
Received 9 October 2023, accepted 25 October 2023, date of publication 1 November 2023, date of current version 8 November 2023.

Digital Object Identifier 10.1109/ACCESS.2023.3329071

Enabling Generative AI to Produce SQL
Statements: A Framework for the Auto-
Generation of Knowledge Based
on EBNF Context-Free Grammars
CHRISTOPHER TROY , SEAN STURLEY, (Member, IEEE),
JOSE M. ALCARAZ-CALERO, (Senior Member, IEEE), AND QI WANG
School of Computing, Engineering and Physical Sciences, University of the West of Scotland, PA1 2BE Paisley, U.K.

Corresponding author: Christopher Troy (christopher.troy@uws.ac.uk)

This work was supported in part by the Carnegie Trust for the Universities of Scotland under Grant PHD010695; and in part by the European
Commission through Autonomous Trust, Security and Privacy Management Framework for IoT (ARCADIAN-IoT) under Grant
H2020-SU-DS-2018-2019-2020/101020259.

ABSTRACT The motivation of this paper is to be able to generate high-quality (Structured Query Language)
SQL language sentences in terms of syntax and semantics so that they are intended to achieve a concrete
predefined and well-known aim. For example, generating SQL sentences that are capable of detecting a
cyber-attack from a set of metrics available in a database table. Two solutions are needed to achieve so, a tool
that enables and performs the syntactically valid generation of SQL sentences and an (Artificial intelligence)
AI algorithm able to guide the semantics of such generations to the achievement of the best sentences for the
intended purpose. The main contribution of this manuscript is the first of these solutions. To be concrete, this
paper proposes a tool to enable and generate syntactic-valid language sentences. The tool can deal with any
language defined as an ANTLR4 EBNF (Extended Backus-Naur Form) grammar. The paper also provides a
methodology to help achieve an EBNF grammar suitable for addressing concerns related to ambiguity and
recursion as a direct result of the generation process. The paper further implements a prototype utilizing
ANTLR4’s recognizer and its Augmented Transition Network for language generation using EBNF grammars.
In-depth design and logic implementation are provided, showcasing areas of interest for AI integration. The
achieved prototype showed an ability to easily generate syntactically valid SQL statements at various depths,
with observable problems becoming more apparent during the exponential recursive growth. Our mitigation
controls for such scenarios proved to be successful and were able to complete the recursion whilst also moving
the push-down automata forward until query completion. Experimental validation was performed against a
SQL EBNF grammar feeding the generated SQL statement into an SQL parser to validate the syntax.

INDEX TERMS ANTLR4, ATN, automata, EBNF grammar, generative AI, parser generator, SQL.

I. INTRODUCTION
Generative Artificial Intelligence (AI) is the usage of AI to
generate new content, i.e. data, information, and knowledge,
for specific domains. Some good examples of generative
AI for written text are OpenAI’s GPT4 [1], ChatGPT [2],
and Google’s BARD [3]. For art generation, there are

The associate editor coordinating the review of this manuscript and

approving it for publication was Pasquale De Meo .

DALL-E [4], and Stable-Diffusion [5], to name a few. Also,
SQL (Structured Query Language) is the most widely adopted
language for structuring and manipulating data, information,
and knowledge around the world [6].
SQL plays a critical role in data structuring making tasks

such as data analysis, data modification, and storage possible.
The motivation behind our primary research is twofold. On the
one hand, there is an objective for generating high-quality SQL
language sentences that are intended to achieve a concrete

VOLUME 11, 2023

 2023 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.

For more information, see https://creativecommons.org/licenses/by/4.0/ 123543

https://orcid.org/0009-0006-4107-6775
https://orcid.org/0000-0002-7764-9858
https://orcid.org/0000-0001-7421-216X


C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

predefined, and well-known aim. For example, a sentence that
is intended to detect distributed denial of service attacks by
making use of database tables with data related to measured
metrics related to the communications and resources of the
host being analyzed. This aim required the addressing of two
different solutions: a tool capable of generating syntactically
valid SQL sentences and an AI algorithm capable of driving
the generation of such queries to the best possible quality
in the semantics of the sentence to achieve the intended
aim. This manuscript is focused on the first of these two
solutions. Furthermore, the current literature and its sparsity
highlight evident gaps surrounding tools and techniques to
achieve the automatic generation of sentences without any
initial input text. It is worth differentiating between the ample
availability of language parser tools intended for processing
an initial sentence and the scarcity of available tools for the
automatic generation of sentences without an initial input
for transformation. The state of the art is even more scarce
when searching for automatic generation of sentences without
said initial input that are capable of being guided by AI
algorithms which is the main contribution of this manuscript.
The approach taken to achieve the generation of SQL sentences
is the usage of automata. Automata are created from a given
grammar which constitutes all the rules of the language. There
are plenty of well-established tools to create such automata
for the purpose of parsing a sentence in a given language. They
are called parser generators which accept an EBNF (Extended
Backus-Naur Form) [7] grammar and produce both parser
and lexer for validating the input stream using syntax analysis
aided by parse tree traversal. However, there is a significant
lack of tools available to perform the creation of the automata
for the purpose of generating sentences in a given language
based on its grammar which is our intended aim.
Within the field of computational linguistics, many

formalisms exist for processing natural language. Much of
the underpinning theory associated with the aforementioned
automata is heavily dependent on the language and its
complexity. For simpler language parsing tasks, DFA
(Deterministic finite automata) [8] are utilized which is
optimal for handling regular languages. A DFA can provide
basic pattern matching through regular expressions. However,
for complex languages which have nested structures, such
complexity requires a more capable formalism. One such
implementation for dealing with complex language can be
through the implementation of an RTN (Recursive Transition
Network) [9], which is a graph theoretical diagram that aids in
processing language containing recursive structures. However,
our work is influenced through the usage of ANTLR4 [10]. It is
a parser generator that makes use of a similar implementation,
called an ATN (Augmented Transition Network). An ATN
is a non-deterministic push-down automaton that represents
the relationships surrounding the syntax and semantics of a
language through its states, rules, and transitions. All rules
defined within a CFG (Context-Free Grammar) are analyzed
by ANTLR4 providing an ATN graph for each production rule.
Furthermore, the augmented capabilities of an ATN allow

for the handling of recursive structures, just like an RTN.
An ANTLR4-based ATN can implement semantic actions
to reduce ambiguity through mitigations such as parse tree
pruning. To summarise it all, the ATN builds upon the previous
theoretical model of the RTN through the usage of augmented
features, which provide features very much aligned with the
overall aim of this research.
The main problem surrounding ANTLR4’s ATN is by

way of its intended usage. It is primarily used to aid the
parsing algorithm when parsing input using predictive logic
which improves its traversal and decision- making efficiency.
In contrast with our proposal where no initial input is required,
it has motivated our research with an aim to design and develop
a prototype using an alternative approach to ATN utilization
to enable the generation of sentences of any grammar defined
by ANTLR4’s EBNF, and at the same time to allow AI to
influence the decision-making process whilst traversing the
graph representation of the CFG production rules. This will
help us find elements of commonality shared between both
humans andmachines using the SQL language as the expresser.
Additionally, it provides a positive leverage where data does
not need to be processed outside of the database relating to
the associated computing network and storage requirements.
A prototype with these capabilities would yield many

advantages for conducting different experiments through
use-case scenarios based on data manipulation and knowledge
discovery. For example, the generation of novel metrics to
detect patterns of network attacks in IoT networks.

Our research aims to describe the design of a methodology
and a pragmatic framework to promote the integration of
an intermediary prototype using push- down Automatas
based on ANTLR4’s Augmented Transitional Network (ATN)
alongside EBNF grammars.

This will provide state-based graph generations constituting
syntactically valid SQL sentences using randomized decision
selection as the temporary medium driving decision choice.
The way in which SQL and many other languages are

represented within ANTLR4’s ATN makes the manipulation
of its traversal process possible. This observation highlights
opportunities and ways to hypothesize and test solutions such
as the initial randomized or future implemented weight-based
state decisions for generating syntactically correct SQL. The
central principle is to provide a novel prototype that can enable
generative SQL, with gained insights highlighting ways in
which AI can be correctly interfaced. This research can be
explored for a wide range of use cases in ICT (Information
and Communication Technology) and vertical businesses,
where automatically generated SQL statements could be
utilized for database optimisation and or knowledge discovery
revealing novel insights into vast ranges of sparse data
distributions surpassing human capabilities for recognition
and extrapolation. For instance, the proposal provided in this
paper is intending to conduct future research by utilizing these
insights to implement a cybersecurity use case scenario by
generating novel SQL metrics to detect cyber-attacks within
IoT (Internet of Things) networks.

123544 VOLUME 11, 2023



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

The following are the set of innovations beyond the state of
the art provided in this contribution:

• A generic methodology to aid in the generation of
sentences using any language expressed in EBNF format.

• The design and implementation details of the framework
for the generation of datasets of syntactically valid SQL
queries from zero input.

• The syntactic validation of the generated SQL queries as
a way to highlight its use case.

