Note that the ex-
periments have been carried out once the UE is connected
to the network. The traffic sent by the UE reaches the edge
(machine 1 in Fig. 8) and the core through the central switch.
While traffic is passing through the network, the NetLabeller
agents in the compute layer are each performing their specific
function. Therefore, the RIA is publishing the topology in-
formation and the RMA, metrics associated with the machine
resources. Whereas the FCA is both publishing rule metrics
and listening for directives to enforce new rules.

In order to initiate the extraction process, the DECA relies
on pre-existing rules that are already enforced on the network.
To fulfil this requirement and only for experiment purposes,
the Rule Publisher has been utilised. Rule Publisher is a
Python component that publishes in a JSON file the necessary
directives for the FCA to enforce rules in the network. It is
possible to configure the type of rule, where to apply it, the
technology to use and the number of rules to publish. In our
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testbed, it will be possible to apply rules to any of the three
network device ports that machines 1 and 2 have (see label of
device port in Fig. 8). In addition, the FCA is implemented
to support rules from TC, OVS and IPTABLES technologies,
so the experiments will be done with rules from these three
technologies. The data collector is subscribed to the RabbitMq
message bus and transforms all the messages into SQL queries.
Once all the components are running and there are some
rules enforced on the network, the DECA is started. It will
extract the features a pre-set number of times. The extraction
is performed every pre-determined number of seconds. These
parameters have been set in the configuration file. At each
iteration, in addition to writing the metrics extracted from the
network to the unlabelled dataset, DECA writes in a CSV
instrumentation file the times taken to complete every step
labelled in Fig. 4 with yellow circles. As shown in Fig. 8, this
data will be analysed later in a Microsoft Excel file. Finally,
the CSV generated by the DECA will be uploaded to the
NetLabeller. Some performance tests have been carried out
during the labelling process in order to analytically measure
the performance of the tool. A more detailed description of
these experiments is provided in the following sub-sections.
Concerning the procedure followed to execute the exper-
iments and gather results, all the experiments have been
reproduced five times. To achieve more accurate results, the
arithmetic mean of these values has been done. As the perfor-
mance of two very different tools will be tested, the procedures
for each will be described in each of the sub-sections. In sub-
section B, some experiments regarding the DECA performance
have been carried out. In subsection VII-C, focusing on the
NetLabeller tool, an explanation of some performance tests
made in the web application are presented. The performance
tests that have been carried out on NetLabeller analyse the
quality of the user experience in terms of navigation time
and other performance-related times. Finally, in sub-section
D, the overall performance of the proposed framework. Such
performance has been measured in terms of latency. This per-
formance analysis has been carried out by measuring latency
times throughout the storage, extraction and labelling process.

B. Data Extractor Control Agent Performance Analysis

To perform the DECA experiments, times have been col-
lected in four different parts of the component code and
have been written in an Excel file. These steps are indicated
in Fig. 4 in yellow circles. Step O registers the time when
the DECA is started. Step 1 saves the timestamp when the
connection to the database has been successfully established.
Step 2 registers when the feature extraction has finished and
step 3 saves the timestamp when the instances have been
written in the different CSV files. The differences between
steps represent how much does the DECA take to perform the
three modules depicted in Fig. 4: i) Database connection, ii)
data extraction and data adequation and iii) data output witting.
All experiments have been executed during 100 iterations.

As described previously, the DECA extracts data every
number of seconds chosen in the configuration file. The first
experiment has been carried out to check what is the minimum
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Fig. 9. Evolution of the execution time of DECA along hundred different
extractions.

