
“© 2023 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for
all other uses, in any current or future media, including reprinting/republishing this material for
advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.”

1

An eBPF-XDP hardware-based network slicing
architecture for future 6G front- to back-haul

networks
Pablo Salva-Garcia, Ruben Ricart-Sanchez, Jose M. Alcaraz-Calero, Qi Wang, Octavio Herrera-Ruiz

Abstract—The heterogeneous requirements imposed by differ-
ent vertical businesses have motivated a networking paradigm
shift in the next generation of mobile networks (beyond 5G and
6G), leading to critical operation competitiveness of improved
productivity, performance and efficiency. Furthermore, with the
global digital revolution, such as Industry 4.0, and a connected
world, network virtualisation together with high reliability and
high performance communications have become crucial elements
for mobile network operators. To minimise the negative effects
that could affect critical services, network slicing is widely
recognised as a key technology with the objective of meeting
the Service-Level Agreements (SLAs) and Key Performance
Indicators (KPIs) in future 6G networks. In this context, it
is essential to introduce a programmable data plane able to
enforce flexible Quality of Service (QoS) commitments, while
providing high-performance packet processing and real-time
monitoring capabilities. To this end, this paper is focused on
designing, prototyping and evaluating a novel framework that
leverages a set of hardware-based technologies including eXpress
Data Path (XDP), extended Barkeley Packet Filter (eBPF) and
Smart Network Interface Cards (SmartNICs) to offload network
functionality with the objective of providing high-performance
pre-6G front-, mid- and back-haul network communications and
thus, decreasing the overhead incurs by the Linux Kernel. The
proposed solution is implemented based on bypassing the Linux
Kernel and accelerating the communication, while providing
network slice control and real-time monitoring capabilities. The
main aim of this framework is to ensure network communi-
cations in forthcoming 6G infrastructures by guaranteeing 6G
KPIs and avoiding system overload. The empirical validation of
this solution for Industry 4.0 services as an example use case
demonstrates key performance improvements in terms of packet
processing as high as about 25Gbps, 20M packet per second,
0% packet loss, 0.1ms of latency and less than 10% load on the
CPUs.

Index Terms—6G, Programmable Data Plane, eBPF, XDP,
Network Slicing.

I. INTRODUCTION

THE beyond 5th Generation (B5G) and 6th Generation
(6G) mobile networks are expected to support advanced

capabilities that exceed those of current mobile technologies,
such as 4G and 5G, in order to accommodate highly de-
manding applications. [1]. Given the considerable challenges
and diverse requirements that these applications will place on

R. Ricart-Sanchez, P. Salva-Garcia, J.M. Alcaraz-Calero and Q. Wang are
with the School of Computing, Engineering and Physical Sciences, University
of the West of Scotland, United Kingdom, High St, Paisley PA1 2BE.

O. Herrera-Ruiz is with Netronome/Mira, 3159 Unionville Road, Suite 100,
Cranberry, PA 16066, Pensilvania, USA.

Manuscript received July 24, 2023; Accepted October 27, 2023.

Next-Generation Networks (NGNs) – including performance,
reliability, latency, connectivity, or throughput – It is essential
to equip future mobile network infrastructures with the nec-
essary capabilities to process network packets at high speeds
and manage Quality of Service (QoS) in a flexible manner to
ensure that specific Service Level Agreements (SLAs) can be
met. The importance of preparing next-generation networks for
a global digital revolution has been previously acknowledged,
and significant progress has been made to address this need.
The radio segment has evolved to new technologies, with
a shift from downlink-centric to uplink-centric and the use
of higher frequency bands from mmWave to THz. Uplink-
Centric Broadband Communication (UCBC) provides a 10x
increase in uplink bandwidth. These promising advances can
benefit industries and manufacturers through their transition
to future 6G networks, where the concept of the Internet of
Things (IoT) goes beyond the traditional sensors and other
technologies exchanging data, and focuses on a novel concept
called Industrial Internet of Everything (IIoE), whereby an
interconnected network is aggregated in IIoE to facilitate revo-
lutionary network services [2], [3]. While numerous advances
have been made in radio segments, it is crucial to similarly
evolve wired infrastructure segments. These must match the
growing capacity of radio networks and include mechanisms
that facilitate QoS management in network services delivery,
with an emphasis on front-, mid-, and back-haul network com-
munications. In response to this, the present research adopts
Transport Network Slicing, a concept which allows a set of
services, each with different needs, to operate concurrently
on a single network infrastructure [4]. Network slicing was
widely recognised as one of the key opportunities enabled
by 5G, and its exploration is projected to continue in future
network generations [5], [6]. Network slicing is a method
used to separate the existing network into various virtual
networks tailored to meet specific use case demands. This
partitioning provides network operators with the ability to
split their physical infrastructure into several virtual networks
(termed as multi-tenancy), where each one is allocated its
own dedicated resources and configurations. Through network
slicing, operators can achieve greater adaptability, increased
efficiency, and improved QoS in managing and delivering net-
work services. The slicing architecture proposed in our study
presents a novel framework that enhances network packet
processing and QoS management by allocating network traffic
among multiple isolated network slices. Every slice functions
as an independent network entity that delivers unique network

2

services and can be individually managed and scaled to meet
to the particular requirements of its associated applications.

However, while promising for enabling differentiated ser-
vices, network slicing also presents critical challenges in the
data plane that may result in low-performance scenarios if
the underlying infrastructure is not appropriately upgraded
and equipped with adequate packet-processing systems. In
virtualised network environments that support multi-tenancy,
network services are decoupled from the underlying infras-
tructure by encapsulating one packet within another packet
(Overlay networks), increasing the operational complexity of
network traffic processing and classification tasks. The high
system resource requirements for processing large amounts
of data in high-speed transmissions can lead to bottlenecks
and negatively impact the overall performance of the en-
tire mobile network. Therefore, there is a pressing need to
address these challenges and develop effective solutions to
ensure reliable and efficient network slicing in virtualised
network environments. As a response to this challenge, two
key concepts have emerged. The first concept is the Data Plane
Programmability (DPP), which allows network administrators
to fine-tune the behavior of network devices, such as switches
and routers, to better suit the needs of specific applications and
workloads. By implementing custom logic in the data plane,
network operators can achieve faster and more efficient packet
processing, as well as more granular control over network
traffic. The programmable data plane can be implemented
using various technologies, such as field-programmable gate
arrays (FPGAs), Smart Network Interface Cards (SmartNICs),
or software-based solutions. However, it requires specialized
skills and expertise to design and implement custom logic for
the data plane, and can also introduce additional complexity to
network operations. The second concept is network hardware
offloading, which has emerged to overcome the negative im-
pact of high workload on the host’s CPUs by delegating some
of the network-related tasks from a host’s software to special-
ized hardware components. Network hardware offloading frees
up CPU cycles that would otherwise be spent on network-
related tasks. This can significantly reduce CPU utilization,
resulting in improved system performance and scalability. The
aim of this research is to develop a solution for efficient packet
processing and classification, which will accelerate network
slicing in future 6G front-to-back-haul communications. The
primary objective is to meet the demanding Quality of Service
(QoS) requirements imposed by the future 6G use cases.
However, there are various challenges that need to be taken
into account to achieve this goal.

A. Support for encapsulated network traffic

With regards network hardware offloading, some Network
Interface Cards (NICs) are equipped with Receive Side Scaling
(RSS) technology that allows the NIC to distribute incoming
network traffic among multiple queues and their associated
processing cores in a system. The NIC generates a hash iden-
tifier for each incoming network packet. The hash is calculated
based on several packet header fields, such as the source and
destination IP addresses, source and destination ports, and

protocol type. The NIC then uses this hash value to assign
the packet to a specific receive queue, which is associated
with a particular CPU core. By spreading the workload across
multiple cores, RSS can help prevent performance bottlenecks
and improve the overall efficiency of a system’s network
processing capabilities. In the context of this research work,
RSS can be also used to forward network traffic related to a
specific services or applications to dedicated queues to achieve
network slicing. However, the default RSS algorithms used in
many network interface cards (NICs) have limitations. These
algorithms can only examine a few header fields in each packet
to generate a hash identifier, and are unable to perform deep
packet inspection. In virtualized multi-tenant scenarios, such
as those found in B5G and future 6G networks, traffic can
be deeply encapsulated, making it necessary to explore inner
protocols to differentiate among different network operators
or service applications. This can cause all incoming network
packets to be considered as a single flow by the NIC (same
hash identifier), resulting in packets not being distributed
across different receive queues and CPUs, which can lead
to bottlenecks and CPU starvation. Thus, it is crucial to
establish a mechanism for programming network cards with
algorithms capable of inspecting, classifying, and processing
high-depth encapsulated network traffic in order to effectively
utilize multi-queuing network cards. This research utilizes
the extended Berkeley Packet Filter (eBPF) to create ad-hoc
network traffic filtering programs with encapsulation support,
which can be offloaded to the Agilio CX SmartNIC using the
eXpress Data Path (XDP) architecture.