The rest of this manuscript is laid out as follows. Section II
describes the state-of-the-art tools and on- ongoing research
related to the generation of SQL sentences. Section III will
discuss the proposed methodology which will highlight ways
in which EBNF Grammars can be modified or bespoke to
aid in language generation. Section IV provides insights
into the design of the proposed generator through the
implementation of ANTLR4 and both ATN components
belonging to its recognizer. Section V will provide the results
from the proposed prototype, and section VI will provide our
concluding remarks.

II. RELATED WORK
Table 1 provides a detailed analysis of recent and past research
within the fields of automatic language sentence generation
and generative AI, including the combination of them both.
The table also contains our work so that the reader can analyze
our contribution against the state-of-the-art. The following
subsections group the analyses of the state of the art by the
approach used to achieve the generation of the sentences.

A. SQL SENTENCE GENERATION
A study by Sugandhika et al. [11] adopted a strategy by using
the English language as text input for SQL generation. This
method requires human interaction so that an interpretation
of the expected query can be generated using a heuristic-
based approach. These heuristics aid in grammar identification
in order to perform syntax correction, thus adapting the
system dynamically to understand the user input. Our research
differs with a notable advantage as the authors do not
provide support for SQL nesting capabilities. Such capabilities
supported in the SQL language allow for more complex query
variations. Similarly, Datachat [12] allows the generation of
SQL sentences for data analytics using English language
sentences. A deeper understanding of results is facilitated
by providing automatically generated English explanations of
how they were derived.
Another SQL sentence generation approach has been

proposed by authors Anisyah et al. [13] which made use
of syntax trees. This approach performed an analysis of the
syntax tree to identify notable SQL objects. These will then
be arranged into SQL queries. We found this approach to be
very interesting, and it is one of the benefits a parser provides
when building a parse tree for traversal purposes. However,
this approach also requires input and is thus not suitable when
such input is non-existent.

B. GRAMMAR ASSISTED SENTENCE GENERATION
These tools make use of grammar to give the process of
generating sentences using the language rules defined in such
grammar. The way to describe the syntactic rules composing
a grammar can be defined using different notations. A well-
known notation for this purpose is the meta-syntax notation
used in EBNF grammars.
One advantage of having a tool capable of generating

language sentences based on EBNF grammar is the plethora
of available grammar publicly accessible for use. The end
results of implementing an EBNF-based generator lie within
the ability to generate sentences in multiple languages, thus
improving re-usability.
A proposal closely aligned with our on-ongoing research

has been proposed by Sargsyan et al. [14] who demonstrated
the capabilities of utilizing ANTLR4’s automata for code
generation of over 120 languages (EBNF grammars). Their
proposed prototype uses random selection to determine what
paths to traverse across the generation process. The authors
Sargsyan et al. improved upon this [15] and were able
to implement a weight-based system to help control the
traversal process. One advantage of our contribution over
Sargsyan et al. [15] is our proposed implementation to deal
with recursive mitigation controls.

Additional benefits can arise when utilizing context-free
grammar for generating language. One example highlighted
by authors Palmas et al. [16] discussed ways of improving
dialogue in video games through the generative capabilities
that context-free grammars can express alongside sentiment
analysis. The authors utilized a tool very much in a proof
of concept stage [17]. This allowed the authors to create a
context-free grammar to generate language rather than parse
one. This would provide ways to generate new and interactive
dialogues dependent on user participant reactions to the NPC’s
(Non Playable Character) actions with sentiment analysis
providing better context to ascertain the players’ tone. This
helps highlight the generative potential CFGs have, so long
as the tool developed to provide the generative language is
designed correctly.
Pires et al. [18] explored a conceptual implementation for

code generation using a KDM [19] (Knowledge Discovery
Meta-Model) with xUnit [20] software test cases. The
authors conceptualised using this meta-data to interface with
xUnit which could then generate test-cases. This proposal
highlighted XML as a way of expressing a language’s structure
rather than an EBNF grammar.

C. FUZZER-BASED SENTENCE GENERATION
Wang et al. [21] explored SQL generation for DBMS
(Database management Systems) using automata for security
testing. They looked beyond syntax generation by including
interaction from the response received from the server using
a multi-phased fuzzer approach to help manipulate the
generation process.
What is interesting about this proposal relates to the

interactive behavior that can directly influence the automata.

VOLUME 11, 2023 123545



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

Rather than the automata being used for constructing the query,
they have opted for using it to perform behavior analyses
which alters the patterns of the test instances. Although this is
an older study, it is intriguing to see ways in which automata
can be used for aiding in language generation, rather than
being the main actor to generate said language.

D. AI-DRIVEN SENTENCE GENERATION
Parikh et al. [22] used a custom dataset with text consisting
of English questions, e.g. ‘‘How to select all people in the
finance department?’’. The aim is to create the SQL syntax
that performs the purpose indicated in the English language.
To achieve so, they make use of the Seq2Seq AI algorithm
achieving an accuracy of 69 percent for data retrieval when
used by staff with very little to no SQL knowledge. Notice
that our intention is to be able to generate SQL without any
input thus this approach would not fit for the purpose.
There are several ChatGPT-based [23] research focused

on the usage of generative AI for modeling tasks [24]
and for modeling software use cases based on system
requirements [25], to name a few. They all share the same idea
of using a question-based input method to allow the user to
provide knowledge as a seed to generate the requested output.
Tang et al. [26] explored the usage of AI for English

language generation through the Seq2Seq [27] approach using
LSTM (Long short-term memory). This AI architecture makes
generating language much more autonomous but is void of
any sorts of automata and grammar implementation, but rather
showcases how grammar-based approaches are not always the
best approach. This type of method was highlighted further by
Gao et al. [28] usingmachine learning techniques and the same
Seq2Seq approach to automatically generate protocols such
as FTP. Their implementation uses an initial grammar-based
fuzzer [14] to obtain input data which is then transformed as
features for the model.

Lu et al. [29] has proposed a GAN (Generative Adversarial
Network )basedMethod for Generating SQL Injection Attacks.
Their tool is not intended for generating SQL syntax but for
augmenting already existing SQL attack samples. Thus, the
generation of the new samples requires the original dataset as
input using genetic algorithms.
We are trying to avoid many of the studies using a form

of ‘‘Text to Language’’ as we want to generate knowledge
without any required input. These types of proposals are
still very interesting which are evident through each of the
authors’ contributions which do appear to improve upon
the problems known from NLIDB [30] such as the ‘‘Empty
prompt’’ problem, uncertain linguistic coverage problem and
Linguistic vs. Concept misalignment.

E. META ANALYSIS
We have been selecting the following set of well-known
research publishers and have produced a consistent search
in said publishers.

Search: ‘‘SQL’’ AND ‘‘Generative AI’’ in ‘‘All Meta-
data’’ in journal papers and conferences from the last
10 years (2013):

• IEEE via IEEEXplorer -> Provided only 1 paper that has
been included

• Elsevier via Scopus -> Provided 3 paper, 4 that has been
included.

• Springer via SpringerLink -> Provided 3 journal articles
and none of them are generating SQL language.

• Springer via SpringerLink -> Provided 15 conferences
and none of them are generating SQL language.

III. PROPOSED METHODOLOGY
A traditional grammar is mainly defined using two types
of grammar rules: Lexer rules and Parser rules. They are
used to validate if a given input follows the rules of such
grammar to determine its lexical and syntactic validation. For
example, an SQL grammar allows one to determine if a SQL
statement is syntactically valid. However, our purpose is not
the traditional one, we aim to generate new knowledge without
any previous input using only the grammar as a blueprint to
aid in the generation of output complimented by ANTLR4’s
ATN. Following the same running example, our aim is to
generate SQL statements that are both lexical and syntactically
valid without any given input stream. Thus, there is no input
to validate against and there is also a clear need to create a
non-traditional grammar focused on the generation of outputs
instead of on the validation of inputs.

This is what we have coined as generative-friendly grammar.
This methodology describes the steps required to achieve
a generative-friendly grammar that is suitable to be used
to automatically generate syntactically correct new source
code. Fig. 1 illustrates the steps of the proposed methodology.
It should be noted that although this methodology proposes a
generic way to generate the source code of different languages,
the use case for using the generated code will equally play an
important role in its success. It is a pragmatic methodology
that also aims to highlight potential areas of concern. If an
EBNF grammar can be bespoke or modified with the proposed
methodology while still producing the same language, then it
can be considered generative-friendly.

A. GRAMMAR SCOPE REDUCTION
see (step 1 in Fig. 1). Reducing the scope of the grammar
facilitates the decrease in complexity of the search space
to explore the generation of the source code through the
limitation of what can be generated using a subset of the
original grammar rules. Grammar can be problematic due
to the ambiguity it contains. Although some ambiguity is
natural and not necessarily problematic, it can certainly
hinder language generation. This can be considered an
optimization for use case customization. An example would
be an SQL grammar where only DQL (Data Query Language)
statements are needed, where the objective is to only
generate queries that select data rather than modify it

123546 VOLUME 11, 2023



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

TABLE 1. Related work comparisons.

using DML (Data Manipulation Language) and DDL (Data
Definition Language) statements. In such a scenario, stripping
out elements of the original EBNF grammar would be a
pre-requisite to control the unintended inclusion of generated
DQL and DML statements.
If the user has decided to create a bespoke grammar from

the ground up, then it will discernibly have reduction designed
into it, and thus this step of the methodology is considered
optional. If the full scope of the grammar is required, then
the subsequent steps of the methodology will aid in helping
control the combinatory runaway that can sometimes occur.
We believe that this type of reduction could be ignored once
the medium used for decisions i.e., a form of AI is integrated.
The reader may ask why, which is valid. Using randomized-
based selection inherently voids any essence of uniformity
and predictability to learn from. AI integration would infer
unambiguous generations through learning the rewarding
transitions to take.

