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Abstract

Multivariate time series forecasting is essential in various fields, including healthcare and traffic management, but it is a
challenging task due to the strong dynamics in both intra-channel relations (temporal patterns within individual variables)
and inter-channel relations (the relationships between variables), which can evolve over time with abrupt changes. This paper
proposes ERAN (Evolving Relational Attention Network), a framework for multivariate time series forecasting, that is capable
to capture such dynamics of these relations. On the one hand, ERAN represents inter-channel relations with a graph which
evolves over time, modeled using a recurrent neural network. On the other hand, ERAN represents the intra-channel relations
using a temporal attentional convolution, which captures the local temporal dependencies adaptively with the input data. The
elvoving graph structure and the temporal attentional convolution are intergrated in a unified model to capture both types of
relations. The model is experimented on a large number of real-life datasets including traffic flows, energy consumption, and
COVID-19 transmission data. The experimental results show a significant improvement over the state-of-the-art methods in

multivariate time series forecasting particularly for non-stationary data.

Keywords Time series forecasting - Multivariate time series forecasting - Dynamic graph neural networks -

Attention mechanism

1 Introduction

In this paper, we study the problem of multivariate time
series forecasting, which is to predict the future data points
given previous data of time series. Forecasting time series is
critical for many real-life applications, including predicting
traffic flow, electricity consumption, and COVID transmis-
sion. Accurate forecasting is crucial for making informed
decisions and planning for the future.

Multivariate time series forecasting is challenging due
to the complexity in both intra- and inter-channel rela-
tions. Intra-channel relations involve the temporal patterns
within individual variables, determining the dependencies
of future values on prior ones. Intra-channel relations can
be highly dynamic, particular in non-stationary time series,
making it difficult to forecast. For example, in COVID-19
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data, changes in government policies may impact COVID-19
transmission in a city, resulting in non-stationarity in tempo-
ral patterns and making it challenging to predict new cases.
Inter-channel relations, on the other hand, refer to the depen-
dencies between pairs of variables. Again, these relations
can evolve over time. For instance, the correlation between
the spread of COVID-19 among cities or countries may vary
over time due to adaptive government policies such as social
distancing or border closures. Therefore, accurately captur-
ing the dynamics of these types of relations is essential for
multivariate time series forecasting.

Time series forecasting have been extensively studied in
conventional models such as autoregressive model (AR),
moving average model (MA), autoregressive integrated mov-
ing average (ARIMA) [15]. Recently, deep neural network-
based models, such as recurrent neural networks (RNNs)
[7, 14], and convolutional neural networks (CNNs) [3],
have shown promising results due to their ability to cap-
ture nonlinear temporal patterns. These models represent the
dependencies of future data points on previous data points
using a set of learnable parameters. However, since these
paramerters are fixed after training, they can only capture
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invariant temporal patterns, and therefore, are insufficient
to model time series with time-varying patterns, such as
non-stationary time series that are commonly observed in
reality.

To model the inter-channel relations, recent works have
been applying graph neural networks to multivariate time
series data. In this approach, a multivariate time series is
viewed as a graph, with each variable represented as a node
and the underlying correlations between variables repre-
sented as connections between nodes. The graph can be either
pre-defined or learned from data. By combining a graph neu-
ral network with a temporal model such as an RNN [2] or
a CNN [12, 34, 35], both types of relations can be modeled
simultaneously. The primary limitation of the this approach
is its static graph structure, where a single graph is used
throughout the entire lifespan of the time series. However, the
static graph structure is inadequate for capturing the evolving
relationships between variables over time, as the example of
COVID transmission above.

A highly plausible path to tackle these challenges is via
learning the evolution of the spatio-temporal relations in
time series. Unlike entities in static data, time series vari-
ables have unique evolving lives throughout space-time. As
a series progresses, it changes its internal states and interacts
with other series at arbitrary time. Guided by these prin-
ciples, we introduce ERAN (Evolving Relational Attention
Network), a novel method for modeling multivariate time
series. ERAN learns to extract the graph structure underly-
ing inter-channel relations at each time step. In ERAN, a
graph structure is represented by an adjacency matrix. The
evolution of the adjacency matrices is modelled by a recurrent
neural network, where the adjacency matrix at each time step
depends on that of the previous step and the current observed
data, allowing ERAN to accurately model the evolving inter-
channel relations in the data.

Once discovered, the dynamic graph structure guides a
reasoning process that jointly captures the intra- and inter-
channel relations of a time series. This process happens
within a multi-layer architectures that alternate between
inter-channel relations by graph convolution network and
intra-channel relations by a fused Temporal Attentional
Convolution (TAC). This process results in a concrete rep-
resentation of the observed time series which facilitates
convenient decoding into the future forecast.

The ERAN model stands out with its authentic and explicit
modeling of evolving relations in time series leading to the
effective and stable forecasting process. These advantages
are demonstrated through a comprehensive set of experi-
ments across multiple domains, including traffic flow, elec-
tricity consumption, and COVID-19 transmission. ERAN
consistently outperforms existing state-of-the-art models on
these tasks. Analysis of the model reveals its effectiveness in
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exploring the underlying dynamic relations during the fore-
casting process.
In summary, we present the following innovations:

A method to model the dynamics of inter-channel rela-
tions in multivariate time series, by learning a dynamic
graph underlying such relations, that evolves over time.
e Temporal attentional convolution, a self-attention mecha-
nism operating on sliding windows, to model the dynam-
ics of intra-channel relations in multivariate time series.
e Development of a framework for multivariate time series
forecasting that concurrently captures the dynamics of
intra- and inter-channel relations between variables.
e Conducting extensive experiments on multiple real-
world datasets to demonstrate the effectiveness of explic-
itly considering the dynamics of both relations in mul-
tivariate time series forecasting, in particular, for non-
stationary time series.