B. Kernel Network Stack Limitations

While network hardware offload techniques can help alle-
viate some of the processing load on the CPU and improve
overall network performance, the Linux network subsystem
is still responsible for forwarding the packet to its final
destination. When a packet arrives at the kernel network stack,
it goes through several processing stages, including protocol
processing and socket buffering. Here, a potential bottleneck
can occur in the socket buffering stage, where incoming
packets are stored in buffers before being processed by the
application. If the buffer sizes are not properly configured, or if
the application is not able to process packets fast enough, this
can lead to packet drops and reduced network performance.
This behaviour can be observed in our previous work [7] where
authors had to overcome such limitation by forwarding packets
to other servers for processing since the system’s network
stack was not able to cope with high-rate packet processing.
In this research, we collaborated to develop, integrate, and
evaluate an XDP-based kernel bypass technique (AF XDP) for
the Netronome Flow Processor (NFP) driver. This approach
enables network packets already processed at the hardware
level to be forwarded by the driver to their final destination
without incurring processing penalties from the kernel network
subsystem. While there are other smartNICs that support
kernel bypass at the driver level, this is the first time, to
the best of our knowledge, that both XDP-based techniques,
hardware offload, and driver AF XDP are combined into

3

the same smartNIC architecture to achieve high-performance
packet processing and transport network slicing capabilities.

C. Next-generation Networks compatibility

As previously stated, programming the data plane is a
complex task that requires specialized skills from network
administrators, who would be required to create custom con-
figuration programs with specific capabilities for each new
application that is added to the system. This process can
cause delays in the network operations. In contrast, NGNs
are designed to provide dynamic resource allocation and on-
demand service delivery through advanced technologies such
as Software Defined Networking (SDN) or Network Function
Virtualisation (NFV). As such, to align with the current
approaches of NGNs, it is necessary to develop a solution
that supports flexibility and on-demand capabilities. This re-
search proposes a user-friendly DPP network application that
simplifies the programming of the data plane. The application
provides both control and monitoring capabilities and can be
easily deployed on-demand. Its flexible configuration can be
adjusted to meet the needs of various use cases. By hiding the
complexity of programming the data plane, this application
simplifies the network administration process, making it more
accessible to users with different levels of expertise.

D. Flexibility to Accommodate Diverse Scenarios

This research proposes a solution that is compatible with
current 5G technologies, but future 6G use cases are expected
to demand even higher Key Performance Indicators (KPIs) due
to their need for ultra-low latency, high reliability, and massive
connectivity. Saad et al. [1] emphasise that 6G networks will
converge technological trends driven by underlying services,
necessitating enhanced requirements and KPIs compared to
5G and beyond 5G networks. These use cases include real-
time and mission-critical applications like autonomous driving,
smart factories, and remote surgeries, which require large
amounts of data and complex network topologies, posing
significant challenges for meeting KPIs effectively. To ensure
our solution can handle overload situations in future 6G front-
to back-haul networks, we have empirically validated it with
pre-6G use cases, particularly those related to Industry 4.0
(I4.0) services.

This paper demonstrates how combining eBPF-XDP with
AF XDP and eBPF-XDP hardware offloading technologies,
all of which are supported by the Agilio CX SmartNIC, can
substantially enhance network performance in NGNs architec-
tures while simultaneously enabling the selective customiza-
tion and classification of network traffic in a flexible manner.
To be concrete, this work leverages these technologies to
accelerate the wired network segments inside the cloud service
provider with the aim of accelerating network communications
in the forthcoming 6G networks, maximising the resources
of the system without overloading the CPUs to ensure an
excellent optimisation of network processing tasks. This work
provides a solution that meets the demanding requirement of
I4.0 in future 6G networks, and presents several use cases
where this solution could be successfully applied to. To this

end, the solution proposed has been validated by performing
an intensive empirical validation, which demonstrates the
viability of this work and also fulfils demanding KPIs expected
in future 6G networks.

The rest of the paper is organised in the following sections.
Section II presents an exhaustive analyses of the current
literature review of different software and hardware network
data path technologies. Section III attempts to define the key
components of a pre-6G network in a I4.0 scenario. Section
IV outlines several novel 6G networks use cases. Section V
depicts a detailed representation of the framework architecture
created to fulfill the ambitious requirements of the next-
generation of networks. Section VI presents a holistic view
of the testbed implemented and also an empirical validation
of the solution to illustrate the findings. Finally, Section VII
summarises the present work and outlines the future research
work.

II. LITERATURE REVIEW

In this section, a comprehensive review of the relevant liter-
ature is presented, focusing on packet processing techniques.
Specifically, and aligned with the scope of this research work,
this review categorizes these technologies and implementations
into two main groups: kernel bypass and hardware offloading
technologies, providing an in-depth analysis of each.

A. Kernel Bypass Technologies

The interface between the kernel of the system and the
user-space applications are usually the main sources of perfor-
mance bottlenecks. Vanilla Linux can only efficiently handle
around 1Mpps, which is far from the expected 6G KPIs,
where minimum throughput required is 10Mpps [8]. Kernel
bypass technologies aim to tackle this by avoiding the use of
expensive context switches introduced by the kernel network
stack. One of the most popular kernel bypass solutions is
Data Plane Development Kit (DPDK) [9] that consists of
a set of libraries to accelerate packet processing workloads
and available on a wide range of CPU architectures. In
this solution, a user-space application takes control of the
networking hardware while the Operating System (OS) is
bypassed. Snabbswitch [10] is a networking framework writ-
ten in Lua language and mainly indented for writing L2
applications. This framework is very similar to DPDK since
both are full framework and rely on Universal Input Output
(UIO). Netmap [11] is not implemented using UIO techniques,
but using a couple of kernel modules. However, it is not
integrated with networking hardware and it requires drivers
customisation. PACKET MMAP [12] is not strictly a kernel
bypass technique, however it is used to efficiently capture
network traffic using very limited buffers and one system call
improving the efficiency of packet raw transmission. PF RING
[13] is a type of network socket that allows to speed up the
packet capture. This tool polls the packets from the NIC using
the Linux NAPI allowing interrupt mitigation for networking
devices. EF VI [14] allows to send and receive raw Ethernet
frames directly from user-level, reducing the CPU overhead
and thus, increasing the performance. However, the user has

4

to implement the upper-layer protocols by himself. AF XDP
[15] uses XSK sockets to transmit the raw network frames
from the NIC to the user application layer and it is optimised
for high performance packet processing. In this tool, each
socket is associated with a RX and a TX ring. To transmit
the packets, these rings use a data buffer in a memory area
called a UMEM, which is described as a region of virtual
contiguous memory divided into equal-sized frames. Contrary
to the previous solutions, AF XDP is integrated with eBPF-
XDP, which is part of the mainline Linux kernel. In addition,
eBPF-XDP allows to program the data plane in different
contexts such as hardware offloading or network driver, among
others. However, to the best of our knowledge, as of now, the
driver of Agilio SmartNICs (Netronome), the only SmartNICs
that currently support eBPF-XDP hardware offload, did not
support AF XDP. This made it impossible to combine both
implementations of hardware offloading and kernel bypass in
the driver via AF XDP. For the purpose of this research work,
the driver of this SmartNIC has been extended to integrate the
requiredd AF XDP functionalities.

B. Hardware Offloading Technologies

Programmable hardware provides constant access to mem-
ory, which implies that when number of filtering rules are in-
creased there is no extra access memory time overhead associ-
ated, thus allowing more specific latency control. Furthermore,
genuinely hardware devices have superior processing speed
than software data planes, which implies faster transmission
rates. In recent years, Xilinx has provided different FPGA
and SmartNICs with high-performance capabilities for both
trading environments and enterprise data centers, including
artificial intelligence, big data, analytics, hyperscale, machine
learning, storage, and telco applications [16], [17], [18], [19],
[20], [21]. These cards are designed to meet the demanding
requirements of modern data centers with internal pipeline
Static Random-Access Memory (SRAM) bandwidth of up to
30TB/s and physical network interfaces of up to 100GbE.
However, there are two important concerns with these cards,
the first one is the high price and the second one is the
private property of the Software Development Kit (SDK)
and driver. Intel has introduced SmartNIC solutions to pro-
vide high-performance and low-latency connectivity for NFV
infrastructures, including Virtualised Radio Access Network
(vRAN) solutions [22], [23], [24]. But again, due to their
high cost and proprietary source code, network administrators
and academics in the networking field may not view them
as the most attractive option. NetFPGA [25] is an open
source, line-rate and flexible platform, which is able to provide
network transmissions up to 100Gbps. Furthermore, this card
can be programmed using P4 [26] or VHDL [27]. However,
as it has been demonstrated in [28], [29], [30], [31] and
due to the SUME RIFFA driver drawbacks, the performance
achieved by NetFPGA based solutions does not meet the future
6G networks KPIs. Netronome[32] and Corigine [33] offer
an Agilio SmartNIC and software that delivers unmatched
efficiency for server networking, including functions such as
overlays, telemetry or security. Netronome and Corigine offer

 VXLAN

Netronome

Sensor Actuator Sensor Actuator

Production line 1 Production line 2

Atenna

RU

DU

CU CU

UPF

Atenna

UPF

DU

Physical
Machine

RU

Cloud
Service
Provider

Communication
Service
Provider

 IP

CPRI

Virtual Switch

Virtual Switch

 GTP

Network Interface

Physical Machine

Virtual Machine

Data

 IP Data

 GTP IP Data

Sensor Actuator Sensor Actuator

Netronome

Physical
Machine

IAScada Server CCTV
Service Automatisation

Monitoring
Service

PLC

Fr
on

t-h
au

l
M

id
-h

au
l

Ba
ck

-h
au

l

V

V V

2 3

4

5

7

6

8

1

Fig. 1: Multi-tenant beyond 5G and 6G architecture prototype

an SDK that enables programming of their SmartNICs using
P4 or constraint C language. These SmartNICs are reasonably
in price and their firmware, as well as their NFP drivers, are
open-source. In addition, this hardware supports eBPF-XDP
hardware offloading, making it highly desirable in terms of
hardware programmability and flexibility. Although the NFP
driver does not provide genuine AF XDP support to bypass
the Linux kernel, through collaboration with Netronome and
Corigine, this capability has been integrated into the NFP
driver. As a result, here is proposed a novel approach that com-
bines both hardware offload and kernel bypass (via AF XDP)
techniques for processing complex overlay networks in pre-6G
scenarios.