B. REDUCE/REMOVE RECURSION
See (step 2 in Fig 1). Certain types of recursions within EBNF
grammars can possess a grammatically natural capability to
aid with parsing but are heavily discouraged when using a
top-down parser. Left recursion is the most problematic due to
the concern associated with infinite loops, with right recursion
being the most preferable option. Table 3 shows the EBNF
notation for transforming left recursive productions. This can
be applied to any left recursive production rule.
However, in terms of generation, the associativity and

structure of the intended output may influence the design

TABLE 2. Prototypes expression generation outputs.

and integration of the logic. We first have to understand how
ANTLR4 deals with left recursion. ANTLR4 when presented
with a production rule which uses left-recursion will recognise
and alter the rule by transforming it.

1) DEALING WITH LEFT RECURSION
As we have discussed the concern surrounding left recursion,
let us go further by referring to Table 4 which helps add more
context. ANTLR4 when presented with a production rule
that is left- recursive will mitigate the said rule through the
aforementioned transformation process. This should highlight
the importance both star and plus loops maintain during
the generation process. However, it should be noted that
more logic is required for recursion completion within the
generator class which is discussed at a later stage in the paper.
Table 3 provides an example of the generated output of the
prototype based on the grammar seen in (Table 4, col 1). When
generating a language we are not concerned about matching,
but rather its control from a potential recursive explosion
caused by recursive rules within the grammar. We can dictate

VOLUME 11, 2023 123547



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

FIGURE 1. Framework for generative friendly grammar design and generation.

TABLE 3. Left recursion elimination.

through logic within the generator when and how many times
recursive rules are permitted. Recursive rules do present
opportunities for generating more expressive languages, but
carry a risk for memory exhaustion unless pragmatically
mitigated through some form of monitoring control and
rule transformation using left-recursion elimination. This
risk is usually interrelated with the permutations of the
rule. The ambiguity requires the implementation of a more
comprehensive approach by extending the logic inside the
generator. This is done to limit the repetition of the recursive
rules.
It also requires logic for monitoring the recursive depth,

with further logic required to correctly exit the rule to its
intended follow-state, thus ensuring syntactic correctness.
If the reader can refer to (Table 4, col 1, row 1), the example

TABLE 4. ANTLR4 left recursive rule implications.

grammar highlights an assignment rule that can recognize
an assignment in conformity with matching the input with
the expected syntax. While generating an assignment from
the rule, a syntactically similar output can be achieved with
alternative results similar to that of a transitive-based algebraic
expression, see (Table 4, col 3, row 1). The purpose of

123548 VOLUME 11, 2023



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

this explanation is to highlight how certain production rules
using recursion can go beyond the intended expectation of
what the rule was designed to produce. This could be an
undesirable result which helps emphasise the consideration
needed when designing and or modifying rules when viewed
from a generative perspective.
The removal of recursive rules is preferred, so long as it

does not change the language it produces. If this is maintained,
then recursive removal should be considered. The ambiguity
from recursive rules on large grammars can be difficult to
overcome and is not always generative friendly. Although
recursion presents a problem,we do intend to show a pragmatic
solution to ease some of the impact caused by uncontrolled
recursion. We will discuss this at a later stage in the proposed
methodology by way of stack implementations.

C. GENERATIVE REPETITION
See (step 3 in Fig. 1). EBNF grammar enhances the ATN’s
capabilities through the definition of grammar rules when
used alongside explicit quantifiers. There are three important
EBNF quantifiers that enable (GO -Generative Optionality),
a term we created to better contextualize the disparity of the
process from the understood paradigm of matching sequences
of patterns. Please refer to Fig. 2 for a visual representation.
The first two are the Kleene plus ‘+’ and the Kleene
star ‘*’. In basic terms, they are loops used for matching
repetitive sequences. The third, being the Question mark ‘?’
provides optionality where an absence of generation or by
way of alternative choices is an acceptable outcome. Through
the course of this paper, each of their observed generative
advantages/disadvantages will become more apparent.

FIGURE 2. EBNF Quantifiers comparison.

We regularly see such notation in EBNF grammars and
regular expressions which enable us to define a repetitive
pattern pertaining to their greedy and non-greedy behavior.

LISTING. 1. Greedy & Non-greedy implications.

Greedy and non-greedy quantifiers do not apply in the
same way when they are being used for parsing as a goal
as when they are used to generate sentences. See Listing. 1.
From a parsing perspective, this lexer rule will match as many
characters as possible of the alphabet up until the closing
double quote. If we applied the non-greedy (lazy) notation
‘‘+?’’, we would match each character and proceed to look
for the double quote for every matched character to hasten
our exit. Furthermore, from a generative perspective when
applying non-greedy notation it will have zero effect on the
traversal shape of the graph when contrasted against its greedy
notation. For generating language, not parsing, both have the
same functionality. This is because the greedy and non-greedy
quantifiers only apply when there is an input to match against.
Notice there is no input to match in our approach.
When using GO, we must flip this concept and interpret

it as permitting a potentiality for skipping or generating
a sequence of tokens, irrespective of the medium used to
make that decision, be it random, AI, etc. The overall
recommendation for see (step 3 in Fig. 1), is dependent
on the intended language to be generated. Both parser and
lexer generative potential for generating pattern repetitions
should be carefully considered when applying such EBNF
quantifiers to bespoke grammars. This consideration becomes
more imperative where recursive rules are present and
operating within the influence of a quantifiers loop due to how
ANTLR4 applies rule transformations on direct left recursive
production rules. This design choice can become more
problematic for randomised-based transition selection where
scaled combinatory decisions can quickly result in runaway
generations unable to exit in an acceptable time-frame
as previously discussed. This is why our proposition for
integrating an AI model into the proposed generator is an
approach that makes sense. An AI model would provide the
functionality for dealing with such complexity and unknowns.
Through bespoke grammars, if a repetitive sequence is

desired for a particular rule, the application of the Kleene
plus quantifier would enable a minimum of one pass before
hitting a decision state where a decision can be made to
continue generating the sequence or exit the rule. The search
space from the usage of these quantifiers will increase,
be it through randomized or intelligent decision optimization.
Overall, the generated language will have more variance in
its output when using them. Original grammars may need to
be limited due to their repetitive potential resulting from the
combinatory explosion which can occur if random selection
is the medium used for path traversal. Larger grammars can
become cumbersome to alter. However, identifying where

VOLUME 11, 2023 123549



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

repetition occurs and deciding if it is needed should be a
decision that is made based on use case requirements

D. GENERATE RECOGNISER
See (step 4 in Fig. 1). The recognizer is the combination of
both the lexer and parser. Both components contain a list
of ATNs. These ATNs are used alongside a deterministic
finite automaton (DFA) to help predict the correct path to
take during parsing. It allows us to construct syntactically
correct languages without a need to parse any input. The ATN
is a symbolic formalism of the input EBNF grammar. The
ATN of both lexer and parser store all states and edges. This
is the first step that is tailored to a concrete ATN generation
prototype. In our case, we are using ANTLR4’s recognizer for
this purpose and it will be used in the rest of the steps.

E. ISOLATE PARSER AND LEXER ATNS
See (Step 5 in Fig. 1). Generating a language from a grammar
requires knowledge for accessing the ATNs. These provide us
with a logical delineation of our grammar in a graph state form.
The ATNs are the building blocks of the grammar attributable
to their production rules. The ATN accommodates a list of
states and transitions. Conceptually, no graph state structure
exists as a whole. The parser and lexer ATNs store an ordered
list of all states associated with a rules ATN. It is the data
within them that specifies the relationships, thus it is not a
concern by means of obtaining the first state which represents
the root rule of the grammar and the first index position within
the ATN state list.

F. IMPLEMENT GENERATOR CLASS
Fig. 3 shows the reader a complete overview of the general
flow of the logic proposed to achieve the generation of the
sentences. The different elements of the figure are explained
in the full section.
See (step 6 in Fig. 1). This will be the most essential

component for generating a language. It consists of 5 crucial
design principles used for prototyping, each of which helps
traverse the ATN and manage incomplete recursive rule
visitations in the ATN graph state machine. Although recursion
is not preferable, the pragmatic solution we propose helps
within reason to avoid infinite recursion. These 5 design
principles will now be discussed.

1) NODE AND TRANSITION SWITCH CONTROLS
It is imperative that whilst traversing the ATN, a means for
recognizing what node state and what transition state you
are on is applied. The current ATN state should always be
made local to both switches inside the while loop, see Fig. 4.
Using this two-switch approach helps remove the duplicity of
additional switches nested in each node type case block.