time the component needs to finish one iteration and what is
its performance depending on the number of seconds defined.
To do so, three different times have been chosen: 3 seconds,
5 seconds and 10 seconds. The test scenario is the same for
all three cases, with the same number of rules in the network
and the same traffic sent from the UE. Five repetitions have
been performed for each time between iterations (3, 5 and
10 sec), then averaging these values to obtain more accurate
results. Fig. 9 represents the evolution of the total time taken
by DECA to complete an extraction of each iteration. It can be
seen that the time is very variable, although it should be noted
that it is a matter of milliseconds of difference. This variation
occurs in all three cases analysed. The results show that, in the
worst case, DECA takes 1.45 seconds to finish the iteration.
This worst case corresponds to the experiment when 3 seconds
per extraction are selected. Fig. 10 represents the total average
time taken by DECA, over these 100 iterations. The total
execution time is shorter when iterations are performed every
10 seconds. Again, it should be noted that these differences are
milliseconds. The standard deviation has also been represented
in the figure. It can be noted that it is significant in relation
to the mean, which indicates that data are spread out. This
measure confirms that the results are variable, as shown in
Fig. 9. Apart from this fact, the time in all cases is around half
a second. This allows the reader to understand what minimum
response time is required to generate the dataset. Such time
is directly related to the minimum time it will be required to
update the Al model during the training phase.

The second experiment has been carried out to prove the
DECA scalability, as performance may vary depending on
the number of rules in the network. For this experiment, a
fixed time between iterations has been chosen, which is 10
seconds as proved before that is the optimum value. Then,
results from a variant number of rules have been gathered:
1 to 32 in steps of 2 rules (1, 2, 4, ---, 30, 32) enforced in
the network. Again, five repetitions have been executed for
each number of rules. The results shown in Fig. 11 are the
arithmetic average of the repetitions. The graph represents a
bar per number of enforced rules. Each bar has 3 different
colours, representing the times in milliseconds the DECA takes
for each step. As we can see, the database connection time is
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Fig. 11. Results of the average execution time of each of the DECA steps as
a function of the number of rules enforced in the network.

insignificant in comparison with the rest, with an average of
0.5 milliseconds. The data extraction time is depicted in blue.
Is the most time-consuming of all, for a duration of almost
half a second (around 470 milliseconds). It is worth noting
that the extraction time does not depend on the number of
rules enforced in the network, as it is a process that is done in
parallel by several threads. Therefore, the times are practically
the same in all tests. Finally, we can see the data writing
time in mustard-coloured. It is observed that the writing time
increases linearly with the number of rules by steps of 16
milliseconds approximately. This makes sense since a different
CSV is written for each rule enforced in the network. This
experiment proves that the average extraction time is less than
700 milliseconds in most cases and independent of the number
of network rules.

C. NetLabeller Runtime Performance Analysis

Runtime performance shows how the NetLabeller web page
performs when it is running. Chrome DevTools Performance
panel [41] has been used for analysing the NetLabeller per-
formance. The panel allows to record the page and provides
a detailed explanation of the actions being executed. The
explanation includes the following times about the page per-
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formance: Loading, scripting, rendering, painting, system and
idle. For our analysis, the idle time has been ignored, as can be
considered as the time taken by the user to think about what
label to put according to the data being displayed. This time
will depend on the user; therefore, it is of no interest when
measuring the performance of the tool. Performance evaluation
consisted of measuring these times, varying the size of the
dataset to be labelled. That is, by changing the number of
instances. For this purpose, the following actions have been
carried out in all cases:

1) Launch the framework with X instances.

2) Start recording the performance.

3) Reload the page.

4) Select a technology and click on the save button.
5) Repeat step (4) 5 times.

6) Click the save button to save the CSV file.

7) Stop the recording.

The X number in step 1 has been ranged with values 10,
100, 1000, 10000 and 100000 instances respectively. These
actions have been repeated 5 times for each number of
instances. The arithmetic means of the results obtained were
then calculated. Fig. 12 shows bar charts of the results obtained
with 1000 and 10000 instances. As the reader can see, both
cases show a very similar distribution of the times. This means
that the NetLabeller runtime performance is not affected by
the number of instances to be labelled. This is a very desirable
feature of our framework, as it means that we will not have
performance problems if the number of instances to label is
very high. These results are similar to the cases not plotted
for a shake of simplicity (10, 100 and 100000).