2 Related work
2.1 Traditional time series forecasting

Time series forecasting has been studied for decades. Tra-
ditional time series techniques are mainly based on the
statistical approach. These methods include the well-known
autoregressive integrated moving average (ARIMA) [15],
support vector regression (SVR) [25], random forest (RF)
[10], vector autoregressive models (VARs) [15].

ARIMA is a generalisation of the autoregressive (AR)
and and autoregresive moving average (ARMA) models [22].
SVR [15] is a type of support vector machine that can per-
form regression by finding a hyperplane that fits the data with
the maximum margin. SVR can handle non-linear and high-
dimensional data, and provide probabilistic forecasts. RF
[10] is an ensemble learning method that can perform regres-
sion by combining multiple decision trees that are trained on
different subsets of the data. RF can handle noisy and het-
erogeneous data, and reduce the variance and overfitting of
individual trees.

Vector autoregresive models (VARs) extend AR and
ARMA to extract linear correlation between variables in
multivariate time series [15]. Nevertheless, traditional meth-
ods have several drawbacks. Firstly, they are linear models
and hence cannot capture non-linear dependencies present in
complex data. Secondly, these methods train time series indi-
vidually, and therefore, they are not scalable to large-scale
data sets containing millions of time series. Furthermore, they
cannot leverage the common patterns shared between time
series in the data set, due to their individual training.
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2.2 Deep learning-based time series forecasting

Deep learning-based methods have recently shown promis-
ing results in time series forecasting by capturing non-linear
dependencies in the data. Among these techniques, RNN and
its variants LSTM and GRU [6, 7, 14], has been used, such
as Deep AR [30], Deep State-Space Models (DSSM) [28],
TimeGrad [29] to name a few. CNN-based models such as
WaveNet [24], GluonTS [1] have also demonstrated their
effectiveness in modeling time series data.

Recently, transformers (e.g., [32]), renowned for their
adeptness in modeling long-range dependencies and interac-
tions within sequential data, have been increasingly utilised
in time series forecasting [17, 19, 21, 33, 38]. LogSparse
Transformer [19] proposes the LogSparse attention that to
reduce the computation complexity of the original Trans-
former. Reformer [17]. Informer [38] proposes the sparsity
of attention score through KL divergence estimation and pro-
poses ProbSparse self-attention which achieves O(Llog L)
complexity. Crossformer [37]. Temporal Fusion Transformer
[21].

These models embed the observed multivariate time series
into a sequence of vectors in a shared hidden space, and
use RNN, CNN, or self-attention mechanisms to model
the sequence in the temporal axis. Since the variables are
encoded in a shared hidden space, the inter-dependencies
between variables are not modeled explicitly.

2.3 Graph neural network for time series forecasting

Graph neural networks (GNN) have been showing great
successes in structured data like social network, protein net-
works, chemical networks, and human skeleton data. The
main goal of a GNN is to capture the dependencies of nodes
via a graph structure. GNN can learn the representation of a
node by leveraging not only that node’s feature but also its
neighbor nodes. Various techniques have been proposed for
this purpose such as graph convolution [4, 8, 16] and message
passing [11, 23, 27].

Inspired by the success of the GNN in other domains,
researchers have recently applied GNN to multivariate
time series such as Graph Wavenet (GWNet) [34], Spatio-
Temporal Graph Convolutional Networks (STGCN) [36]
Attention-based Spatial-temporal Graph Convolutional Net-
work (ASTGCN) [12]. A multivariate time series can be seen
as a graph where variables correspond to nodes of the graph,
and the edges of the graph are the underlying dependencies
between the variables. By combining GNN and a tempo-
ral model, e.g., a RNN or a CNN, these works can learn
time series representations that capture both intra- and inter-
channel relations. However, these models need a pre-defined
graph, which is not always readily available.

To enable the GNN on data where a pre-defined graph is
unavailable, researchers have proposed to learn latent struc-
ture from data. In time series, a number of models have
been proposed to learn an underlying graph from data such
as MTGNN [35], Adaptive Graph Convolutional Recurrent
Network (AGCRN) [2], Spectral Temporal Graph Neural
Network (StemGNN) [5]. The main disadvantage is that they
use a static graph structure over the entire time span of a
time series, thus cannot capture the dynamic dependencies
between variables.

3 Proposed method
3.1 Problem formulation

A multivariate time series is represented by a matrix ¥ =
(X1, X2,...,X7r] € R¥*T where T is the number of
time steps and N is the number of variables. In this nota-
tion, X, € RY represents a slice of ¥ observed at time
step ¢. Given a historical window of L observed time steps,
Y? = [XT,LH, XT_L42y .-, XT], and a forecast horizon
7, the task is to predict the values of the next t steps in the
future: Y/ = [XT+1, X142, .00, XT+,]. Often, historical
data may be associated with covariates such as date, time,
and location. Therefore, we assume that the input data for
forecasting Y/ is S = [Sr—r41, Sr—1+42. ..., Sr], where
S, € RPin*N js obtained by concatenating X, and its covari-
ates, D;, is the dimensionality of the input features. Our goal
is to build a model F that predicts ¥/ from S.

Y= FS, 0) )

Here, Y/ € RN*7 is the predicted values in the forecasting
horizon, and © is the set of all model parameters.

3.2 Model overview

We propose a novel approach to address the multivariate time
series forecasting problem by leveraging a dynamic graph
Gr = (V, Ay) that captures the interactions between the vari-
ables at each time step of the series. The set of nodes V is
of size V = N, and A, € RV*V is the adjacency matrix
whose entries reflect the strengths of the relations between
pairs of variables at the z-th time step. It is worth noting that
this graph is not pre-defined. Instead, our proposed model
will learn to extract the node features and generate the cor-
responding adjacency matrix A; and its evolution over time
steps.