III. MULTI-TENANT PRE-6G ARCHITECTURE OVERVIEW

Figure 1 shows a multi-tenant beyond 5G and pre-6G archi-
tecture for an I4.0 setting. To enhance the readability of the
following description, various labels with numbers have been
inserted throughout this figure. Label 1 shows that multiple
production lines are connected to a communication service
provider (CSP). These production lines belong to different
virtual mobile network operators. The CSP facilitates wireless
communication between sensors and actuators through the use
of Multiple Input Multiple Output (MIMO) antennas, Radio

5

Units (RU), and Decentralised Units (DU), which are labeled
in figure 1 as 2, 3, and 4, respectively. RUs are responsible
for converting digital data into radio signals that can be
transmitted wirelessly through the air to user devices. DU
is a physical component allocated close to the RU and runs
the Radio Link Control (RLC), MAC and also some parts
of the physical layer, and its operation is controlled by the
Centralised Unit (CU). The connections from the RU to the
DU, from the DU to the virtual CU (vCU), and from the vCU
to the core network are referred to as the front-haul, mid-haul
and back-haul, respectively.

The core of the architecture is controlled by the cloud
service provider, which offers a distributed and virtualised
network architecture where physical computers are shared
among various virtual network operators. The cloud service
provider’s segment comprises various components, including
virtualized CUs (vCUs), virtualized User Plane Functions
(vUPFs), and vertical services. These components are labeled
5 and 7 in Figure 1, respectively. vCUs allow the users
communication between the communication service provider
and the cloud and therefore, allowing users to access to the
core network segment. The vUPFs, apart from forwarding the
user data through the network data path, are also in charge
of user mobility, authentication, handover management, user
registry, and so on. The vUPF forwards the user traffic from
the vCU to different vertical services (as seen in label 8),
which have different user needs and demanding SLAs which
are accomplished by the implementation of advanced network
slicing policies. An extended and comprehensive description of
the operations in each of the components described is provided
in more detail in [34].

The architecture depicted presents a hybrid software/hard-
ware approach, based on separated forwarding devices with
the objective of achieving high performance connectivity and
advanced network slicing support between hardware and soft-
ware components of a pre-6G infrastructure. Label 6 in Figure
1 identifies the SmartNIC responsible for forwarding network
traffic between the vCUs and the vUPFs. This SmartNIC
offloads network data path handling, control, and monitoring
functions, creating a slicing-friendly environment with support
for pre-6G networks. By doing so, the aim is to optimize
network communication performance while preserving the
flexibility provided by software components.

The infrastructure presented provides flexible data paths
with hardware-based control and monitoring capabilities, and
software sockets using kernel-bypass mechanisms, which al-
low network traffic acceleration from the hardware device to
the Network Function Virtualisation (NFV). This paper uses
an Agilio CX SmartNIC-based high-performance control and
monitoring programmable data path to support 6G advanced
network slicing and offload generic storage designed for the
cloud service provider with the objective of meeting the
demanding KPIs imposed by 6G networks vertical use cases.
In the cloud service provider network segment, the network
packets are received and sent from and to sensor and actuators,
respectively, are encapsulated by the CU using GPRS (Gen-
eral Packet Radio Service) Tunneling Protocol (GTP). This
protocol allows network mobility along different locations.

TABLE I: Use cases key performance requirements
Use case E2E Latency Reliability Bandwidth Packet Size Slice config

(1) <0.1ms 10−8 <100Mbps <1500B <1s
(2) <33ms 10−6 <3Gbps <1500B <1s
(3) <0.15ms 10−6 <10Gbps <300B <1s
(4) <0.5ms 10−5 <10Gbps <132B <1s
(5) <0.1ms 10−6 <10Gbps >200B <1s

In addition, the virtual switch also creates a second tunnel
to provide network traffic isolation among virtual network
operators, and therefore to allow logical separation of network
resources. While there are various network protocols that can
be utilized to create such tunnels, the Virtual Extensible LAN
(VXLAN) was specifically chosen for the experiments con-
ducted in this publication. The proposed architecture outlined
in this manuscript offers several advantages, such as the ability
to use different logical paths using AF XDP and Agilio CX.
Additionally, it provides real-time monitoring metrics while
meeting the demanding KPIs required by future 6G networks.

IV. PRE-6G USE CASES

This research targets to develop a high-performance and
programmable data plane that is capable of dynamic control,
monitoring, and network slicing. To validate its feasibility,
a set of demanding and novel use cases, specifically those
in the context of Industry 4.0, have been selected. Through
this validation, KPIs such as data latency, reliability, and
bandwidth will be carefully considered. The objective is to
ensure that the data plane (from the front-haul to the back-
haul) of future 6G networks can support these advanced use
cases with the necessary performance and efficiency. These
use cases are based on those available in the deliverable 2.1 of
the 6G-BRAINS project[35] and their requirements are listed
accordingly in Table I.

A. Use Case (1): Offloading of Programmable Logic Con-
troller (PLC) Control Functions to the Edge

Fixed machine controllers like PLCs are aim to be replaced
by soft controllers running in virtualised environments to
provide the level of flexibility of the software and hardware
components involved in factories. The communication network
between novel virtualised components and machined compo-
nents is a critical element for the successful traffic transmission
in 6G scenarios and the control methods associated. The pos-
sibility of offloading the PLC control function to an edge, by
running these as containers or virtual machines, provides more
flexibility for controlling the production process in industry
4.0. The communication between the virtualised controllers
and the machine components requires low latency and high
reliability provided by applying network slicing strategies in
order to guarantee deterministic communication that should
support low industrial application cycle times and very precise
synchronicity. Key performance requirements associated to
this use case are described in Table I, row (1).

B. Use Case (2): Smart Transportation Vehicles: Localisation
and Video Processing Offloading

Automated Guided Vehicles (AGVs) are key contributors
for the I4.0. While state of the art factories are still based on

6

hand labour or semi-automated machines, the factories of the
future are investing on novel AI-based AGVs. This approach
entails an increment of the overall factory performance, which
is associated with a positive outlook for the company’s profits.
AGVs are great assets in I4.0, taking care of such tasks
like driver-less and autonomous transport of both goods and
materials from and to production lines. Furthermore, these
vehicles can carry robot equipment to facilitate the assembly
process by picking and placing parts using a gripper arm
thanks to the sensor mounted on the AGV. It means that with
low initial and recurring effort, AGVs significantly improves
factory efficiency.

This use case can be divided into two important AGV
features: a) Video capturing using a AGV on-board camera
streaming the video to an edge computing node for object
detection and decision making; b) Indoor and outdoor au-
tonomous navigation based on a real time decisions algo-
rithms.

High-quality video cameras are used to transmit the video
from the AGV to the Edge node of the 6G network archi-
tecture, where the video is analysed and the decisions are
made. This video transmission requires an efficient network
architecture behind which ensures an optimal communication
with high data rate requirements, consuming up to 3Gbps per
camera in a transmission of approximately 130 uncompressed
HD frames. With this use case the data rate requirements, the
ultra-high precision and the decision making are analysed with
respect to the current state of the art technologies in order to
meet the KPIs described in table I, row (2).

C. Use Case (3): Advanced Network Slicing

The uses cases previously described mostly represent a
single type of traffic and no prioritisation techniques a strictly
required apart from isolating the management and control
traffic from the application communication. However, it is
common to share communication resources of different appli-
cations in the same environment. In some I4.0 environments,
the requirement between different use cases can dramatically
vary and therefore, advance network slicing techniques should
be established in order to efficiently guarantee the KPIs of
the different use cases. These techniques address the highly
dynamic and heterogeneous traffic control requirements and
also guarantee real-time QoS for the I4.0.

Advanced network slicing provides flexible and customised
E2E guaranteed QoS for divergent customer requirements. It
enables the definition of on-demand highly flexible network
slices with several granularity levels based on the network
data communication. In order to be highly available and
effective, the network slice instantiation time should be less
than 1 second. In a complex industrial environment, where
different use cases co-exist over the same network, intent-
based network slicing management facilitates the management
tasks and guarantees the corresponding QoS for independent
network traffic communications. This allows the compliant
of the SLAs in complex and critical I4.0 scenarios using
6G network architectures. The demanding requirement of
advanced network slicing are described in table I, row (3).