To highlight the excellent performance of our framework,
we have performed a comparison against one of the visualisa-
tion tools presented in Table I. Google Looker Studio has been
used for this purpose because of its user-friendly and intuitive
interface. We produced a similar dashboard, where we present
the same features as those shown in Fig. 6. We then followed
the same steps as above. Except for step 6, since as mentioned
in Section II, this tool does not allow CSV labelling. Fig. 13



96 JOURNAL OF COMMUNICATIONS AND NETWORKS, VOL. 26, NO. 1, FEBRUARY 2024

shows the obtained results. They show two clear conclusions:
(i) The NetLabeller’s runtime performance is better in any of
the 5 measured times and (ii) the performance of second tool
used is affected by the number of instances to be labelled, in
contrast to ours.
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Fig. 14. Time taken by NetLabeller to save the labelled dataset, depending
on the size of the input dataset.

On the other side, at a network level, the analysis of
the runtime performance shows a clear linear relationship
between the number of instances and the time NetLabeller
takes to save the labelled dataset. The relationship can be
shown in Fig. 14. Notice the time is on a millisecond scale
which clearly validates the good performance of the tool as it
takes 16 seconds in recording 1 million iterations in labelled
data. Finally, it is worth noting that the dashboard updates
instantaneously when switching from instance to label. This
is because NetLabeller is a SPA (single-page application), so
the data is loaded all at once when the application is started.
This makes navigation through the application highly fluid.

D. Validation of Feature Completeness

The methodology employed in the design of the dataset
features entails incorporating all feasible metrics and metadata
accessible within the system pertaining to the decision-making
procedure. Through the adoption of this complete enumeration
approach, the dataset guarantees the provision of exhaustive
information for the network expert involved in the decision-
making process. It is noteworthy to emphasise that the dataset
features include all the key elements involved: Device, de-
vice ports, datapath technologies, datapath queues, network
flows and network control rules. The complete enumeration
approach is commonly used in scenarios where it is feasible to
consider all variables and their possible impacts. It is also em-
ployed as a means of addressing situations where uncertainty
exits about the predominant variables, as is the case in this
particular research. Such problem-solving approach has also
been used for other network-related problems, for example by
Koide et al. in [42].

In order to validate it, a set of 10 network security, network
engineers and network managers available in our computing
department have been using the NetLabeller framework to
determine if the information presented is enough to take
the decision on the best technology to be used. There is
a unanimous 100% agreement among the participants that

the information is enough for the decision-making process
which is a clear insight of the completeness of the dataset
design. However, what is not unanimous (in at least 20%
of the scenarios, mainly those that are not clear cases) is
what technology they have chosen as the optimal among the
50 scenarios being analysed. This confirms our original idea
related to the need of Al that help network experts to perform
optimal decisions, based on the given current state of the
system.

VIII. CONCLUSION

This paper has presented a novel architecture to extract and
label networking data coming from beyond 5G and potentially
future 6G networks. The in-depth study of the state of the
art regarding labelling tools has revealed the importance of
the contribution presented in this paper, as there is no tool
that offers the capabilities that were sought. The proposed
architecture has been implemented in a lab-based realistic
5G infrastructure, showing how our contribution will fit in
such a real network infrastructure environment. It is com-
posed of two components: the Data Extractor Control Agent,
which is capable of extracting network features and writing
them in a CSV file in less than a half millisecond; and the
NetLabeller, a tool for visualising and labelling the network
datasets created. It is our intention in future work to develop
a deeper analysis of the metrics presented in this research
work, providing further insight into which metrics are most
relevant to the decision-taking process. Future work will also
further explore and evaluate the applicability of the proposed
architecture through the creation and implementation of an
Al model for network optimisation use cases. This Al model
will use the datasets extracted and labelled by the proposed
NetLabeller framework. Furthermore, it is our objective to
publish additional research publications, which will include
generated datasets. This endeavour aims to allow the research
community to have these valuable assets for further research
purposes and to validate it.
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