2) PARSER AND LEXER STACK FOR RECURSION AND
TRAVERSAL
During the early stages of development for our proposed
generator, a problem was identified with the use of random

TABLE 5. Recursive completion.

path traversal selection in exit states. Exit states can have many
options to choose from, such as the rules they were invoked
from. To mitigate this problem, our solution implemented two
stacks, one for rule correction and one for recursion which
push the ’follow-state’ numbers during rule transitions onto
the stack.
This is the state number that appears after the rule before

transitioning into it. Thus, once the stop state of the rule is
reached, the parser state is set to the popped follow state value
ensuring random selection has no effect when exiting out of a
rule.
The question may arise as to the justification for

implementing two stacks, however, this will be explained at a
later stage in the paper. When dealing with recursive rules, the
goal is to imitate recursion with the addition of using the stack
size to keep track of depth. To visualize and contextualize this
concern, see Fig. 6.
The reader may notice when a rule is being called, the

follow-state number is stacked, i.e. 3 recursive rule entries.
When a decision is randomly made to designate a path that
deviates from the recursive pattern, it results in transitioning
to a stop state. This initiates the process of rule completion
by popping the follow-state from the stack allowing the
previous recursion to continue on the proper ATN traversal
path. Please refer to Table. 6 which shows the proposed
prototype generating from grammar as shown in Fig. 6.

3) IMPLEMENTING DECISION LOGIC
This logic should be executed when traversing a node
dependent on its specific type. Each ATN node has a unique
type, and some of them are key for traversal direction such as
the Decision state types. These decision states are fundamental
to performing the selection of one of the multiple transitions
that can be selected from such a state.

This selection is which aids in generative variability in the
search space. Any AI component would interface with these
specific state types. The goal would be to allow the AI to
deduce the correct transition to take based on its previous
visitations and paths taken.

4) IMPLEMENT TRANSITION LOGIC
It is equally important to know which transition the ATN is
on. This logic requires execution when traversing a transition
in the ATN depending on its type. The two most important
transition types for token acquisition areATOM transition and
SET transition. Other transitions such as the rule-transition

123550 VOLUME 11, 2023



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

FIGURE 3. System Flow for the Language Generation Tool.

FIGURE 4. Switch Control Diagram.

type aid as alerts that help other parts of the generator object,
such as the discussed stack implementations.

5) IMPLEMENT ATN SWITCHER
Both ATN belonging to the parser and lexer are used for
generating language. The advantage of generating from lexer

rules is in the EBNF shorthand notation which is only
applicable to lexer rules.
The lexer generator is identical to the main generator

class serving as a composite property, but instead traverses
the lexer ATN and updates the lexer state during its
traversal. If the benefits of utilizing the lexer rules do
not outweigh its implementation, then transferring the
definitions within them to a new parser rule can equally be
done.
Please refer to Fig. 5 which illustrates the process of

identifying when to switch over.
We feel that having lexer generation capabilities provides

an advantage in terms of usability for the proposed prototype.
This ensures compatibility for generating languages when
designing or using already available grammar. The example
grammar shown here Listing. 2 highlights a concern from the
perspective of the parser and ATN.

If an attempt is made to append the result of the lexer ‘‘INT’’
production rule, it will return a null value. It is this null value

VOLUME 11, 2023 123551



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

LISTING. 2. ATNSwitcher Example EBNF Grammar.

FIGURE 5. ATN Switcher Process Diagram.

that acts as the indicator that the generator has reached a non-
string literal lexer rule.

This is the key to performing the switch during the traversal
across ATNs so that the generation continues with the lexer
ATN. Our approach assumes the lexer and its ATN component
are void of recursive rules. We can always ensure that when
the lexer ATN finishes generating tokens, there will always
be a return to the parser ATN.

IV. DESIGN OF THE GENERATOR USING ANTLR4
AUGMENTED TRANSITIONAL NETWORKS
This section will narrow down the scope of the methodology
for ANTLR4 and its ATN components by explaining in detail
the design approaches of each of the different steps associated
with the grammar generator, as they are introduced in (Fig. 1,
step 6).

A. NODE AND TRANSITION SWITCH CONTROLS
The following types of states represent all the possible
conditions that can occur in the ATN generated from the EBNF
grammar and represent different events that can be processed
across the traversal of the network. Decision states imply

nondeterminism, meaning that multiple paths can be chosen
to achieve the same intended outcome of reaching the end.
The medium used, i.e. through AI, would greatly influence the
generated output based on those decisions being made. Some
of these ATN states are:

• BLOCK-START
• STAR-BLOCK-START
• STAR-LOOP-ENTRY
These states represent the beginning of a decision process,

usually represented by the pipe symbol ’|’ in EBNF for
alternatives, or ’?’ for optional inclusion when used alongside
sub-rules. These three node types can be associated with
various quantifiers as previously discussed, such as the plus
’+’ symbol (one or more), or the star ’*’ (zero or more) symbol
representing rules and or sub-rules repetitive capabilities.
Or put simply, a loop within the ATN requiring explicit passes,
or the option to skip it entirely. Analogously we do have the
END counterparts:

• BLOCK-END
• LOOP-END

These states have deterministic transitions where no decision
evaluation is taken as they only have one available transition
to traverse unless purposely deviated from the grammar rule
representation in the ATN for use case reasons. There is
another type of node with an end counterpart that is non-
deterministic, such as:

• PLUS-LOOP-BACK
Although both loop types use the loop-end node, plus-loop
states also referred to as kleene plus, have their decision at
the end of the looping process. A plus ’+’ loop signifies that
at least one code block will be generated and thus, a decision
must be taken at the end to decide on continuing or breaking
the loop. There are two other ATN state types that represent
the entry and exit point of the available rules in the grammar:

• RULE-START
• RULE-STOP

The start node is deterministic whereas the stop node
is non-deterministic as a result of its multiple transi-
tions into other rules it is referenced. This justifies
the stack implementation we previously discussed in
(subsection III-F2), which noted the concern of traversing into
the incorrect rule when exiting. With respect to transitions, the
following types of states represent the most common situations
that can occur in the ATN generated from the ANTLR4 EBNF
grammar:

• ATOM is an atomic transition where the expected token
between the initial state and the next can be found. This
expected token is acquired by-way of its literal name.

• EPSILON Transitions represent the vast majority of
transitions. They represent pathways in which no symbol
is required to dictate what state should be visited.

• SET is a transition type in which the ATN stores
SetIntervals comprised of multiple expected tokens for
that particular state. Unlike ATOM where only one can

123552 VOLUME 11, 2023



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

FIGURE 6. Recursive recovery and token acquisition of function call rule.

be chosen, SET Transitions provide many options while
still remaining syntactically valid.

• RULE-TRANSITION is a transition type that signifies
the entry and beginning of another rule in the ATN state
machine.

It is important to remark that it is exactly in these
non-deterministic states such as(BLOCK- START, PLUS-
BLOCK-START, STAR-LOOP-ENTRY and PLUS-LOOP-
BACK) where we leave space for the AI to help drive the
decision of the non-deterministic choices. The approach here
is to implement a weight- based system that enables AI to drive
such choices whilst optimizing the output using a heuristic
reward function. This is probably one of the most significant
insights of the proposed methodology where we have clearly
identified those states where the AI implementation must
interface during the traversal of the ATN.

B. PARSER AND LEXER STACK FOR RECURSION AND
TRAVERSAL
It has been decided to use two stacks for the parser and one for
the lexer since lexer rules with recursion are generally avoided.
The first stack, ruleCorrectorStack, serves the purpose of
ensuring that the traversal of the ATN is syntactically correct
so that when exiting a rule, there remains a continuation with
the path of the previously invoked parent’s rule state. The
second stack, the recursive stack has a similar purpose but is
used specifically for managing the recursive state visitations
within the same rule. This allows accurate depth tracking based
on its size, thus the need for two separate stacks.

There are key events in the traversal of the ATN that
have been selected to manage the stacks used to control the
evaluation of the rules. One of these events occurs during
a transition to another rule while the ATN is traversing
from state to state. (Algorithm. 1) outlines the pseudo-code

Algorithm 1 Implementing Stack Logic Stage 1
Data: decision, ruleTransition, currentState
Result: Update recursiveStack or ruleCorrectorStack
begin

decision← ruleTransition switch
decision.transitionType do

case Transition.RULE do
if decision.target.ruleIndex =
currentState.ruleIndex then

recursiveStack← stack() followState
← decision.followState /* push onto
stack */
recursiveStack.push(followState)

else
ruleCorrectorStack← stack()
followState← decision.followState /*
push onto stack */
ruleCorrectorStack.push(followState)

used to handle such scenarios by pushing the invoked rules
follow-state onto the respective stacks based on specific

VOLUME 11, 2023 123553



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

conditions such as rule index match indicating recursion, and
if not, rule correction during all rule transitions for correct
rule exiting. Another key moment is during the traversal of
a rule when exiting RULE-STOP. This signifies the moment
for determining its continuation and correct path decision
across the ATN states. This is where we perform the pop of
the previously obtained follow-state before entering the rule.
If the reader examines (Algorithm. 2), it will highlight the
logic used when dealing with such functionality.