D. Use Case (4): Animal Tracking in Indoor Farming Scenar-
ios

Smart farming refers to the evolution from conventional
farms to IoT-based farming, using modern information and
communication technologies to increase both, quality and
quantity of the production while human interaction is reduced
to optimal levels. This optimisation can be carried out in
different aspects; however, this use case is focus on animal
tracking in indoor farming scenarios. Farm animals, such as
cows, pigs or chickens, wear collar that monitors animal’s
activity, well-being and health and if anything is that could
affect to animal welfare is detected, the farmer and regulatory
bodies are immediately notified. Monitoring data is transmitted
to the Edge computer node, where an AI agent processes the
mobility and health data of the animal in order to guarantee
its well-being and health. The KPIs associated with this use
case are described in table I, row (4).

E. Use Case (5): Airports Service and Baggage Handling
Robots

This use case presents a 6G automated baggage handling
system using Automated Guided Vehicle (AGV) robots for
carrying passenger luggage between baggage handling con-
veyor belt locations in airports. Video live streaming of objects
in path of service robots and AGVs is used in order to
perform object recognition and collision avoidance of objects
in their paths. When the passenger arrives at an airport, the
luggage is dropped in the check-in line and an AGV takes
the luggage that has just been self-checked in and carries
it to the right conveyor belt for it to be transported to the
destination aircraft producing an automated and sustainable
baggage sorting system with minimal amount of baggage
handling staff. High reliability and low latency communication
is necessary to perform this use case, with the purpose of
live streaming communication and real time AI detection
and actuation. The demanding communication requirements
needed by this use case are described in table I, row (5).

V. PROTOTYPING PLATFORM AND IMPLEMENTATION

The following subsections present a detailed description
about the proposed framework architecture, the algorithm
implemented and the prototyped implementation used to guar-
antee high-performance and high-reliability communications
in 6G front- to back-haul networks.

A. XDP-based Agilio CX SmartNIC reference data-path

This study is based on the Agilio CX SmartNIC plat-
form, which provides a transparent offload SmartNIC with
a programmable data path widely integrated with XDP and
DPDK via a Netronome Flow Processor (NFP) driver, with a
maximum processing rate of 25Gbps. The proposed solution
has been created using XDP, eBPF and a custom version of
the NFP driver. The Agilio CX SmatNIC has a NFP-4000
processor and also includes 60 programmable flow processing
cores, 48 packet processing cores, PCIe Gen3 2x8 interface
with RX and TX channels, and 2xSFP28 25GbE physical

7

interfaces. The SmartNIC uses the Agilio eBPF firmware in
order to implement the XDP both offloaded and at the driver
level. The solution implemented works with up to 16 hardware
queues, directly attached each of them to a XSK socket,
which delivers the traffic from the card to the user space. For
this implementation, a customized version of the NFP driver
provided by Netronome and Coregine was used specifically for
the scope of this research, which provides AF XDP support.
AF XDP is an address family that is optimised for high
performance packet processing by creating XSK sockets [15].
The novelty of this implementation comes from different
aspects: (1) the offloaded and programmable pre-6G data path
implemented with multi-tenancy support, (2) The offloaded
high-performance real-time monitoring tool, (3) The offloaded
control capabilities to provide advance network slicing and
traffic filtering and (4) a custom version of the NFP driver
to provide XSK sockets support and therefore, improving the
performance of the Linux kernel based implementation. To
the best of our understanding, this is the first time that it
is approached a solution that combines hardware offloaded
capabilities and kernel by-pass techniques using the same
network card to enhance high-performance communications
in the transport network segment in pre-6G network architec-
tures.

B. Proposed framework architecture
Figure 2 represents the internal architecture of the frame-

work implemented in this work. This framework is divided into
three parts: the hardware, using a Agilio CX SmartNIC; the
Linux kernel space, where hardware and software interruptions
are handle; and the user space, which is the closest part to
the end user. In this figure, the dotted red lines represent the
control plane and the blue line refers to the data plane.

The SmartNIC contains a custom XDP offloaded firmware
and two different eBPF hardware maps: one for control and
one for monitoring purposes. These key/value maps are able
to allocate over to 2 million rules each and have constant
memory access time. In the control map, each rule contains
a 32 bits key and a 32 bits value, which is divided into 16
bits to represents the action and 16 bits to indicate the output
value of the action if required (E.g., set to a specific rx queue).
Each rule of the monitoring map also contains a 32 bits key
and a 64 bits value, divided into 32 bits for the packet length
and 32 bits to represent the number of packets matched by this
specific rule. The XDP offloaded firmware, represented in grey
in the figure, can be divided into three different components,
the pre-6G parser, the logic where the hardware maps are
check and the output decision is made. The pre-6G parser
is in charge of processing the network flows and extracting
the required meta-data. This information is used to calculate
a hash identifier, which will be used later by the matching
module. The matching module compares the hash identifier
with those stored in the ePBF control map to determine the
appropriate action to take for the network packet. Depending
on the comparison result, the matching module can take one of
three actions. It can forward the network packet to a specific
hardware queue, drop the packet, or pass the packet to the
kernel network stack through the default queue.

Libraries

Kernel SpaceKernel bypass

DPP Network Application

MonitoringControl

Monitoring MapControl Map

set rx_queue

XDP_DROP

XDP_PASS

6G Parser Check HW
Map

Custom

NFP Driver

offload MAP
access

Build XSK
socketsNative XDP

Network Stack

Generic XDP

Queue Disciplines

Virtual devices

Network, transport
and socket layers

AF_XDP

Rx0 Rx1 ... Rx15

XSK_Sockets

Virtual Services
and Applications

VNF App

User Space

XDP

Offloaded

Data Plane

Fig. 2: Proposed framework architecture

Once the network packet reaches the kernel space, it is pro-
cessed by the network stack, which contains a custom version
of the NFP driver that allows for socket forwarding at the
driver level. Typically, the public NFP driver uses the network
stack to transmit data from the hardware card to the user
space. However, after analyzing the results obtained in [7],
which used an RSS queue discipline to transmit data through
the network stack, it became clear that the performance of
this solution did not meet the KPIs of future 6G networks.
The bottleneck in the network stack was identified as the
cause of this poor performance. To address this issue, the
research team proposed a novel and customized version of the
NFP driver. This driver leverages AF XDP and XSK sockets
to bypass the network stack and accelerate communication
between the SmartNIC and the user space. The customized

8

driver implementation supports up to 16 sockets and allows
access to the hardware control and monitoring maps. It also
provides a flexible data path with Native XDP support. By
using this customized driver, the research team was able to
achieve improved performance and efficiency compared to
a more generic driver, enabling the data plane to meet the
demanding requirements of 6G networks.

At the user space level, two main components are present:
the Data Plane Programmability (DPP) network application
and the virtual services and applications. The DPP network
application provides control and monitoring tools, while the
virtual services and applications comprise various network
services and applications included in the network data plane.
Several libraries, such as Libbpf [36] and XSK [37], facilitate
communication between these user applications and the kernel
space. Control applications are responsible for inserting and
removing network rules to and from the hardware control
map. In contrast, the monitoring user space application not
only inserts and removes rules from the monitoring map
but also collects real-time statistics and useful information
stored in this map by the hardware pipeline. The monitoring
application provides real-time metrics of the network traffic
processed by the Agilio CX SmartNIC, such as packets per
second processed per socket, the number of packets received/-
transmitted, and packet size. This information is vital for
network administrators and users alike, providing insight into
the performance of the network.

C. Slice definition: End-user and Slice management overview
While this study explores eBPF-XDP based solutions for

controlling and programming the data-plane of Transport
Network Slices, it is important to note that this is part of a
larger architecture design with capabilities to monitor, manage,
and orchestrate network slices [35]. In-depth information on
the necessary components to support the management and
life-cycle of slices can be found in [38]. Moreover, our
research in [39] presents the integration process between
the Open Network Automation Platform (ONAP) and this
slice manager within the European 6G Brains project. This
research comprehensively covers the workflows for creating
Service Instances and the instantiation of Slices, providing
a practical perspective for end-users. For a deeper under-
standing, we recommend referring to the 6G Brains’ project
deliverable D5.2 [40]. For the sake of simplicity, we have
omitted those steps here and instead, we directly illustrate the
message received at the Data Plane Programmability (DPP)
application. To illustrate, Listing 1 shows a slice definition
message received by the DPP (refer to Figure 2). The message
details a specific service, which is defined as a set of network
properties outlined in the ”Resources” section. The message
also contains slice configuration attributes such as service
priority, Maximum Allowed Bandwidth (MAB), and Minimum
Guaranteed Bandwidth (MGB). With this message, the DPP
has enough information to process and create the necessary
packet metadata structures (see listing 2) and their respective
hash identifiers. Similarly, the property ”priority” is used in
the eBPF program (see algorithm 1, line 10) to to indicate the
target rx queue for this service.