The proposed approach is implemented in ERAN, whose
overall architecture is illustrated in Fig. 1a. Firstly, the mul-
tivariate time series is input into a Evolving Graph Learning
layer (EGL) to generate a sequence of adjacency matrices,
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Fig.1 (a) The high level
architecture of ERAN model.
The ERAN is composed of an
Evolving Graph Learning layer
(EGL) which learns to generate
the evolving adjacency matrices,
and multiple ERAN blocks
stacked together. Residual
connections and skips
connections are used to prevent
vanishing gradient. (b) An
ERAN block consists of two
main components: a Temporal
Attentional Convolution (TAC)
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one for each time step. This sequence of matrices serves
as the input for the ERAN layer, which is composed of
multiple ERAN blocks stacked together. An ERAN block is
presented in Fig. 1b. Each ERAN block comprises two main
components: a Temporal Attentional Convolution (TAC) and
a Temporal Graph Convolution (TGC), which jointly cap-
ture both intra- and inter-channel relations. Furthermore,
each ERAN block includes a LayerNorm and Dropout layer
to prevent overfitting. To prevent vanishing gradients and
accelerate training, residual and skip connections are utilised
throughout all ERAN blocks.

Each ERAN block has two output branches: (i) the resid-
ual output R, which serves as part of the input for the
next ERAN block, and (ii) the skip output C), which is fed
directly to the output layer (described in the next paragraph)
to contribute to the forecast.

The output layer utilises the skip connection outputs of the
ERAN blocks to generate future values. The model is trained
to produce the most accurate prediction of these future values.
The Mean Absolute Error is chosen as the objective function
to train ERAN, which is computed as follows:

T
A g . 1 ~ .
L@yl @) =——3 W/ —v/] )
=1
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c®
(b) Architecture of an ERAN Block

where Y/ is the ground truth of the forecasting horizon, Y/
are the values predicted by the model, and ® represents all
model parameters.

The detailed design of these components is described in
the subsequent sections.

3.3 EGL: Evolving Graph Learning layer

In a GNN-based method, the adjacency matrix plays a cen-
tral role in learning the relationships between individual
variables. In deterministic systems, this matrix can be pre-
defined based on human knowledge. For instance, in traffic
flow data, the adjacency matrix can be constructed from the
road network and the distances between the sensors. How-
ever, in many cases, such a graph is not readily available or
too complex to be defined manually. Early learning-based
works proposed generating such a structure from the data
without prior knowledge of the graph [2, 5, 35]. However,
these works generate a single adjacency matrix to cover the
relations between variables throughout the entire time series,
and thus they are not adaptive to the dynamics of the data.
In contrast, EGL learns a series of adjacency matrices, each
for a time step, enabling the model to capture the evolving
relationships of individual variables.

Now we present how EGL works. Our aim is to design
a recurrent process that generates A, the adjacency matrix
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at time step ¢, conditioned on the previous step’s adjacency
matrix A;_1 and current input value X;. However, directly
modeling the values of the adjacency matrices would require
@) (N 4) computational complexity and memory consump-
tion!, which is remarkably expensive for a large network.
To reduce the computational complexity, we factorise the
matrix into two low-rank matrices H;, H't € R4exN \where
d, < N, holding the states of N variables at time step ¢.
Instead of generating A;, EGL learns to generate H; and H,
and approximate A, by A; = g (H;, H/). In our implemen-
tation, we choose the function A, = relu (tanh (H," H})).
By using the relu and tanh function, we aim to make the
matrix A; sparse, forcing the model to retain only important
relations. The benefits of this factorisation are not limited to
reducing computational complexity but also to maintaining
the low-rank properties of A;.

We use a GRU (Gated Recurrent Unit), a type of recur-
rent neural network, to model the evolution of H;, where
H; is the hidden state of the GRU, and the layer input is
the GRU’s input. Similarly, we use another GRU to model
the evolution of H/. Specifically, first, we embed X, into
embedding vectors E; and E; using linear transformations
E, = WgX, € R%*N and E; = WiX; € RéexN  \where
E/ El € R%*N are learnable parameters. Then, E; and E ,
are fed into the GRU to compute hidden states H; and H, as
follows:

Hy = GRU (E;, H;—1) . 3)
H/=GRU (E't, H_}), “

Since a GRU originally operates on vectors, the GRU’s
design need to be updated to operate on matrices X;, H;, and
H]. For this purpose, we use the same approach presented
in [26]. In detail, the GRU’s computation is presented in
Algorithm 1. Here, WZ, Wg, Uz, Ur, Wy, Uy, Bz, Bg,
By € R4 are learnable parameters.

Algorithm 1 Matrix GRU.

: function: H; = GRU (X;, H,—1)

s input: E, € R%XN H,_| ¢ RdxN

. output: H, € Ré*N

: begin:

: Zy = sigmoid (WzE; + Uz H;—1 + Bz)

: Ry = sigmoid (WRE, + UgrH,;—1 + BR)

: By = tanh (W Ey + U (RioH;—1) + B)
c H, = (1 — Z)oH,_i + ZioH,

: return H;

O 00 1O W LN =

The dynamic adjacency matrices built from this process
contain the evolving relational structure between variables

! Flattening the matrix results in a vector of length N2, and mapping
between two consecutive matrices requires N* operations.

and will be used to extract the intra- and inter-channel rela-
tions, which will be described in Section 3.4.

3.4 ERAN block

The ERAN layer layer consists of multiple ERAN blocks
which are stacked together to form a multi-layer network
with skip connection. Each ERAN block is designed to cap-
ture the intra- and inter-channel relations by employing a
Temporal Attentional Convolution (TAC) and a Temporal
Graph Convolution (TGC). In this section, we will introduce
the motivation behind an ERAN block and its architecture.