Algorithm 2 Implementing Stack Logic Stage 2
Data: ATNState, currentState, parser,

ruleCorrectorStack, recursiveStack
Result: Parser state is set to the popped follow state

conditionally
switch currentState← stateType() do

case ATNState.RULE_STOP do
if ¬ruleCorrectorStack ← isEmpty() then

if ¬recursiveStack ← isEmpty() then
/* Set parser state to popped
follow-state */ parser ←
recursiveStack.pop()

else
/* Set parser state to popped
follow-state */ parser ←
ruleCorrectorStack.pop()

otherwise do
Continue

C. IMPLEMENTING DECISION LOGIC
BLOCK-START: Let us use this simple parser rule seen at
(Table 6, row 1) and the ATN that it generates seen in the
second row below. Notice how the traversal of the ‘sqlQuery’
rule presents 4 alternatives based upon the grammar production
rule. Any AI integration would almost certainly use such ATN
state types to help drive the decision process. Block-Starts can
encapsulate large areas to traverse making them excellent for
offering search space variation.
This BLOCK-START state type is significant as it can

contain alternative transitions associated with its rule or sub-
rules. This state can conceptually be considered a high-priority
decision state.When reached on the ATN and accessed through
the generator ATN state type switch, the transitions should
be retrieved, and a decision should be made on which one
to traverse. (Algorithm. 3) shows the pseudo code associated
with that decision where the current state transition selection
is accessed. The decision must be within the index boundary
which can scale depending on the number of available
transitions.

STAR-LOOP-ENTRY: The Star-Loop-Entry state type is
the entry point for a block that can be traversed zero or more
times. We will use the example grammar shown in Table 7 to

TABLE 6. Block start decision ATN Diagram.

Algorithm 3 Block Start Logic
Data: BlockStartState, currentState, parser, blockStart
Result: Implementation for transition selection
begin

blockStart ← (BlockStartState) currentState;
parser.setState(blockStart.transition(decision)
.target)

TABLE 7. Star-loop-entry decision ATN Diagram.

illustrate its GO including the output from the generator class,
see (Table 8).
(Table 7, row 2) represents a typical ATN structure for

STAR-LOOP-ENTRY states which is based upon the grammar
sample in (Table 7, row 1). As star loops provide an ability to
loop zero or more times, implementing a variable to act as a
counter is an essential requirement for controlling the loop.

123554 VOLUME 11, 2023



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

TABLE 8. Star loop entry generations.

TABLE 9. Decision loop comparisons.

This is especially important when some rules can contain
nested loops at a deeper level of the invocation stack
which highlights a concern such as the risk for combinatory
explosions. Recursive rules can also be looped within some
grammars which emphasizes the importance of controlling
the loop count, see (Algorithm. 4). How the loop count varies
at run-time is a use-case matter. It is also important to note,
that once the loop end state is reached the counter should be
zeroed. One may consider the conflicts of zeroing the counter
with both loop types. A pragmatic solution is to introduce two
loop counters and Boolean conditions to see which loop is
still active. If the loop is not active once a loop end state
is reached, it can be zeroed helping avoid any crossover
interference. Another important factor that must be addressed
is the recursive shut-off point. As loops play an important role
within ANTLR4 during left-recursive rule transformation, the
shut- off should happen inside the decision states of the two
different loop types. This ensures a force to rule stop will not
miss the traversal of certain transitions leading to incomplete
generations. Once a condition is met, the stop state of the
current rule should be set within the parser.

Algorithm 4 Star Loop Entry Logic
Data: starLoopEntry, loopCounter, maxLoops,

ATNState, parser
Result: Loop control with user set boundary
maxLoop← 5 begin

if loopCounter ≥ maxLoop then
for each transition in
starLoopEntry.getTransitions() do

if transition.getStateType() = LOOP_END
then

/* set parser state to target state number
*/

else
Set parser state using either
randomisation or alternative method
for selection

TABLE 10. Star block start decision function call ATN Diagram.

PLUS-BLOCK states act almost identically to STAR-
LOOP-ENTRY states in regards to its functional capabilities
with the only real difference being the placement of the
decision process which provides an edge for exiting the
loop. This means that during the generation process, we are
guaranteed to generate at least one column name at the very
minimum. A comparison is provided in Table 9.
PLUS-LOOP-BACK: The plus-loop-back state is a

decision state for a block that must be traversed one or more
times. Using a basic grammar see (Table 10, row 1), we will
highlight how such a constraint is applied. Please refer to
(Table 11, row 2). This provides insights into using plus loops,
which reveals when used on a production rule or sub-rule, the
generator will have no option but to loop at least once when
first encountering the loop. The PLUS-LOOP-BACK state
type is the only node with a capability for exiting this loop
type. This signifies that the logic in the generator class must

VOLUME 11, 2023 123555



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

TABLE 11. Plus-loop-entry decision ATN Diagram.

TABLE 12. Star block start function call generations.

be bound to this node type which ensures a decision will be
made to continue or break.
type represents the start of a code block in the grammar

which must be traversed zero or more times inside of a loop.
It is similar in nature to the block-start but offers alternatives
during the looping process. If we use the rule provided in
(Table 10, Row 1), it illustrates a grammar that defines a
function call. The row below provides the grammar as it
would be represented in the parser ATN. The dashed box
encapsulates the ‘block’ which the loop repeats N times.
During the looping process, we can make decisions within
the loop to alter the generated output. This example would
generate a function name and call, including or excluding
arguments. You can see from Table 12 the generated function
calls from the proposed prototype. Randomized decisions
dictated the arguments passed into the generated function
and its name. We believe that with what has currently been
discussed regarding decision logic, weight implementation
would integrate nicely into such a system. These are just states
connected by transitions, and as such, they would allow us to
interface an AI model to intelligently control such decision-
making processes.

D. IMPLEMENT TRANSITION LOGIC
It is equally as important to know which transition the ATN is
on. This logic requires execution when traversing a transition
in the ATN depending on its type. The two most important
transition types for token acquisition are ATOM transition and

FIGURE 7. Set transition ATN diagram.

SET transition. Other transitions such as the rule-transition
type aid as alerts that help other parts of the generator object,
such as the discussed stack implementations.

ATOM: The main logic associated with Atom transitions is
for token acquisition, Lexer rule detection, and ATN traversal
breaking. The break is associated with the root rule which
contains the special EOF (End of File) token at the right edge
of the production rule.

Algorithm 5 Implementing Token Acquisition and
Break
Data: decision, atomTransition, currentState,

atomToken
Result: Token aquisition from either parser or lexer,

and main break
decision← atomTransition begin

switch decision← transitionType do
case Transition.ATOM do

if atomTransition.label() == EOF then
break main while loop

else
atomToken←
parser.getVocabulary().getLiteralName
(atomTransition.label().getMinElement());

if token == null then
Lexer Rule detected Jump to Lexer
ATN Append lexer token to string

else
Append parser token to string

otherwise do
Continue

Please refer to (Algorithm. 5), which provides the pseudo
code for obtaining an atom token during the traversal of the
ATN. it also shows how the generator knows when to stop the
generating process using the aforementioned EOF token to
break the main loop.
SET: Set transitions provide great variations and syntac-

tically correct language alternatives. Set transitions provide
alternative tokens which are expected at the transition the ATN
is currently on. Only one set Interval alternative is selected
from all the possible choices.

123556 VOLUME 11, 2023



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

FIGURE 8. Reinforcement Learning interfaced with generator.

Let us take the example of a grammar representing SQL.
One would expect a table entity to have multiple fields. These
fields could be registered as set intervals as shown in Fig. 7.
In simplistic terms when encountering a set transition, a list
of potential tokens is made available to choose from. The
generator’s job is choosing one and appending it to the query
string. Any AI integration could utilize sets by weighting each
of the tokens in the set-list. The selection process could be
controlled by the AI, allowing it to infer the correct semantics
through training.

E. TRAVERSAL LOGIC DESIGN
This logic performs the continuous generation of the grammar
as it contains a main while loop that keeps pushing us forward
the transverse of the ATN.
The inclusion of the aforementioned switch referred to

here in Fig. 5 helps by updating the parser state. Please
refer to (Algorithm. 6) to see the implementation of this
logic. The main loop will run until the EOF token is reached,
as previously discussed. If a state’s transitions amount to 1,
then no decisions will take place, hence why the decision is
set to 0. The bulk of transitions from states are going to be
epsilon, which means there is only one transition to take.

F. ENVISIONED AI-DRIVEN GENERATION ARCHITECTURE
Fig. 8 illustrates our research use-case for the next iteration
of our proposed SQL generator prototype. It highlights how

Algorithm 6 Traversal Logic Design
Function GenerateFromGrammar(parser,
lexer):

begin
parser .setState(0)
continuation = true
while continuation do

parser ←
currentState.transition(0).target
currentIndex ← currentState.ruleIndex
currentState = getATN ().states←
parser.getState()
switch currentState← stateType()
do

make decision and set parser to target
state *

switch decision← serializationType() do
check for recursion * push to stacks
follow state * obtains atom and set
interval tokens * append to string
builder object *

return The generated language

an AI model could in theory be interfaced with the different
components and flow direction of the generator. The main goal

VOLUME 11, 2023 123557



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

of the SQL Generator can be analogized as a car providing
the driver with the required interfaces needed for traversing
forward from one point to the other. The driver is allocated
a map that binds the driver within a topological boundary
and defines the accepted rules of the road. The driver must
make many decisions when arriving at intersections to choose
the best route and is rewarded when told the decision had a
positive outcome.