Listing 1: Intent-based Message (simplified version)
{
"Resources": [{

"resourceId": "F8A4C949",
"encapsulationID1": "00000445",
"encapsulationType1": "vxlan",
"srcIP": "146.191.50.26",
"dstPort": "4789",

},{
"resourceId": "B6E6B2B3",
"encapsulationID2": "8894D0D4",
"encapsulationType2": "gtp",
"srcIP": "10.100.0.19",
"dstPort": "2152",

}],
"Intent": {
"flowAgentName": "XDP-based"
"actionType": "INSERT",
"actionName": "CREATE_SLICE",
"slice_id": "03E8",
"priority": "1",
"MAB" : "12000000",
"MGB" : "10000000"

},
"Params": [{
"paramName": "interfaceName",
"paramValue": "eth0"
}]

}

D. Slice definition: Proposed model, policies and logical
implementation

In this study, we adopt the Transport Slice definition put
forth by the Internet Engineering Task Force (IETF) [4].
According to this definition, the underlying transport network
must be capable of dynamically configuring its network de-
vices through controllers to provide transport transmissions
that meet some or all of the Service Level Objectives (SLOs)
for all traffic or specific flows in the slice. To achieve this,
we utilize the DPP Network Application (Figure 2). This
application enables us to configure network devices on demand
by programming the underlying smartNIC with a customized
eBPF algorithm and control maps. This approach allows for
control communication between user space, kernel, and hard-
ware via eBPF syscalls. The Linux source code defines eBPF
maps using enum bpf map type in /usr/include/linux/bpf.h. To
store information about the slice definition of each network
flow, including its pre-calculated flow hash identifier and the
specific queue where it should be associated, we use the
BPF MAP TYPE HASH map type. Each entry in this data
structure is referred to as a ”control rule” in this study. This
ensures that the eBPF maps are optimized to handle the
specific characteristics of the network traffic, thus enabling
efficient control and management of network flows.

Listing 2: Packet metadata structure
struct pkt_meta {

__u16 out_macsrc[3];
__u16 out_macdst[3];
__u16 in_macsrc[3];
__u16 in_macdst[3];
__u16 out_ethproto;
__u16 in_ethproto;
__be32 out_ip4src;
__be32 out_ip4dst;
__be32 in_ip4src;
__be32 in_ip4dst;
__u8 out_ip4proto;
__u8 in_ip4proto;
union {

9

__u32 out_ports;
__u16 out_port16[2];

};
union {

__u32 in_ports;
__u16 in_port16[2];

};
__u32 vni;
__be32 teid;
__u32 ethercatid

};

Algorithm 1 eBPF-XDP packet steering algorithm for 6G
networks

1: struct pkt meta;
2: procedure XDP PROG(pkt)
3: pkt meta ← parse headers(pkt);
4: hash ← calculate hash(pkt meta);
5: control entry ← control map.lookup(hash);
6: if control entry != NULL then
7: if control entry.action == 0 then
8: return XDP DROP
9: if control entry.action == 1 then

10: pkt.rx queue ← control entry.queue
11: else
12: return XDP PASS
13: monitor entry ← monitor map.lookup(hash);
14: if monitor entry != NULL then
15: monitor.update(hash,pkt meta,1)
16: return XDP PASS;

Algorithm 1 shows the XDP offloaded pipeline logic imple-
mented inside the Agilio CX SmartNIC using C language. This
algorithm allows traffic classification, filtering and steering
while accelerating the network segment it represents. This
algorithm allows to dissect double encapsulated pre-6G net-
work traffic extracting the metadata required to create a unique
hash, which is used to distribute the network flows among
the different XSK sockets, guarantying the acceleration of the
traffic between the network card and the user space. From the
point of view of the SmartNIC, when a packet arrives to the
physical interface, the offloaded eBPF program captures the
packet and starts extracting the packet headers (lines 3). This
routine parses and analyses every single bit of the incoming
packet and extracts the information required to complete the
pkt meta structure shown in listing 2. This data structure
contains the information required to identify a pre-6G network
flow, including inner and outer MAC, IP addresses, ports,
link protocols, transport protocols, and also, VXLAN and
GTP identifiers. This data is used to calculate a 32 bits long
hash (line 4), which unequivocally and individually identify an
incoming network packet. This hash is used to check if there
is any entry in the control map that matches it (line 5 and 6).
If so, the rule is checked and the action value is obtained. If
the action value is 0 then the packet is dropped (line 7 and
8). However, if the action value is 1, it means that the packet
is transmitted to a XSK socket to be sent to user space (line
9). To do so, the value of the output queue/socket is obtained
from the control rule and the packet configuration metadata is
updated with this value (line 10). In the event that there is no

CU

Production Line
Traffic Emulator

PCI 03:00.0

NFP Driver

Ke
rn

el
 b

yp
as

s

2

NFP DriverXDP Offload
XDP Driver

Ke
rn

el
 b

yp
as

s

R

X/
TX

 A
F_

XD
P

So
ck

et
s

3

4 5

6

7

Server 1 Server 2

8 1

ens6np0

PLC

Fig. 3: Implementation of the performance evaluation testbed

control rule that matches the hash value, the packet is sent to
the user space using the default queue/socket (XDP PASS),
which is the 0 (line 12). If the packet has not been dropped,
the monitoring map is checked to see if there is any rule that
matches with the hash of the incoming packet (line 13). If there
is a rule that matches with the hash of the incoming packet
(line 14), then the rule is updated by adding the information of
the current packet processed, and increasing by 1 the packet
counter (line 15). Finally, the packet is transmitted to user
space (line 16) using the output queue previously selected in
line 5.

VI. EMPIRICAL VALIDATION

A. Experimental setup

This section describes the experimental setup used to carry
out the empirical validation of the framework proposed, as
illustrated in Figure 3. For the development of this exper-
imental environment, a cloud service provider architecture
has been replicated using two physical servers, one allocat-
ing the CU and the second one with the UPF and vertical
services. The two separate physical servers have the same
specifications: CyberServe XE5-212S v4, X10DRi-T, Dual
Intel 10GbE LAN, 2TB SATA 7200RPM and Intel Solid-State
Drive DC P3600 Series 1.2TB. In addition, both server 1
and 2 have a Agilio CX 2x25GbE SmartNIC. With regards
to software specifications, both servers have an operating
system Ubuntu 21.04 (hirsute) with a Linux kernel 5.11.0-40-
generic. Furthermore, a customised version of the NFP driver
with AF XDP sockets support is running in both servers.
Server 1 has a CU developed in a Linux Container and
using OperAirInterface [41]. In addition, it also contains a
product line traffic emulator using DPDK 21.02.0 and Pktgen
21.03.1. Server 2 has a customised XDP offload firmware
instantiated in the SmartNIC, the AF XDP sockets by-passing
the kernel and different emulated vertical services using Linux
containers. The XDP firmware implements a new pipeline
with support for 6G networks and with control and real-time
monitoring capabilities. Both servers are connected using an
Avago 25GBase-SR SFP28.

10

The following text summarises the steps followed to per-
form the execution of the experimental setup shown in Figure
3:

1) On server 1, there is a tool called the product line traffic
emulator that acts as a sensor and generates network
traffic by transferring video from a physical device to
the vertical service. To emulate the sender, the tool uses
Pktgen, which is deployed inside the CU. The traffic is
emulated using double-encapsulated and transmits Real-
Time Protocol (RTP) video frames..

2) On Server 1, network traffic generated in the CU is trans-
mitted directly to the SmartNIC, bypassing the Linux
kernel for transmission. To make this communication
possible, DPDK has been used.

3) On Server 1, the SmartNIC consumes traffic from the
CU via the PCI slot 03:00.0 and forwards it to Server 2
through its physical interface. The traffic can be trans-
mitted at speeds of up to 25Gbps in optimal conditions.

4) After being transmitted through the PCI slot on Server 1,
the traffic is received on Server 2 through the interface
ens6np0. The SmartNIC then processes the traffic using
an offloaded pipeline, matching the packet metadata
against rules stored in the control maps to determine the
appropriate action. Additionally, the monitoring hard-
ware map is updated with information about the incom-
ing traffic, which is used later for performance analysis.
If the traffic doesn’t match any rules, it is discarded.
However, if a rule is matched, the traffic is forwarded
to the vertical service using an AF XDP socket, by-
passing the Linux kernel for improved performance. It’s
worth noting that this behavior is not supported by the
upstreamed NFP driver, and is an innovation of this
research work.

5) Next, the network traffic is finally received by the ver-
tical service, where the target application processes the
traffic accordingly. Additionally, the vertical service also
gathers metrics from the SmartNIC hardware monitoring
maps and updates control rules as needed.

6) Once a decision has been made and the network flow
has been modified by the vertical service introducing
the action parameter in the payload of the packet, this
network flow is sent back to the SmartNIC using the
same AF XDP socket and bypassing the Linux kernel.

7) The network flow is forwarded to the Server 1 using the
physical interface ens6np0.

8) The SmartNIC allocated in Server 2 sends the network
traffic to the CU.

9) Finally, the network flow, which contains the decision
taken by the vertical service, is received by the produc-
tion line emulator which perform the associated action
accordingly.