3.4.1 TAC: Temporal Attentional Convolution Module

For local temporal pattern modeling, convolutional neural
networks (CNNs) are a common choice to find local motifs.
CNNs learn a kernel to operate on a sliding window and
compute the output from input within a context. In CNN,
one unique kernel is applied for the whole lifetime of a time
series. However, a unique kernel is insufficient to capture the
temporal dynamics where different parts of the same time
series may have changing temporal patterns. Furthermore,
once learned, the kernel is fixed, thus it is poor at capturing
the temporal patterns when the test set and training set have
different patterns.

In order to model such temporal dynamics, here we design
temporal attentional convolution (TAC). Unlike CNN, which
aggregates input within a local context to compute the output
using a fixed kernel, TAC employs a self-attention mecha-
nism to learn to focus on important input when computing
the output, enabling it to capture changes in temporal patterns
over time. Attention mechanisms with the ability to learn to
focus on important parts within a context have shown their
effectiveness in natural language processing and computer
vision. We extend that concept to multivariate time series
where we need to deal with N sequences corresponding to
N variables.

For each sequence, the data point at each time step
will attend to its neighbors of the same sequence, within
a given window with of size w (w = 3,5,7,...) where
each time step attends w time steps each size and itself.
Specifically, at time step ¢, the attention region is Ny, (1) =
{t',t — 251 <+ <t + 251} This approach is in contrast
to global attention, where each data point attends to all data
points across all time steps. By limiting attention to a local
region, the proposed mechanism reduces the computational
complexity and memory consumption required for process-
ing the sequence data. An example of TAC operating in a
window of size w = 5 is illustrated in Fig. 2.

Given the input x;; of the i-th series at time step ¢, a
single-headed attention for the output feature z; ; € Rout jg
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output z; :O

softmax |
[eXeXeXeXe]

[

keys | values

query!)F\ lO000O0||[0000O0

---ooo|oé“‘§oo|ooo---

input x; ¢

Fig.2 An example of the TAC module over a window of size w = 5

computed as:

Zi; = Z (qu,—;ki,t’ + (l,jl,—;“t’ft> Vit (%)
1'eNy (1)

where the queries q; ;, keys k; »/, and values v; ; are lin-
ear transformations of Xx; ; and its neighbourhoods, and are
computed as follows.

Qs = Woxi Ky = WgX; v, Vi p = WyX; o (6)

Here, Wg, Wik, Wy € Rdour*din gre learnable parameters,
and a;_; € R%u represents the relational position embed-
ding associated with the neighborhood ¢’ of . The relational
position embedding is introduced here to capture the tempo-
ral information of the input. It was introduced in [31], where
its effectiveness over absolute position embeddings was sug-
gested.

The way in which we compute z; ; (see (5)) is similar to
that of a convolutional operator across the temporal dimen-
sion. However, instead of using a fixed kernel, the kernel
weights are computed from the content of the variables and
their underlying dependencies, making the model adaptive
to the dynamism of the temporal patterns of the data.

Multi-headed TAC In practice, multiple attention heads
can be used to calculate different representation sets from
the input. To achieve this, each single-headed attention uses
linear transforms W(Qh), WI((h), W‘(,h) € Réinxdou/H o gen-

erate the output zl(hl) € Réu/H where H is the number
of attention heads. These outputs are then concatenated to

obtain the final output z; ; of the multi-headed attention:

., @, . (H d
ISR RS 1 € Réour

Dilated TAC When m ERAN blocks are stacked together,
the receptive field will be m (w — 1). To further increase the
receptive field, we use a “dilated” window, where neighbor

Zjr = [Z
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data points can be skipped regularly. This concept is similar
to the dilated convolution presented in [24]. We use a dila-
tion factor p to control the dilation of each layer, where the
dilation of the i-th ERAN block is p'~!. For example, if the
dilation factor is 2, then the dilation of the first layer is 1, the
second layer is 2, the third layer is 4, and so on. In summary,
in a network of m ERAN blocks, the receptive field is:

RF— |mw—1 l ?fp:] o
[l+@-DP' —D]/(p-1 ifp>1

assuming the window size w is fixed for all layers.

3.4.2 TGC: Temporal graph convolution module

Graph convolutional networks (GCN) generalise convolu-
tional neural networks (CNNs) to work on graph-structured
data, such as social networks or protein structures [4, 8, 16].
GCNs generate output node features that capture the spa-
tial dependencies of nodes, given their node features and a
graph structure. While there are existing works that use graph
convolutions for time series forecasting, most of them use a
pre-defined graph or a static graph learned from data for the
entire time series. In contrast, we use an evolving graph for
the time series, where each time step has a different adjacency
matrix computed in the EGL layer. At each step, graph con-
volutions are performed with the corresponding adjacency
matrix.

There are many ways to perform graph convolutions,
such as spectral graph convolution [4], graph convolutional
networks [16], and approximation of convolutions using
Chebyshev polynomials [8]. Here, we use diffusion graph
convolution, which was proposed in [20] for its effectiveness
in capturing inter-series relations. This formulation captures
the relations of node features in K graph convolution iter-
ations. Given node features X € R%*N and the learned
adjacency matrix A, the output node features Z € R%u*N
are calculated as follows:

K
zT =Y AfxTw® (8)
k=0

where AK € RNV is the k-th power of the adjacency matrix
A, and W& g Réinxdout gre learnable parameters at the k-th
convolution iteration.

The formula for the graph diffusion convolution in (8) is
applied to each step of the i-th ERAN block, given the list
of adjacency matrices Aj, Az, ..., Ar. In detail, at the i-th
ERAN block, the graph diffusion convolution is applied at
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each time step as follows.

K
z[ =) Afx[w® )
k=0

where Z, € RdouxN g the output node features, and X, €
R%n*N is the input node features at time step 7, respectively.
It is important to note that at the i-th ERAN block, the length
of the temporal model’s output is L;, which is smaller than
L. Therefore, only the last L; adjacency matrices are used.