However, unbeknownst to the driver, these rewards are only
given based upon the consequences of the driver’s decisions
which are being provided by another influence. The driver
now has an incentive to train and to ensure that mistakes are
minimal for the maximum attainment of rewards. While this
process ensues, the history of the driver’s chosen route is being
logged. These are the names of the road signs passed by whilst
on a particular road. These names of the different road signs
when read in the order of traversal, constitute only a part of the
route taken and direction gone. The driver only knows when
the end is reached when the road sign encountered is named
(End Of Road).

Now if we replace driver with AI, map with grammar, road
with transition, road sign with token, and intersection for
decision state, it starts to become apparent that this analogy
at its core is analogous with RL (Reinforcement Learning).
Based on our preliminary research thus far, this is the selected
training method we consider an optimal first choice for AI
generator integration. From a design perspective, it offers a
pragmatic solution for interface compatibility due to the basic
concept of the goal, which is maximizing the reward. This
training method is more modular, which allows us to interface
the AI around the SQL Generator more easily.

FIGURE 9. General Testing Process.

V. EXPERIMENTAL RESULTS
A. EXPERIMENT SUMMARY
Please refer to Fig. 9 which illustrates the testing, data
collection, and validation process. The target language used
was Java. An ANTLR4 MySQL grammar was used for
validation, while a subset of the same grammar was used for
generation. Various metrics were acquired through a process
of logging the prototypes’ randomized behavior, including

the parameters set before execution to produce the generated
output. The metrics collected were:

• The maximum depth reached.
• The number of total states visited.
• Generations attributed to the parser.
• Generations attributed to the lexer
• The maximum allowed rule visitations (set before
execution)

• The maximum allowed recursion (set before execution)
• The maximum allowed loops (set before execution)
• The time taken to produce the generated query.
• The generated query string.

A total of 3000 samples were collected, of which 1750 met
the conditions to satisfy the validity of the syntax. Higher
depth resulted in greater ambiguity and failure. Additionally,
generator capabilities were tested against grammar complexity
to ascertain the impact on time. Findings showed that every
250 non-terminals incur a time penalty of 0.0027546ms.
Furthermore, testing was conducted to validate our solution
proposed for recursive mitigation that showed positive results
aligning with the aforementioned logic already discussed
regarding the design and code to achieve this. Metadata from
each generation was used to confirm the depth reached and
corrections made to resolve it, with both showing equal values.

B. EXPERIMENTAL VALIDATION
1) SQL GENERATION
The approach taken for the validation has been to use a publicly
available real-world ANTLR4 MySQL EBNF grammar for
validation. To be concrete, the complete MySQL EBNF
grammar was utilized for generation and validation. Later
on, such grammar was reduced to a subset that only contains
the Data Query Language (DQL) part of the SQL language
leaving outside both Data Manipulation Language (DML)
and Data Definition Language (DDL). The grammar contains
222 rules totaling a number of 841 lexer tokens, with a further
55 lexer rules which can be expanded into subsets of string
literals through shorthand notation. Of the 222 rules, 34 of
them have recursive properties. 3000 randomized generations
of MySQL SELECT queries were produced by the proposed
prototype. During every generation of the ATN, implemented
in ANTLR4, both lexer and parser were traversed using the
proposed approach explained previously in past sections of
this paper.
It is worth indicating that the only comparable results

available in the state of the art against our solution [14] do not
have any available open source to be used for comparison.
It has not allowed us to establish a baseline metric for
evaluation between tools. The results are shown in Fig. 10).
The figure represents the frequency on the Y axis related to the
number of executions. The X-axis represents the maximum
depth reached in the recursion stack during the generation,
e.g. 6 represents the maximum depth in the recursion each
particular generation reached. This has been achieved by
implementing a metric observer design pattern which would

123558 VOLUME 11, 2023



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

FIGURE 10. Depth Reached Vs passed Testing.

FIGURE 11. Depths Reached Distributions.

log all information pertaining to the generated query. It is
worth mentioning that there are two different series available
in the graph. One is related to generated queries that have
passed syntax validation, whereas the other refers to those that
have failed.
The test used to determine if a query is validated or not is

defined as follows. After the query has been generated, the
said query is fed to ANTLR4’s input where syntax analysis
can begin. The syntax analysis is validated on the basis
of a successful parse tree being created. This means that
syntactically, the proposed prototype has been successful.

The reader can see how 1750 passed the test when analyzed
against the depth reached during generation. If the reader
looks at Fig. 10 it will convey that most successful generations
are heavily favored towards a depth of 0, with some success
from 1 to 4. This may mean more parameters need to be
tweaked inside the generator to ascertain the problems of
the query losing coherence when depth increases. However,
another factor may reside within lexer generations where the
random nature of the generated tokens makes the syntactic
validity of the parser generations more noisy and more prone
to be misaligned with the grammar rules.

Fig. 11 highlights the distribution of the syntactically valid
generations. If we take an example recursion depth, i.e. 3:

t̄ =
1
N

N∑
i=1

ti ± s =

√√√√ 1
N − 1

N∑
i=1

(ti − t̄)2 (1)

Please refer to (1) where t represents the average time of
query generation at a depth of 3 where n represents the total
number of queries that reached a depth of 3 and s represents
the standard deviation in time taken to generate the query.
The average execution time is 2.857ms with a standard

deviation of 2.258ms. When there is no recursion the analyzed
data shows an average execution time of 0.307ms with a
standard deviation of 0.554ms. Due to the greater amount
of zero depth generations, a pronounced positive skew can be
seen due to the occurrence of a greater amount of outliers.

FIGURE 12. Depths Reached Distributions of passed and failed syntax
check.

Fig. 12 shows to the reader the execution time associated
with each of the 3000 different executed queries. The reader
can see the relationship between execution time and the
recursion depth reached and also the relationship between
execution times and syntax validity, shown as passed or failed.
It is worth mentioning that there is exponential growth over
time as the depth is increased.

2) GRAMMAR COMPLEXITY EXPERIMENTATION
We have chosen to explore the capability of the proposed pro-
totype and the consequential effect that grammar complexity
incurs on generation time through additional non-terminals.
This is important for two reasons. 1. It can reveal insights into
grammar performance for token generation, and 2. It allows
us to understand the proportional impact on generation time
whilst generating the same number of tokens using additional
non-terminals.
Although EBNF grammars can contain extended com-

plexity such as recursive production rules, quantifiers, and
alternatives, it is not our intent to include them as of yet.
We instead want to focus on the core syntax such as production
rules, terminals, and non-terminals.
The methodology for this experiment can be seen in

Fig. 13 which illustrates the process of generating all

VOLUME 11, 2023 123559



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

FIGURE 13. Complex Grammar Experimentation Method.

required grammars for the experiment using our EBNF
rule generator. We generated over 6000 ANTLR4 EBNF
grammars which were retrieved in a linear order and used to
generate the recognizer which stores the ATN representations
needed for traversal. Both parser and lexer are compiled and
then dynamically loaded using Java’s reflection features at
run-time, thus allowing us to re-initialize and execute the
generator prototype consecutively until all logical grammar
representations are traversed using their ATNs. Furthermore,
themetadata collected during theATN traversal process is used
to aggregate and assess the generator capabilities alongside
grammar complexity when dealing with deep nested rule
traversal and token generation.

Grammars are generated in order of complexity. This means
that the first grammar generated will contain only two tokens
with the second grammar generated maintaining a direct
association with the previous through the total number of
equal tokens.
Fig. 14 highlights the logic of the pattern utilized when

implementing increasing complexity into each grammar. You
can see as the terminal count increases in the baseline grammar,
the following grammar must distribute the same amount of
terminals over an equal number of rules.
If you direct your attention to Fig. 15 it reveals that

although these grammars differ, the intended output remains
the same. The only difference is in the way the tokens are
acquired through the traversal process. This maintains an
association between both grammars allowing us to statistically
investigate the impact of additional non-terminals with equal
token generation.
The results of the grammar complexity experiment can

be visualized in Fig. 16. This experiment allowed us to
quantify the impact on generation time through the inclusion
of additional non-terminals. With our metadata data-set,
we utilized a scatter plot with a Y-axis representing the time
taken to generate the tokens, and an X-axis representing
the total amount of tokens generated. We used a third

FIGURE 14. Grammar Complexity Pattern.

FIGURE 15. Grammar Complexity Association.

color dimension to represent the number of rules traversed
to highlight greater complexity. The red dash lines use a
step count of 250 and indicate the association between the
incremented grammars containing additional rules and the
non-complex baselines below it. It is here from which our
delta values and proportional impacts are extracted.
Table 13 provides 3 columns, the first being the deltas of

time (2) relating to the differences observed from the final
and initial steps. This is done in increments of 250 which
we consider to be a balanced approach while maintaining an
adequate number of results for analysis. Column two provides
the deltas of rules traversed (3) and highlights the step count

123560 VOLUME 11, 2023



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

FIGURE 16. Impact on time through increasing non-terminals within prod rules.