B. Results

This section empirically validates the accelerated data path
for pre-6G networks proposed in this manuscript. The goal
here is to demonstrate that the demanding vertical services
related to future 6G networks and I4.0 use cases meet the

necessary quality of service (QoS) and performance require-
ments. This is achieved by providing high reliability and low-
latency communication, even in highly congested scenarios
where real-time communication is crucial for safe and optimal
operations. To maximise the performance of this communica-
tion is critical to isolate the communication of the different
product lines of a factory and to do so, this paper proposes
isolated AF XDP sockets to guarantee this communication
between the physical server and the product line. Each socket
has dedicated CPU resources in order to obtain the maximum
performance of the system. In addition, the irq affinity is set
so that one CPU is in charge of processing a particular system
interrupt so the number of CPUs is directly proportional to the
number of network receiving queues reserved in the system.
To validate the performance, reliability, and latency of the
solution proposed, different charts have been elaborated and
are presented in this manuscript. These graphs present statistics
about percentage of CPU usage and packet loss when number
of control rules, packet size and sockets are modified. And also
Round Trip Time (RTT) latency based on the packet size. The
experiments have been executed transmitting up to 25Gbps
and 20M packets per second, depending on the packet size.
To test the requirements of the different use cases presented
in section IV, specially advanced network slicing, packet size
ranges from 132 bytes, which is the minimum required for
a 6G double encapsulated packet, and 1500 bytes, as can be
seen in Table I. Furthermore, the maximum number of sockets
supported is 16, and thus, the maximum number of CPU used
by the framework is 16, divided into five different executions:
1, 2, 4, 8 and 16 sockets. Notice that the experiments have
been executed five times and the values obtained are the
average of those five executions. Although the optimal use
of these sockets can prioritize specific network services with
different SLAs, this research primarily focuses on validating
the scalability of the proposed solution. Therefore, to ensure
a fair validation, all transmitted service flows are distributed
equally across the available queues/sockets. Moreover, to align
with the underlying architecture and facilitate their matching
within the network traffic injected into the system, control
eBPF maps have been prepopulated with specific control rules.

1) CPU Load: Figure 4 shows the percentage of CPU used
when up to 16 CPUs are performing simultaneously and up to
131072 rules are inserted in the SmartNIC offload map. (a),
(b), (c), (d) and (e) represent different experiments with 1, 2,
4, 8 and 16 sockets, respectively. The number of execution per
experiment carried out is:

16 ∗ 2n

where n={0,..,13}. It is noted that each CPU is exclusively in
charge of processing a particular system interrupt and therefore
a particular CPU. For this experiment, a packet sizes ranging
from 132 to 1500 bytes have been used and the results shown
are an average of all the traffic equally distributed per socket
using the control rules. Graph (a) in Figure 4 can be considered
the baseline scenario where there is only one socket and
therefore, all network traffic is processed by the same CPU.
This CPU is performing with an average load of 70% and
as it can be appreciated in the graph, the CPU load does

11

(a) 1: %CPU Usage vs Control Rules
with 1 Sockets.

(b) 2: %CPU Usage vs Control Rules
with 2 Sockets.

(c) 3: %CPU Usage vs Control Rules
with 4 Sockets.

(d) 4: %CPU Usage vs Control Rules
with 8 Sockets.

(e) 5: %CPU Usage vs Control Rules
with 16 Sockets.

Fig. 4: Relation between % CPU used, number of CPU and number of control rules with different number of sockets. The
irq affinity is set so that one CPU is in charge of processing a particular system interrupt so the number of CPUs is directly
proportional to the number of network receiving queues reserved in the system.

not increase when the number of rules is incremented. Graph
(b) represents an scenario where two sockets are transmitting
network traffic simultaneously and as it is shown in the graph,
the CPU load has decreased to an average of 50%. Similarly,
in (c), (d) and (e) the CPU load decreases when the number of
sockets performing increases. In the best case scenario, when
16 sockets are processing traffic, the CPU load is below 10%.
It is noted that per each of the flows processed the control map
needs to be checked to see if there is any rule that matches with
the incoming network packet. In this context, when 131072
control rules are inserted in the SmartNIC hardware map, the
CPU load remains constant, which demonstrates the scalability
of the system in terms of system load. Over the 90% of
the idle CPU load could be used for any other task while
up to 25Gbps of network traffic is processed, controlled and
monitored thanks to the solution proposed in this paper.

Figure 5 depicts % of CPU used when the packet size
changes from 132 up to 1500 bytes. In the same way as in the
previous graphs, number of sockets range with a magnitude
of 16 ∗ 2n where n={0,..,13}. Graph (a) can be considered
the baseline scenario where only one socket is processing
the traffic. In other words, the baseline scenario mimics the
behavior of a NIC that lacks the ability to generate an RSS
hash identifiers for multi-encapsulated network traffic. It can
be seen that CPU load is almost 100% when the size of the
packet processed is below 512 bytes, due to the number of
software interruptions generated in the system per each of
the packet processed. However, this value decreased up to
35% when the packet size increases to 1500 bytes. When the
number of sockets is increased, see graphs (b), (c), (d) and
(e), the percentage of CPU load decreases and thus, allows the

system to be more idle. In the scenario where 16 CPUs are
processing the network traffic, the percentage of CPU usage
with a packet size of 132 bytes is around 25%, however it
decreases to 10 % with 256 bytes packet size and below 5%
when packet size if bigger than 512 bytes. It demonstrates the
scalability of the eBPF/XDP-based framework proposed even
when the size of the packet processed is small and the number
system interruptions is very high.

2) Packet Loss: Percentage of packet loss in different
scenarios can demonstrate the reliability of the system tested.
Figure 6 depicts the percentage of packet loss when the packet
size is changed and the number of control rules inserted in
the hardware map is modified. The experiments carried out
to plot this validation are the same that the ones used for the
previous experiments, however it is now focused on packet
loss. Graph (a) shows the baseline scenario with only one
socket performing. In this case, the percentage of packet loss is
around 70% when packet size is 132 bytes. In this experiment,
almost 0% packet loss is achieved when packet size is 1024,
1280 and 1500 bytes. In graph (b), with two sockets processing
traffic, the solution still loses around 40% of the packets when
packet size is 132 bytes, however with a packet size of 512
bytes it decreases close to 0%. The network traffic processed
by the SmartNIC is equitably distribute between the different
sockets. Graphs (c), (d) and (e) shows how when number of
sockets created in the framework is 4 or higher, the reliability
is close to 100%, due to packet loss is almost 0% even in worst
case scenario when packet size is 132 bytes and number of
control rules is 131072. Meaning that the access time to the
hardware maps is constant and also demonstrates the reliability
of the system when the number of control rules is increased.

12

(a) 1: %CPU Usage vs Packet size(Bytes)
with 1 socket.

(b) 2: %CPU Usage vs Packet size(Bytes)
with 2 sockets.

(c) 3: %CPU Usage vs Packet size(Bytes)
with 4 sockets.

(d) 4: %CPU Usage vs Packet size(Bytes)
with 8 sockets.

(e) 5: %CPU Usage vs Packet size(Bytes)
with 16 sockets.

Fig. 5: Relation between % CPU used, number of CPU and packet size in bytes with different number of sockets. The
irq affinity is set so that one CPU is in charge of processing a particular system interrupt so the number of CPUs is directly
proportional to the number of network receiving queues reserved in the system.

In these scenarios where the CPUs are equally distributed
and attached to the different sockets and also where these
socket are totally isolated between them, it is interesting to
study the performance of each socket itself. In this case,
the traffic has been distributed equally between the different
sockets, so theoretically the behaviour of the different sockets
should be the same. The distribution of the different network
flows transmitted is done using up to 131072 control rules
inserted in the hardware card. As it is represented in Figure
7, the tendency of the different graphs is very similar to
the graphs depicts in Figure 6, in fact it is the same data
but showing different information. In this figure, it has been
calculated the average of all control rules and it is focused in
showing a comparison between the packet size and the number
of sockets. Again graph (a) is considered the baseline scenario
where almost 70% of the packets are lost when packet size is
132 bytes. This value becomes 0 when the number of socket
used in the framework presented is 4 or higher.

The high reliability and high performance demonstrated
through the empirical validation of this paper verify the

suitability of the solution to cover the demanding requirements
of 6G use cases shown in Table I. Although this work is
focused on providing an advanced network slicing solution,
depending on the number of queues created and the rules
inserted in the control and monitoring map, this solution can
be used to successfully deployed all the use cases previously
commented.

3) Bandwidth: The scalability test of the framework de-
ployed has been tested by calculating the Packet Per Second
(PPS) received while the packet size and number of sockets is
modified, as it is shown in Figure 8. In order to evaluate the
performance of a system, three different concepts need to be
considered: (a) Pps, which represents the number of packets
per second transmitted through the network; (b) Bandwidth,
which refers to the maximum data volume capacity of a
network; and (c) Throughput, which make reference to the
amount of data traveling successfully across a network. Notice
that in this article the value shown in Figure 8 is the number
of PPS received by the sockets (bandwidth) and not the PPS
processed (throughput). To calculate the total PPS processed

13

(a) 1: %Packet loss vs Control Rules
with 1 socket.

(b) 2: %Packet loss vs Control Rules
with 2 sockets.

(c) 3: %Packet loss vs Control Rules
with 4 sockets.

(d) 4: %Packet loss vs Control Rules
with 8 sockets.

(e) 5: %Packet loss vs Control Rules
with 16 sockets.