3.4.3 Residual and skip connections

The classical residual network (ResNet) architecture intro-
duced a skip connection that adds the input tensor to the
output tensor of a stack of layers, which is then passed to the
next stack [13]. This helps alleviate the problem of vanish-
ing gradients and improves the performance of deep neural
networks. In this work, we adopt a similar approach in our
proposed model, to enhance the trainability of the model.
However, due to the downsampling effect of the TAC mod-
ule, the length of the residual tensor may be shorter than
that of the input tensor. To ensure that the input tensor and
the residual tensor have the same dimensions for addition,
we truncate the input tensor to match the dimensions of the
residual tensor. The addition operation is defined as follows:

XD — xOr L — L L1+ RY (10)

with L; is the length of XD the residual output of the i-th
ERAN block. Note that, L; is also the length of the input for
the (i + 1)-th ERAN block.

The skip connection at each consists of a 2D convolution
with akernel size of (1, L;). The purpose of a skip connection
module is to combine all steps of C®), the skip output of the
i-th TAC, into C¥Y € RP<*N which has a single step:

c® = Conv2D (C(”) (11)

3.5 Multi-step forecasting

The outputs of the skip connections are summed up and fed to
the output layer which generates the prediction of the future
Y /. The sum of outputs of the skip connections is as follows.

m
C=>) CDeRrPN (12)
i=1

The output layer consists of two 2D convolutions with a ker-
nel size of (1, 1), which are used to translate the dimension
of the input (D,) to the forecasting horizontal dimension. In

other words, the dimensionality of the output layer’s input is
D., while its the dimentionality of its output is t.

4 Experiments
4.1 Experimental settings

To measure the time-series forecasting performance of
ERAN, we use the following public datasets, ranging from
traffic flow, electricity consumption, to COVID-192. A sum-
mary of these datasets is presented in Table 1.

e PEMS-03: contains traffic flow information collected by
358 sensors in the San Francisco Bay Area from Sep 1,
2018, to Nov 30, 2018.

e PEMS-04: contains traffic flow information collected by
307 sensors in the San Francisco Bay Area from Jan 1,
2018, to Feb 28, 2018.

e PEMS-08: contains traffic flow information collected by
170 sensors in the San Bernardino area from Jul 1, 2016,
to Aug 31, 2016.

e Solar-Energy: the solar power production records in the
year of 2006, sampled every 10 minutes from 137 PV
plants in Alabama State.

e Electricity: the hourly electricity consumption of 321
clients recorded from 2012 to 2014.

e COVID-19 Global: the country-wise daily new cases and
daily death tolls of COVID-19 in 25 countries, collected
by John Hopkins University.

e COVID-19 US: the state-level daily new cases and death
tolls of COVID-19 in the US, collected by John Hopkins
University.

For PEMS-03, PEMS-04, and PEMS-08, we use a one-hour
historical window (12 steps) to predict the values in a 15-
minute forecasting horizon (3 steps), following [5]. For Solar,
we use a 4-hour historical window (24 steps) to predict the
values in the next 0.5 hour forecasting horizon (3 steps). For
Electricity, we use a 24-hour historical window (24 steps)
to predict the values in the next 3-hour forecasting horizon
(3 steps). For COVID-19 Global data, we use a 7-day his-
torical window to predict the daily values in the next 7-day
forecasting horizon. For COVID-19 US, we use a historical
window of 14 days to predict the values in the next 7-day
forecasting horizon. We evaluate the methods by comparing
the predicted values with the ground truth using MAE (Mean
Absolute Error), RMSE (Root Mean Square Error), and Mean

2 The datasets used in this paper is available at the following URL:
https://drive.google.com/drive/folders/1vsF7dzpiCAKOWpUJwo6ulne
1TjMaSm-ZD
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Table 1 Summary of the datasets

Dataset # Nodes # Time steps  Sampling Predefined
rate graph
PEMS-03 358 26,209 5 min Available
PEMS-04 307 34,272 5 min Available
PEMS-08 170 17,856 5 min Available
Solar 137 52,560 10 min Not
available
Electricity 321 26,304 1 hour Not
available
COVID-19 25 160 1 day Not
Global available
COVID-19 54 320 1 day Not
US available

Average Percentage Error (MAPE), which are widely used
evaluation metrics in forecasting tasks.

4.2 Baseline methods

To verify the effectiveness of the proposed model, we
compare it with state-of-the-art methods for time-series fore-
casting from the following groups: (i) traditional methods,
(ii) deep learning-based methods, (iii) methods that use a
pre-defined graph, and (iv) methods that automatically gen-
erate a graph from the data. The details of the baselines are
as follows.

e VAR (Vector Auto-Regression) [15]: An auto-regression
model for multivariate time series.

e LSTM [14]: A type of recurrent neural network (RNN)
architecture designed to capture and remember long-
range dependencies in sequential data.

e GRU [6]: A recurrent neural network for sequence data
that efficiently learns dependencies and avoids gradient
issues.

e TCN [3]: Amodel for sequential data using convolutional
neural network.

e LSTNet [18]: A deep neural network that combines
convolutional neural networks and recurrent neural net-
works.

e Reformer [17]: A memory efficient transformer-based
model for multivariate time series forecasting.

e Informer [38]: A transformer-based model for multivari-
ate time series forecasting.

e Crossformer [37]: A transformer-based model for mul-
tivariate time series forecasting using cross dimension
dependency.

e DCRNN [20]: A convolutional recurrent neural network
that combines graph convolutions with recurrent neural
networks.