TABLE 13. Deltas of Time taken and Rules Traversed with impact.

used. Column three measures the proportional impact (4)
incurred on the time taken to generate the tokens with the
additional non-terminals.

1TimeTaken = TimeTakenfinal − TimeTakenInitial (2)

1RulesTraversed = RulesTraversedfinal
− RulesTraversedInitial (3)

impact =
1TimeTaken

(1Rules Traversed)
(4)

The results show a linear relationship between time taken
and rules traversed. As more non-terminals are added a rise in
time is observed. The proportional impact shown in Table 13
does not scale by a constant factor; rather, the values show
slight deviations in the amount of increase per 250 rules.
This may indicate the computational load on the system as
more rules require slightly more time for generation than the
previous rule. However, the discrepancies are insignificant
to warrant a deeper analysis. From these results, we can

discern the average impact of grammar complexity concerning
generation time for every 250 non-terminals in Milliseconds.

x =

∑n
i=1 xi
n

=
0.0027546

12
= 0.00022955 (5)

(5) shows us that the average impact on time per every
250 non-terminals equates to 0.0027546ms, of which when
converted to seconds is 0.0000027546 of a second. From the
results, we can conclude that there is indeed an impact penalty
when contrasted against the increase in non-terminals and
tokens.

3) VALIDATING RECURSIVE MITIGATION
We have previously discussed in our paper the issues
surrounding recursive rules contained within grammars and
propositioned our solution for mitigating the exponential
growth. Our solution makes use of a stack for maintaining a
record of follow states with additional logic for conditional
execution resulting in the correct recursive closure while
maintaining syntactic validity.
We can demonstrate the effectiveness of our recursive

mitigation proposal using a test grammar, see here (listing 3),
and here Fig 17 which highlights how our constraint of
permitted recursions can directly influence the ascend and
descend behavior observed whilst traversing recursive rules in
the ATN. The left plot provides a 2-dimensional view of the
data where X represents the state visited and Y represents the
time taken to get to that state from the previous. The color acts
as a third dimension for the 2D scatter plot of the depth reached.
The right scatter plot uses the same X and Y variables but with
an additional third dimension Z for depth. This provides an
approach that we feel offers amore practical way of visualizing
the observable ascend and descend behavior. Both plots are
populated with the same data.

VOLUME 11, 2023 123561



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

FIGURE 17. Recursive Validation in 3 Dimensions.

LISTING. 3. Recursive test grammar.

What can be seen from the data in the 3D scatter plot is the
rise as depth increases and we begin to ascend. This continues
until our constraint is met, at which point it begins to fall.
The peak reached before starting the descent is the moment
in which the mitigation control begins working, which is 100.
This was the constraint value chosen for this experiment. If no
constraint was used there would be exponential growth as
a result of the infinite recursion. This constraint signifies
that regardless of the decision process used when faced with
multiple path options if the constraint is met, it will forcefully
complete the recursion using the stack to pop the follow state
and exit the recursion normally until we feel ready to release
that control. For the sake of brevity, only 5 examples have been
chosen to highlight their proper closures, see Table 14. Two
properties were used from the generation metadata showing
our recursive corrections match the depth reached.

VI. LIMITATIONS AND FUTURE WORK
The proposed framework is able to successfully perform
its intended task. However, it is recognized that there are
some limitations and room for improvement. They can be
summarized as follows.

A. SEMANTICS
Our proposal generates syntactically valid SQL queries. This
does not always equate to a coherent query for the intended

TABLE 14. Recursive Generations validated against generation metadata.

purpose. To achieve semantics validity, a required knowledge
of the concrete use case being addressed by the SQL query
generated. A way to address this is by implementing use-case-
specific semantic predicate actions on the grammar, coupled
with the insertion of custom action logic for use-case-specific

123562 VOLUME 11, 2023



C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

decisions. Another approach is to make use of AI to drive
the generation of sentences to infer the semantics. These are
clearly areas yet to be explored.

B. RECURSION
Recursion can be extremely beneficial for complex SQL
generations, for example, for generating nested sub-queries.
However, unless mitigated, it can lead to scenarios where
recursion nested within loops cascades beyond a recovery
point. In our approach, when repetitive rules are used using the
Kleene plus or Kleene Star quantifiers, counters are deployed
to monitor such repetitions. Finding the sweet spot for the
optimal boundaries to cut the recursion depth is difficult.
Currently, we are providing such cutting threshold as a fixed
constraint which can be seen as a limitation. We believe that a
more robust heuristic-based implementation could be further
explored to monitor how depth is influencing the transitioning
between states.

C. RANDOMISED TRANSITION SELECTION
As previously discussed, our current implementation when
faced with multiple paths during ATN traversal is through a
random choice. However, using such a system for transitions
can result in inconsistencies and added ambiguity in some
generations. This is where we consider that a clear next step
is the creation of a weight-based solution to help drive such
selections permitting an AI solution to help search the optimal
search space for the use case being addressed.

VII. CONCLUSION
In In this paper we proposed a novel framework to aid in gen-
erating syntactically valid languages from EBNF grammars.
We highlighted steps for creating generative-friendly grammar
which helped reduce the risk of recursive and combinatory
runaways through the modification and/or removal of said
grammar rules. We concurrently developed and implemented a
generation prototype using ANTLR4 and its ATN components
of both lexer and parser, highlighting possible areas of interest
for AI integration including the capability to utilize lexer rules
for generation by means of switching ATNs. We were also
able to provide pragmatic solutions for controlling randomized
generations through the implementation of stacks. This would
alleviate the concerns of recursive rule traversal, including
correcting the exit transition to ensure syntactic validity. Using
the proposed prototype we were able to generate 3000 SQL
statements, with an average execution time of 0.307ms.
We analyzed the syntactic validity of the generated SQL

statements and found some problems resulting from lexer
generations and certain recursive rules.
Furthermore, extended generator experiments were con-

ducted to ascertain the effect grammar complexity has on
the time taken to generate. The results highlighted for every
250 non-terminals traversed, a time penalty of 0.0027546ms
was incurred. We also validated our recursive mitigation
solution pertaining to recursive production rules and provided

visual validation of the ascend and descend behavior reacting
to our pre-determined constraint.
We understand our proposal is not a one-shot solution

regarding language generation and recursion mitigation.
Instead, it is a step in the right direction by helping other
researchers to see the areas of interest for exploration regarding
generating language. We know that the complexity of certain
grammars can make it time -consuming to modify them, hence
the justification for leaving recursive rules in when generating
SQL. This helped align it with real-world expectations. From
a goal-oriented perspective, the tool performed really well
and was extremely quick when outputting generated SQL
statements. We had zero recursive and combinatory runaways
due to the implementation of the proposed control logic. Our
future work aims to fix any persistent problems and improve
upon the framework. Moreover, inspired by the potentially
wide applicability of the proposed framework, we aim to focus
on a cybersecurity use case for detecting different kinds of
cyber- attacks through the creation of novel metrics using SQL
and AI.

REFERENCES
[1] J. Lehman, J. Gordon, S. Jain, K. Ndousse, C. Yeh, and K. O. Stanley,

‘‘Evolution through large models,’’ 2022, arXiv:2206.08896.
[2] Gpt-4 Technical Report, OpenAI, San Francisco, CA, USA, 2023.
[3] R. Thoppilan et al., ‘‘LaMDA: Language models for dialog applications,’’

2022, arXiv:2201.08239.
[4] (Jan. 5, 2021). Dall·e: Creating Images From Text. [Online]. Available:

https://openai.com/research/dall-e
[5] P. von Platen, S. Patil, A. Lozhkov, P. Cuenca, N. Lambert, K. Rasul,

M. Davaadorj, and T. Wolf. (2022). Diffusers: State-of-the-art Diffusion
Models. [Online]. Available: https://github.com/huggingface/diffusers

[6] A. Meier and M. Kaufmann, SQL and NoSQL Databases (Database
Languages). Cham, Switzerland: Springer, 2019, pp. 85–121.

[7] PlantUML. PlantUML: Ebnf. Accessed: Apr. 10, 2023. [Online]. Available:
https://plantuml.com/ebnf

[8] S. de Agostlno and R. Greenlaw, ‘‘Automata theory,’’ in
Encyclopedia of Information Systems, H. Bidgoli, Ed. New York,
NY, USA: Elsevier, 2003, pp. 47–63. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/B0122272404000046

[9] W. A. Woods, ‘‘Augmented transition networks for natural language analy-
sis,’’ Comput. Lab., Harvard Univ., Cambridge,MA, USA, Tech. Rep., CS-1,
1969.

[10] T. Parr, S. Harwell, and K. Fisher, ‘‘Adaptive LL(*) parsing: The power of
dynamic analysis,’’ in Proc. ACM Int. Conf. Object Oriented Program. Syst.
Lang. Appl. New York, NY, USA: Association for Computing Machinery,
Oct. 2014, pp. 579–598, doi: 10.1145/2660193.2660202.

[11] C. Sugandhika and S. Ahangama, ‘‘Heuristics-based SQL query generation
engine,’’ in Proc. 6th Int. Conf. Inf. Technol. Res. (ICITR), Dec. 2021,
pp. 1–7.