Fig. 6: Relation between % packet loss, packet size in bytes and number of control rules with different number of sockets.

(a) 1: %Packet loss distribution
with 1 socket.

(b) 2: %Packet loss distribution
with 2 socket.

(c) 3: %Packet loss distribution
with 4 socket.

(d) 4: %Packet loss distribution
with 8 socket.

(e) 5: %Packet loss distribution
with 16 socket.

Fig. 7: Relation between % packet loss, packet size in bytes and number of sockets.

per socket, the reader has to consider that the sample taken to
carry out each of the experiments is 30 seconds long and also
the number of packet loss per socket shown in Figure 7. Since

the total throughput or bandwidth vary based on the packet
size and thus, it does not really represent the real performance
of the solution, these graphs have not been included in this

14

manuscript, however these values can be directly calculated
based on the PPS results, bandwidth received per socket:

BW (Gbps) = (PPS ∗ PacketSize)/109

or throughput processed per socket

TP (Gbps) = ((PPS ∗ PacketSize)/109)− PacketLoss

For this experimentation, the same quantity of packet per
second have been sent from the packet generator to the differ-
ent sockets created and therefore, almost the same quantity of
network traffic is simultaneously processed by each of them.
As it can be seen in 8 graph (a), the number of PPS received
by the framework proposed is almost 20M when packet size
transmitted is 132B. However, this is the baseline and worst
case scenario and almost 70% of these packets are lost while
they are processed. When the number of sockets increase the
quantity of traffic received is practically the same however
the number of packet loss decreases. Notice that when the
packet size increases the number of packets received per socket
decreases and it is because in these experiments the maximum
bandwidth supported by the SmartNIC (25Gbps) is achieved
with fewer packets. As it is demonstrated in graph (c) the
maximum PPS processed by each socket without losing almost
any packet is around 5M PPS. In the experimentation carried
out, with 25Gbps of peak bandwidth, the maximum perfor-
mance is achieved when the number of sockets used is 4 or
more, having almost 0% of packet loss in all the experiments
executed. Furthermore, the bandwidth values achieved meet
the average bandwidth required by the different pre-6G vertical
use cases shown in table I and it demonstrates the viability of
the solution proposed in terms of bandwidth.

C. Latency

A critical key performance indicator in novel pre-6G net-
works is latency, which is associated with network efficiency,
connection speed, and bandwidth. Reduced network trans-
mission latency directly affects the Quality of Experience
(QoE) for the end user. Figure 9 presents average RTTs for
diverse pre-6G mobile network communications between the
two servers portrayed in Figure 3. These servers form the
production line and the cloud service provider infrastructure.
The experiments have used the same packet sizes as in previ-
ous executions, with a maximum processing rate of 25Gbps.
The displayed values represent the delay of a packet traveling
from the packet generator server, crossing the network via
a fiber cable, passing the XDP hardware data path with
offloaded maps, and reaching the vertical application through
the AF XDP driver sockets. This process also includes traffic
processing in the vertical application and return to origin via
the same socket and cable. Please note, this research focuses
on stages up to the packet’s arrival at the AF XDP sockets.
The reported RTT times include the entire process, even the
processing in user space (vertical application), which is beyond
the scope of the proposed solution. The graph reveals an
increase in RTT as packet size enlarges, largely attributed to
more time needed for processing in the vertical application,
producing a new packet, and re-injecting it back into the

network. However, at the hardware and driver level, the most
demanding scenario arises when packets of 132B are sent
at 25Gbps, implying that a total of 20 million packets need
to be processed each second. In this scenario, the RTT is
approximately 0.13 ms. As per table I, the maximum allowable
delay for the critical services described in this article in pre-6G
networks is 0.1 ms for end-to-end communication. Given the
proposed solution can achieve a round-trip transmission near
0.1ms, it’s clear the framework can meet the stringent latency
KPIs of pre-6G networks. Nevertheless, challenges may arise
in specific scenarios, such as Use Case 5, requiring large
packet sizes and extremely low latency. Figure 9 shows that
with a packet size of 1500 bytes, the average RTT increases
to 0.55 ms. In such cases, a smarNIC with higher capabilities,
more hardware queues to distribute the traffic, and increased
server CPU for dequeuing and processing network traffic at the
user-space level would be needed. Another alternative would
be to distribute traffic among different servers, similar to a load
balancer, an approach we explored in our previous research
article [7].

VII. CONCLUSIONS

The demanding performance requirements of the next gen-
eration mobile networks and the novel use cases entail high-
performance packet processing, control and monitoring ca-
pabilities. This paper has proposed a new ultra-high packet
processing and monitoring network framework for future
6G networks. The proposed novel eBPF/XDP-based network
filtering mechanism is able to dynamically identify multi-
tenant flows and take decision over the traffic processed
in order to fulfil the requirements of a concrete pre-6G
network Industry 4.0 use case. In parallel with this, this
framework is able to report real-time network metrics by
using eBPF hardware maps, which provide constant access
time to memory. The proposed programmable network data
plane explores a hardware-based offloading approach using an
Agilio CX smart network interface card that combines novel
technologies such as eBPF, XDP and AF XDP to bypass the
Linux kernel, and thus accelerates the communication between
the network card and the user applications. In order to support
this, the NFP driver in charge of controlling the SmartNIC has
been modified to provide AF XDP support. This framework
has been implemented and tested in a realistic beyond 5G
architecture, obtaining experimental results that demonstrate
the viability of the solution proposed. Moreover, the ad-
vantageous performance results in terms of packet loss and
percentage of CPU used across various scenarios, modifying
the number of AF XDP sockets and the control rules, clearly
show the scalability and suitability of the solution to meet
the demanding KPIs of diverse pre-6G use cases. Moreover,
we plan to address certain limitations in our current research.
For instance, we will investigate factors such as geographical
distance between connection points to identify new challenges
in complex network topologies. By expanding our research in
these areas, we hope to contribute to the development of robust
and effective network solutions for the future.

15

(a) 1: Pps vs Packet size(Bytes) vs Sockets. (b) 2: Pps vs Packet size(Bytes) vs Sockets.

(c) 3: Pps vs Packet size(Bytes) vs Sockets. (d) 4: Pps vs Packet size(Bytes) vs Sockets. (e) 5: Pps vs Packet size(Bytes) vs Sockets.

Fig. 8: Relation between packet per second received, packet size in bytes and number of sockets.

Packet size (Bytes)

Latency(ms)

132 256 512 1024 1280 1500
0.1

0.2

0.3

0.4

0.5

Fig. 9: RTT latency time in milliseconds when packet size
varies.

ACKNOWLEDGMENT

This work was funded in part by the European Commis-
sion Horizon 2020 5G-PPP Program under Grant Agreement
Number H2020-ICT-2020-2/101017226 “6G BRAINS: Bring-
ing Reinforcement learning Into Radio Light Network for
Massive Connections” and under Grant Agreement Number
H2020-ICT-2020-2/101016941 “5G INDUCE: Open Cooper-

ative 5G Experimentation Platforms for The Industrial Sector
NetApps”. We thank Simon Horman and Niklas Soderlund
(Corigine Inc.) for providing the NFP driver that enabled this
research.

REFERENCES

[1] W. Saad, M. Bennis, M. Chen, and A. V. Vasilakos, “A vision of 6g
wireless systems: Applications, trends, technologies, and open research
problems,” IEEE Network, vol. 35, no. 1, pp. 186–192, 2021.

[2] P. Singh, A. Nayyar, A. Kaur, and U. Ghosh, “Blockchain and fog based
architecture for internet of everything in smart cities,” Future Internet,
vol. 12, no. 4, p. 61, 2020.

[3] P. K. Padhi and F. Charrua-Santos, “6g enabled industrial internet of ev-
erything: towards a theoretical framework,” Applied System Innovation,
vol. 4, no. 1, p. 11, 2021.

[4] R. R. Tantsura, S. Homma, K. Makhijani, L. M. Co, ntreras, and Jeff,
“IETF Definition of Transport Slice,” 2020. [Online]. Available: https:
//datatracker.ietf.org/doc/html/draft-nsdt-teas-transport-slice-definition

[5] X. Li, M. Samaka, H. A. Chan, D. Bhamare, L. Gupta, C. Guo, and
R. Jain, “Network slicing for 5g: Challenges and opportunities,” IEEE
Internet Computing, vol. 23, no. 5, pp. 16–23, 2019.

[6] X. Foukas, G. Patounas, and M. K. Marina, “Network slicing in 5g:
Survey and challenges,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 2, pp. 1669–1713, 2020.

[7] P. Salva-Garcia, R. Ricart-Sanchez, E. Chirivella-Perez, Q. Wang, and
J. M. Alcaraz-Calero, “Xdp-based smartnic hardware performance accel-
eration for next-generation networks,” Journal of Network and Systems
Management, 2022.

[8] M. Majkowski, “Kernel bypass,” https://blog.cloudflare.com/
kernel-bypass/ , 2015.

[9] H. Zhu, Data Plane Development Kit (DPDK): A Software Optimization
Guide to the User Space-based Network Applications. CRC Press, 2020.