@ Springer

e ST-GCN [36]: A spatial-temporal graph convolutional
network that combines a graph convolution with 1D con-
volutions.

e GWNet (Graph Wavenet) [34]: A spatial-temporal graph
convolutional network that combines graph convolutions
with 1D dilated convolutions.

e MT-GNN [35]: A method that learns to generate a static
graph from the data and then combines graph convolu-
tions with 1D convolutions.

e StemGNN [5]: A method that learns to generate a static
graph from the data and uses graph neural networks and
1D convolutions in the spectral domain.

e AGCRN [2]: A method that learns to generate a static
graph from the data and combines graph convolutions
with recurrent neural networks.

4.3 Implementation details

In our proposed model, ERAN, we utilized a three-layer
architecture with input and output dimensionalities of 128.
The selection of window size and dilation factor was con-
tingent upon the length of the historical window. In the case
of a long historical window, our goal is to have an expansive
receptive field that covers the entire sequence. To achieve this,
we utilize a long window size and a large dilation factor. In
contrast, for a shorter historical window, a smaller window
size and dilation factor are sufficient. In detail, for data with
length smaller than or equal to 12 steps, we used a window
size of 3 and dilation of 1, while for data with length greater
than 12 steps, we used a window size of 5 and dilation factor
of 2. We employed the Adam optimiser with a learning rate
of 0.001 and weight decay of 0.0001.

All deep learning-based models were implemented using
PyTorch and trained on a machine equipped with a single
NVIDIA GPU. We halted training after 100 epochs and
reported results on the test set for the epochs that produced
the lowest loss on the validation set.

4.4 Results
4.4.1 Overall comparison

Tables 2, 3 and 4a provide a comprehensive comparison of
the methods across the datasets. The results show that ERAN
outperforms all competing methods on all datasets. In addi-
tion, we make the following observations:

1. In general, deep learning-based methods perform better
than traditional methods, except for VAR, which per-
forms comparably to some deep learning-based methods
on certain traffic flow datasets.
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Table 2 Results on traffic flow

orecasting (historical window: MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

12 steps, forecast horizon: 3 PEMS-03 PEMS-04 PEMS-08

steps) VAR 2365 3826  0.245 2454 38.61 0.172 19.19  29.81 0.131
LSTM 2133 35.11 0.233 27.14 4159  0.182 2220 3406  0.142
GRU 21.18 3484  0.183 2741 4034  0.179 2243 3431 0.145
TCN 1823 2504  0.194 2631 36.11 0.156 1593 2569  0.165
LSTNet 19.07 29.67  0.177 2404 3738 0170 2026 31.96  0.113
Reformer 1735 3072 0174  21.09 3395  0.151 19.17  29.18  0.126
Informer 1847 3241 0.182 2217 3600  0.173 2041 3195  0.125
Crossformer ~ 15.69 2476  0.164 2084 3212  0.150 1626 2478  0.125
DCRNN 18.18  30.31 0.181 1954 3122 0.171 17.86 2783  0.114
ST-GCN 1749 3012 0.171 2003 3321 0.145 18.02 2783  0.114
GWNet 1985 3294  0.193 2685 3970  0.172 19.13 2816  0.126
StemGNN 1432 2164 0162 2024 3215  0.101 1583 2493  0.093
MTGNN 1427 21.13  0.155 20.12 3047  0.122 1504 2245  0.111
AGCRN 1446 2197  0.156 19.12 3098  0.131 1595 2522 0.112
ERAN (ours) 13.89  20.94  0.148 18.76 2948  0.104 1446 2226  0.091

2. Among deep learning-based methods, graph-based mod-
els outperform non-graph-based models (such as LSTM,
TCN, and LSTNet), highlighting the significance of
explicitly modeling inter-series dependencies.

3. Our proposed model, ERAN, outperforms other methods,
that model the inter-channel relations, by a significant
margin. The key difference is that while these methods
only capture static inter-channel relations, ERAN models
the evolution of such relations via an evolving graphs and

Table 3 Results on the energy consumption forecasting (historical win-
dow: 24 steps, forecast horizon: 3 steps)

MAE RMSE MAPE MAE RMSE MAPE

Solar-Energy Electricity
VAR 227 325 0.925 2684 18113 0.194
LSTM 2.18  3.17 0.846 2303 17254 0.246
GRU 198  3.05 0.878 2303 17254 0.225
TCN 205  3.09 0.735  221.1 16985 0.182
LSTNet 2.15  3.06 0.684 2489 16253 0.178
Reformer 143 241 0.751 208.7 11834 0.197
Informer 1.57 2.58 0.786 2155 1296.8 0.199
Crossformer  1.52  2.65 0.676 336.7 24089 0.205
StemGNN 1.19  2.26 0.651 336.7 24089 0.244
GWNet 275  4.05 0.977  336.7 24089 0.407
MTGNN 1.19 223 0452 2042 16454 0.133
AGCRN .15 221 0.519  201.5 1308.7 0.224
ERAN (ours) 1.08  2.05 0446 1709 11074 0.119

Due to the unavailability of pre-defined graphs, models that are depen-
dent on pre-defined graphs are excluded

thus captures dynamic dependencies between variables
more effectively.

To evaluate the long-term forecasting ability, we report
the mean absolute error (MAE) of the predictions at dif-
ferent forecasting horizons for the PEMS-04 and Electricity
datasets in Fig. 3. Our results demonstrate that ERAN outper-
forms all competing methods across all forecasting horizons,
showing its effectiveness in predicting long-term trends. Par-
ticularly, for the longest horizon (60 minutes), the difference
between ERAN and the other methods is significant, empha-
sizing ERAN’s superior long-term forecasting ability.

4.4.2 Significance testing

To assess the statistical significance of our results, we con-
ducted pairwise hypothesis tests comparing the absolute
errors generated by the ERAN against those produced by
the second-best model. The hypotheses were formulated as
follows: Hy (null hypothesis) posits that there is no differ-
ence between the mean absolute errors (MAE) of the two
algorithms, while H, (alternative hypothesis) asserts that the
mean absolute errors of the two algorithms are statistically
different.