[12] R. J. L. John, D. Bacon, J. Chen, U. Ramesh, J. Li, D. Das, R. Claus,
A. Kendall, and J. M. Patel, ‘‘DataChat: An intuitive and collaborative
data analytics platform,’’ in Proc. Companion Int. Conf. Manag.
Data, 2023, pp. 203–215. [Online]. Available: https://www.scopus.
com/inward/record.uri?eid=2-s2.0-85162911612&doi=10.1145%2f35550
41.3589678&partnerID=40&md5=a38430a47554d94b2968e6a952e3bf0c

[13] A. Anisyah, T. E. Widagdo, and F. N. Azizah, ‘‘Natural language interface
to database (NLIDB) for decision support queries,’’ in Proc. Int. Conf. Data
Softw. Eng. (ICoDSE), Nov. 2019, pp. 1–6.

[14] S. Sargsyan, J. Hakobyan, M. Mehrabyan, R. Mkoyan, V. Sahakyan,
V. Melkonyan, M. Arutunian, A. Fahradyan, and A. Avetisyan, ‘‘Advanced
grammar-based fuzzing,’’ in Proc. Ivannikov Memorial Workshop (IVMEM),
Sep. 2022, pp. 61–64.

[15] S. Sargsyan, S. Kurmangaleev, M. Mehrabyan, M. Mishechkin,
T. Ghukasyan, and S. Asryan, ‘‘Grammar-based fuzzing,’’ in Proc.
Ivannikov Memorial Workshop (IVMEM), May 2018, pp. 32–35.

VOLUME 11, 2023 123563

http://dx.doi.org/10.1145/2660193.2660202


C. Troy et al.: Enabling Generative AI to Produce SQL Statements: A Framework

[16] F. Palmas, J. Raith, and G. Klinker, ‘‘A novel approach to interactive
dialogue generation based on natural language creation with context-free
grammars and sentiment analysis,’’ in Proc. IEEE 20th Int. Conf. Adv. Learn.
Technol. (ICALT), Jul. 2020, pp. 79–83.

[17] J. O. Ryan. (2017). Expressionist. [Online]. Available: https://github.
com/james-owen-ryan/expressionist

[18] J. P. Pires and F. B. E. Abreu, ‘‘Knowledge discovery metamodel-based unit
test cases generation,’’ in Proc. IEEE 11th Int. Conf. Softw. Test., Verification
Validation (ICST), Apr. 2018, pp. 432–433.

[19] (Dec. 2016). About the Knowledge Discovery Metamodel
Specification Version 1.4. [Online]. Available: https://www.omg.
org/spec/KDM/1.4/About-KDM

[20] (2022). About Xunit. Net. [Online]. Available: https://xunit.net/
[21] J. Wang, P. Zhang, L. Zhang, H. Zhu, and X. Ye, ‘‘A model-based fuzzing

approach for DBMS,’’ in Proc. 8th Int. Conf. Commun. Netw. China
(CHINACOM), Aug. 2013, pp. 426–431.

[22] P. Parikh, O. Chatterjee, M. Jain, A. Harsh, G. Shahani, R. Biswas, and
K. Arya, ‘‘Auto-query—A simple natural language to SQL query generator
for an e-learning platform,’’ in Proc. IEEE Global Eng. Educ. Conf.
(EDUCON), Mar. 2022, pp. 936–940.

[23] J. G. Meyer, R. J. Urbanowicz, P. C. N. Martin, K. O’Connor, R. Li,
P.-C. Peng, T. J. Bright, N. Tatonetti, K. J. Won, G. Gonzalez-Hernandez,
and J. H. Moore, ‘‘ChatGPT and large language models in academia:
Opportunities and challenges,’’ BioData Mining, vol. 16, no. 1, p. 20,
Jul. 2023, doi: 10.1186/s13040-023-00339-9.

[24] J. Cámara, J. Troya, L. Burgueño, and A. Vallecillo, ‘‘On the assessment of
generative AI in modeling tasks: An experience report with ChatGPT and
UML,’’ Software and Systems Modeling, vol. 22, no. 3, pp. 781–793, 2023.
[Online]. Available: https://www.scopus.com/inward/record.uri?eid=2-
s2.0-85160072219&doi=10.1007%2fs10270-023-01105-
5&partnerID=40&md5=d8583d705f4bf2c7e97fe11bfb1b00c8

[25] B. D. Goel, A. Gupta, S. C.Batra, and Hunar, ‘‘MUCE: A multilingual
use case model extractor using GPT-3,’’ Int. J. Inf. Technol., vol. 14, no. 3,
pp. 1543–1554, 2022, doi: 10.1007/s41870-022-00884-2.

[26] X. Tang, H. Gao, and J. Gao, ‘‘Knowledge-based questions generation with
seq2seq learning,’’ in Proc. IEEE Int. Conf. Prog. Informat. Comput. (PIC),
2018, pp. 180–184.

[27] Overview—Seq2Seq. Accessed: Jun. 18, 2023. [Online]. Available:
https://google.github.io/seq2seq/

[28] Z. Gao, W. Dong, R. Chang, and C. Ai, ‘‘The stacked Seq2seq-attention
model for protocol fuzzing,’’ in Proc. IEEE 7th Int. Conf. Comput. Sci.
Netw. Technol. (ICCSNT), Oct. 2019, pp. 126–130.

[29] D. Lu, J. Fei, L. Liu, and Z. Li, ‘‘A GAN-based method for generating SQL
injection attack samples,’’ in Proc. IEEE 10th Joint Int. Inf. Technol. Artif.
Intell. Conf. (ITAIC), vol. 10, Jul. 2022, pp. 1827–1833.

[30] DukeNLIDB. (2017). Natural Language Interface to Databases
(NLIDB). Accessed: Apr. 8, 2023. [Online]. Available:
https://github.com/DukeNLIDB/NLIDB

CHRISTOPHER TROY received the Bachelor of
Science (B.Sc.) degree (Hons.) in web and mobile
development, in 2019, and the Master of Science
(M.Sc.) degree (Hons.) in cyber security, in 2021.
He is currently pursuing the Ph.D. degree with
the University of the West of Scotland, U.K. His
research interests include software development,
advancements in AI, network security, and natural
language processing. He has been awarded the court
medal twice from the University of the West of

Scotland for showing the highest academic standing in both the B.Sc. and
M.Sc. courses. He is also undertaking a scholarship from the Carnegie Trust
for the Universities in Scotland.

SEAN STURLEY (Member, IEEE) received the
M.Sc. and M.Eng. degrees in cyber security. He is
currently a Senior Lecturer in cyber security
with the School of Engineering and Computing,
University of the West of Scotland, with a
specialism in network forensics. After 20 years of
industrial experience in banking, finance, and retail
network administration and security, he has sought
to apply this wealth of knowledge and experience
in the higher education sector by the design and

delivery of a practically focused the M.Sc. and M.Eng. degrees. He is also a
network security consultant to several charitable bodies, a Panel Member of a
major U.K. Cyber Security Accreditation, and an Editor of a major European
Computer Science Conference.

JOSE M. ALCARAZ-CALERO (Senior Member,
IEEE) received the B.Eng., M.Eng., and Ph.D.
degrees. He is currently a Full Professor in networks
and security with the School of Engineering and
Computing, University of the West of Scotland,
U.K. He is also a Representative Member of
the EU 5G-PPP Technological Board, the NATO
Working Group IST-118, and the Internet Technical
Committee. He has been involved in international
research projects totaling more 20m EUR. He is

also a Co-Technical Coordinator of the H2020 5G PPP SELFNETConsortium
(6.8mEUR). He shifted to the industrial side of researchworking four years for
the Cloud and Security Laboratory, Hewlett-Packard Research Laboratories,
U.K. He has published more than 100 articles in journals, magazines, books,
and conferences in computer science and telecommunications, including
more than 15 international patents and intellectual properties rights. He is
also a FHEA. He is also an Associate Editor of a number of prestigious
journals, such as IEEE Communication Magazine and the Chair in a number
of prestigious conferences, such as IEEE TrustCom and IEEE ATC. He has
received a number of international awards, such as the Best Ph.D. Award on
Computer Science and Outstanding Chair Award.

QI WANG is currently a Full Professor with the
School of Computing, Engineering and Physical
Sciences, University of the West of Scotland
(UWS), U.K. He has served as a Board Member
of the Technology Board for EU Fifth-Generation
Public Private Partnership (5G PPP), a member
for several 5G PPP Working Groups (Architecture
and Software Networking), EU 6G Industry
Association (6G-IA), Scotland’s Developing AI
and AI Enabled Products and Services Working

Group, and International Telecommunication Union (ITU) Focus Groups of
ML5G and Autonomous Networks, and an Academic Member of ITU and
European Telecommunications Standards Institute (ETSI). He was theWinner
of U.K. Times Higher Education Awards 2020-Knowledge Exchange/Transfer
Initiative of the Year Award and the Winner of 2020 Scotland Centre
for Engineering Education and Development Industry Awards—Innovation
Award.

123564 VOLUME 11, 2023

http://dx.doi.org/10.1186/s13040-023-00339-9
http://dx.doi.org/10.1007/s41870-022-00884-2