[10] M. Paolino, N. Nikolaev, J. Fanguede, and D. Raho, “Snabbswitch
user space virtual switch benchmark and performance optimization for
nfv,” in 2015 IEEE Conference on Network Function Virtualization and
Software Defined Network (NFV-SDN). IEEE, 2015, pp. 86–92.

16

[11] V. Maffione, L. Rizzo, and G. Lettieri, “Flexible virtual machine
networking using netmap passthrough,” in 2016 IEEE International
Symposium on Local and Metropolitan Area Networks (LANMAN), 2016,
pp. 1–6.

[12] L. Kernel, “Linux packet mmap,” https://www.kernel.org/doc/
Documentation/networking/packet\ mmap.txt, accessed: July 15,2023.

[13] ntop, “PF RING: High-speed packet capture, filtering and analysis,”
2023, accessed: July 23,2023. [Online]. Available: https://www.ntop.
org/products/packet-capture/pf ring/

[14] Xilinx, “Ef vi user guide,” https://china.xilinx.com/content/
dam/xilinx/publications/solarflare/onload/openonload/packages/
SF-114063-CD-10 ef vi User Guide.pdf , accessed: July 15,2023.

[15] Kernel, “Af xdp - af xdp socket (xsk),” https://www.kernel.org/doc/
html/ latest/networking/af xdp.html, accessed: July 15,2023.

[16] A. Xilinx, “X2 series ethernet adapters - xtremescale x2522, x2541,”
https://www.xilinx.com/products/boards-and-kits/x2-series.html,
accessed: July 20,2023.

[17] A. Xilinx, “8000 series ethernet adapters - 10/40gbe network adapters,”
https://www.xilinx.com/products/boards-and-kits/8000-series.html, ac-
cessed: July 20,2023.

[18] A. Xilinx, “Alveo u50 data center accelerator card,” https://www.xilinx.
com/products/boards-and-kits/alveo/u50.html, accessed: July 20,2023.

[19] A. Xilinx, “Alveo u200 data center accelerator card,” https://www.xilinx.
com/products/boards-and-kits/alveo/u200.html, accessed: July 20,2023.

[20] A. Xilinx, “Alveo u250 data center accelerator card,” https://www.xilinx.
com/products/boards-and-kits/alveo/u250.html, accessed: July 20,2023.

[21] A. Xilinx, “Alveo u280 data center accelerator card,” https://www.xilinx.
com/products/boards-and-kits/alveo/u280.html, accessed: July 20,2023.

[22] Intel, “Intel fpga smartnic n6000-pl platform,” https://www.intel.
com/content/www/us/en/products/details/ fpga/platforms/smartnic/
n6000-pl-platform.html, accessed: July 20,2023.

[23] Silicom, “Silicom fpga smartnic n5010 series,” https://www.silicom-usa.
com/pr/ fpga-based-cards/ fpga-intel-based/ fpga-intel-stratix-based/
silicom-fpga-smartnic-n5010 series/ , accessed: July 20,2023.

[24] Intel, “Intel fpga programmable acceleration card n3000,”
https://www.intel.com/content/www/us/en/products/details/ fpga/
platforms/pac/n3000.html, accessed: July 20,2023.

[25] N. Zilberman, Y. Audzevich, G. A. Covington, and A. W. Moore,
“Netfpga sume: Toward 100 gbps as research commodity,” IEEE micro,
vol. 34, no. 5, pp. 32–41, 2014.

[26] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese et al., “P4: Pro-
gramming protocol-independent packet processors,” ACM SIGCOMM
Computer Communication Review, vol. 44, no. 3, pp. 87–95, 2014.

[27] J. Cavanagh, Digital design and Verilog HDL fundamentals. CRC press,
2017.

[28] R. Ricart-Sanchez, A. C. Aleixo, Q. Wang, and J. M. A. Calero,
“Hardware-based network slicing for supporting smart grids self-healing
over 5g networks,” in 2020 IEEE International Conference on Commu-
nications Workshops (ICC Workshops). IEEE, 2020, pp. 1–6.

[29] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, and Q. Wang,
“P4-netfpga-based network slicing solution for 5g mec architectures,”
in 2019 ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE, 2019, pp. 1–2.

[30] R. Ricart-Sanchez, P. Malagon, J. M. Alcaraz-Calero, and Q. Wang,
“Netfpga-based firewall solution for 5g multi-tenant architectures,” in
2019 IEEE International Conference on Edge Computing (EDGE).
IEEE, 2019, pp. 132–136.

[31] Q. Wang, J. Alcaraz-Calero, R. Ricart-Sanchez, M. B. Weiss, A. Gavras,
N. Nikaein, X. Vasilakos, B. Giacomo, G. Pietro, M. Roddy et al.,
“Enable advanced qos-aware network slicing in 5g networks for slice-
based media use cases,” IEEE transactions on broadcasting, vol. 65,
no. 2, pp. 444–453, 2019.

[32] Netronome, “Netronome agilio cx smartnics,” https://www.netronome.
com/products/agilio-cx/ , accessed: July 21,2023.

[33] Corigine, “Corigine agilio cx smartnics,” https://www.corigine.com/
smartnicdetail-31.html, accessed: July 15,2023.

[34] H. Tataria, M. Shafi, A. F. Molisch, M. Dohler, H. Sjöland, and
F. Tufvesson, “6g wireless systems: Vision, requirements, challenges,
insights, and opportunities,” Proceedings of the IEEE, vol. 109, no. 7,
pp. 1166–1199, 2021.

[35] A. Artemenko, Y. Zhang, U. Wostradowski, J. Cosmas, Q. Wang, J. M.
Alcaraz-Calero, E. C. Perez, P. Salva-Garcia, and R. Ricart-Sanchez,
“6G BRAINS: D2.1 Definition and Description of the 6G Primary
Use Cases and Derivation of User Requirements,” Jun. 2021. [Online].
Available: https://doi.org/10.5281/zenodo.5185388

[36] L. Kernel, “Libbpf library,” https://www.kernel.org/doc/html/ latest/bpf/
libbpf/ index.html, accessed: July 11,2023.

[37] L. Kernel, “Xsk library,” https://github.com/ torvalds/ linux/blob/master/
tools/ lib/bpf/xsk.c, accessed: July 11,2023.

[38] E. Chirivella-Perez, P. Salva-Garcia, I. Sanchez-Navarro, J. M. Alcaraz-
Calero, and Q. Wang, “E2e network slice management framework for
5g multi-tenant networks,” Journal of Communications and Networks,
pp. 1–13, 2023.

[39] J. Fonseca, M. Khadmaoui-Bichouna, B. Mendes, P. Duarte, M. Araujo,
D. Corujo, I. Sanchez-Navarro, A. Matencio-Escolar, P. Salva-Garcia,
J. M. Alcaraz-Calero, and Q. Wang, “6g brains topology-aware industry-
grade network slice management and orchestration,” in 2023 Joint
European Conference on Networks and Communications & 6G Summit
(EuCNC/6G Summit). IEEE, 2023, pp. 341–346.

[40] A. Kazmierowski, J. Kodjabachian, P. Salva-Garcia, A. Matencio-
Escolar, and I. Sanchez-Navarro, “6G Brains: D5.2 Preliminary
integration for AI-based E2E network slicing control and MANO,”
Dec. 2022. [Online]. Available: https://doi.org/10.5281/zenodo.7468007

[41] N. Nikaein, M. K. Marina, S. Manickam, A. Dawson, R. Knopp, and
C. Bonnet, “Openairinterface: A flexible platform for 5g research,” ACM
SIGCOMM Computer Communication Review, vol. 44, no. 5, pp. 33–38,
2014.

Pablo Salva-Garcia is a Lecturer at the University
of the West of Scotland. Pablo is Co-investigator
in several Horizon 2020 EU projects, such as 6G-
BRAINS, 5G-INDUCE and ARCADIAN-IoT and
member of the B5G-Hub. His main interests are
Network management, data plane programmability,
SDN, and Beyond 5G Networks.

Ruben Ricart-Sanchez is a researcher at the Uni-
versity of the West of Scotland, where he obtained
his PhD. Ruben is Co-investigator in several Hori-
zon 2020 EU projects, such as 6G-BRAINS, 5G-
INDUCE and ARCADIAN-IoT. His main interests
include 5G/6G Networks, Network management,
programmable hardware, and network security.

Jose M. Alcaraz-Calero is a Professor in next-
generation networks and security at the University
of the West of Scotland. He is the technical co-
coordinator of the EU H2020 5G-PPP SELFNET
and SliceNet projects, and co-principal investiga-
tor of EU H2020 5G INDUCE and 6G BRAINS
projects. His professional interests include network
cognition, management, security and control, service
deployment, automation and orchestration, and 5G
mobile networks.

Qi Wang is a Professor at the University of the West
of Scotland. He is the technical co-coordinator of EU
H2020 5G-PPP SELFNET and SliceNet projects,
and co-principal investigator of EU H2020 5G IN-
DUCE and 6G BRAINS projects. He is a Board
Member of the Technology Board of EU 5G-PPP.
His research primarily focuses on 5G mobile net-
works, video networking and artificial intelligence.

Octavio Herrera-Ruiz obtained a PhD in Telecom-
munications by the University of Pittsburgh, USA
in 2011. He is Manager of Mira/Netronome Global
Support. His research interests include network per-
formance and survivability.