The significance level, denoted by a threshold of 0.05 (cor-
responding to a confidence level of 95%), was used to assess
the p-values. If the p-value is smaller than this threshold, the
null hypothesis is rejected.

The t-test results are outlined in Table 5. Notably, all pair-
wise tests exhibit p-values significantly below 0.05. This lack
of evidence supports the rejection of the null hypothesis,
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Table 4 Results on COVID-19 new cases and death tolls forecasting (historical window: 7 steps, forecast horizon: 7 steps)

MAE RMSE MAPE MAE RMSE MAPE
Global new cases Global death toll
(a) Results on global new cases and death tolls forecasting (historical
window: 7 steps, forecast horizon: 7 steps).
VAR 2,211 3,847 3.621 178.51 235.42 6.428
LSTM 1,783 3,421 3.586 172.13 211.61 6.132
GRU 1,761 3,215 3.421 173.21 214.35 6.241
TCN 1,787 3,414 3.472 175.32 223.73 6.311
LSTNet 1,761 3,312 3.045 167.45 198.56 5.729
Reformer 3,305 6,728 2.501 228.91 361.25 6.386
Informer 3,608 7,562 3.162 171.45 281.94 7.109
Crossformer 2,050 5,573 3.515 116.50 312.50 3.717
StemGNN 2,828 7,186 1.854 72.32 161.45 5.345
GWNet 1,340 3,796 1.306 96.54 152.76 4.921
MTGNN 1,365 3,294 1.528 73.05 151.92 4.955
AGCRN 1,396 3,417 1.222 116.40 296.29 7.354
ERAN (ours) 1,282 3,027 0.873 69.93 143.21 4.811
US new cases US death toll
(b) Results on US new cases and death tolls forecasting (historical
window: 14 steps, forecast horizon: 7 steps).
VAR 1,938 4,821 1.632 41.13 78.61 1.428
LSTM 1,808 4,905 1.268 39.43 76.82 1.032
GRU 1,791 4,862 1.127 39.28 75.93 1.004
TCN 1,754 4,899 1.213 38.45 72.58 1.341
LSTNet 1,821 3,726 1.028 40.21 78.32 1.213
Reformer 3,149 6,338 1.067 45.58 87.39 1.025
Informer 2,661 5,559 2.231 39.13 76.64 1.001
Crossformer 1,650 4,547 1.338 29.59 61.58 1.282
StemGNN 2,419 5,375 1.361 35.53 64.85 1.042
GWNet 1,446 4,165 1.052 28.73 50.28 1.015
MTGNN 1,458 3,981 1.015 28.32 48.87 1.016
AGCRN 1,581 4,929 1.005 37.03 70.13 1.311
ERAN (ours) 1,060 2,348 0.781 24.15 45.64 0.979

Due to the unavailability of pre-defined graphs, models that are dependent on pre-defined graphs are excluded

signifying a statistically significant difference between the
ERAN MAE and that of the next best model.

4.4.3 Impact on non-stationary time series

To evaluate the efficacy of ERAN on non-stationary time
series, specifically, we investigate the stationarity of time
series and compare how ERAN outperforms existing models
in both stationary and non-stationary contexts.

We begin by examining the stationarity of time series
using the Augmented Dickey-Fuller test (ADF) [9]. The
ADF test is a widely employed statistical method for deter-
mining whether a given time series is stationary. The test
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formulates a null hypothesis assuming the presence of a unit
root, indicating non-stationarity, and an alternative hypothe-
sis suggesting stationarity. The test statistic is then compared
to critical values, and the resulting p-value is pivotal in estab-
lishing the stationarity of the time series. A p-value below a
chosen significance level (commonly 0.05) leads to the rejec-
tion of the null hypothesis, providing evidence in favor of
stationarity. In contrast, a p-value exceeding the significance
level leads to the acceptance of the null hypothesis, implying
the presence of non-stationarity in the time series. Therefore,
the ADF test utilizes the p-value to make informed decisions
about the stationarity of the analysed time series. The results
of the ADF test regarding the stationarity of time series are
presented in Table 6.
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Fig.3 MAE at different forecasting horizons

Next, we assess the enhancement in Mean Absolute Error
(MAE) of ERAN compared to the second-best model for
each dataset. From the outcomes presented in Table 7, we

Table 5 Significance testing results between ERAN and the Next best
model for each dataset

Dataset Next best model p-value Diff?

PEMS-03 MTGNN 7.15e-06 Yes

PEMS-04 AGCRN 3.42e-06 Yes

PEMS-08 MTGNN 2.51e-05 Yes

Solar AGCRN 2.45e-05 Yes

Electricity AGCRN 1.66e-05 Yes

COVID-19 Global GWNet 5.76e-05 Yes
new cases

COVID-19 Global StemGNN 1.23e-05 Yes
death toll

COVID-19 US new GWNet 1.47e-05 Yes
cases

COVID-19 US death MTGNN 2.63e-05 Yes

toll

Table 6 The results of ADF test

Dataset p-value Stationary
PEMS-03 0.0 Yes
PEMS-04 1.11e-25 Yes
PEMS-08 2.32e-26 Yes
Solar 0.0 Yes
Electricity 0.0011 Yes
COVID-19 Global new cases 0.6939 No
COVID-19 Global death toll 0.9989 No

COVID-19 US new cases 1.0 No
COVID-19 US death toll 0.9983 No

A p-value greater than 0.05 indicates that the time series is non-
stationary

can see that the enhancements on non-stationary time series
are more substantial than those on stationary ones. Across
five stationary time series, the average percentage decrease of
MAE is 5.93%, whereas over four non-stationary time series,
the average percentage decrease of MAE is 12.25%. These
results confirm the effectiveness of ERAN in enhancing fore-
cast accuracy, particularly in the context of non-stationary
time series.

4.5 Ablation study

To gain more insight into the proposed model, we conducted
an ablation study to evaluate the impact of (i) learning the
dynamics of the inter-channel relations, and (ii) learning the
dynamics of the intra-channel relations; (iii) the number of
the layers; (iv) the dilation factor, on the model’s performance
as follows.

Table7 MAE Improvement of ERAN relative to the second best model
across datasets

Dataset Stationary ~ Second best % MAE
model decrease

PEMS-03 Yes MTGNN 2.66%

PEMS-04 Yes AGCRN 1.88%

PEMS-08 Yes MTGNN 3.85%

Solar Yes AGCRN 6.08%

Electricity Yes AGCRN 15.18%

COVID-19 Global No GWNet 4.32%
new cases

COVID-19 Global No StemGNN 3.30%
death toll

COVID-19 US new No GWNet 26.69%
cases

COVID-19 US death ~ No MTGNN 14.72%

toll

The findings indicate a more pronounced enhancement in MAE for
non-stationary time series compared to stationary counterparts
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Table 8 Ablation study on the impact of the graphs

MAE RMSE MAE RMSE

Global death toll US death toll
Evolving graph 69.93 143.21 24.15 45.64
Static graph 71.28 146.35 26.18 47.21
No graph 72.25 148.98 26.51 47.54

4.5.1 Impact of learning the dynamics of inter-channel
relations

To evaluate the effectiveness of learning the dynamics
of inter-channel relations, we examined three variants of
ERAN: (1) Evolving graph: where the inter-channel relations
is modelled by an an elvoving graph generated by the EGL
layer, (2) Static graph: where the inter-channel relations is
modelled by a static graph generated from the data, which
is unchanged thoughout the time series lifetime, and (3) No
graph: where inter-channel relations are ignored.

Table 8 reports the results on the COVID-19 dataset.
We observe that the Evolving graph variant, which uses
the evolving graph, performs better than the other variants,
demonstrating the importance of capturing the evolution of
inter-channel relations over time. Additionally, we see that
the Static graph variant, which can only capture a static rela-
tion between the variables, improves the forecasting accu-
racy. Finally, the No graph variant performs the worst among
the three variants, emphasizing the effectiveness of capturing
the relations between the variables using graph convolution.

4.5.2 Impact of learning the dynamics of the intra-channel
relations

As the learning the dynamics of intra-channel relations is
accomplished through the TAC module, we investigated the
impact of this learning approach by comparing TAC with
LSTM and TCN, which capture invariant temporal patterns
only. It’s important to note that TAC is achieved by removing
the graph from ERAN, making it equivalent to ERAN’s “no
graph” variant presented in Section 4.5.1.

The results in Table 9 show that TAC significantly outper-
forms LSTM and TCN on COVID transmission data, a highly

Table 9 Study on the impact of TAC

o
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=R NN W W s
S o o U o

MAE on COVID-19 US death toll

[« |

L=1 L=2 L=3 L=4 L=5

Number of layers

Fig.4 MAE on COVID-19 US daily death toll with different number
of layers

non-stationary time series. This indicates the effectiveness
of using TAC in capturing the dynamics of the temporal pat-
terns.

4.5.3 Impact of the number of layers

One important parameter of the ERAN is the number of lay-
ers. To demonstrate the impact of the number of layers, we
present a plot of the MAE on COVID-19 US death tolls in
Fig. 4. The optimal forecasting accuracy is achieved when
the number of layers is 3. With a small number of layers, the
model’s capacity is too limited to learn the data. On the other
hand, if we increase the number of layers, the model capacity
will increase and is prone to over-fitting.

4.5.4 Impact of the dilation factor

We use a dilation factor p to control the dilation at each
layer. The dilation of the next layer is p times the dilation
of the previous one. Thus, the dilation of layer [ is p'~.
Table 10 shows the forecasting accuracy of COVID-19 in the
US using dilation factors 1 and 2. We can see that dilation
factor 2 achieves slightly better forecasting accuracy than
dilation factor 1. This confirms the effectiveness of using a

dilation factor larger than 1 to extend the receptive field.

4.6 Qualitative analysis

To gain more insight into the behavior of the methods, we
plotin Fig. 5 two examples of the daily new cases forecasting

Table 10 Ablation study on the impact of the dilation factor

MAE RMSE MAE RMSE
Global death tOll US death tOH MAE RMSE MAE RMSE
TS US death toll
TAC 7225 148.98 26.51 47.54 few cases canto
LSTM 172.13 211.61 39.43 76.82 p=2 1,060 2,348 24.15 45.64
TCN 175.32 223.73 38.45 72.58 p=1 1,097 2,389 26.11 4753
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for COVID-19 in the US, 7 days in advance. The blue line
represents the ground truth data for each state, while the
other colors represent the forecasting results of the models.
Overall, in both examples, ERAN performed better than other
methods in predicting the ground truth data. ERAN was also
better in capturing the trend when the ground truth went up
and down. However, in both cases, there were some short but
sharp spikes that no method could capture well.

5 Conclusion

We propose ERAN, a model that captures the dynamics of the
intra- and inter-channel relations for multivairate time series
forecasting. To model the intra-channel relations, ERAN
utilises Temporal Attentional Convolution (TAC), which
applies self-attention mechanism within a temporal win-
dow. On the other hand, to model the inter-channel relations,
ERAN uses dynamic graph convolutional network, wherein
the graph structure evolves over time. Our experimental
architecture has established new state-of-the-art results on
multiple types of time series data, from classical traffic flows
and electricity consumption forecasting to newly emerg-
ing problems like COVID- 19 projections. Furthermore,
ERAN exhibits significant improvement over existing meth-
ods, particularly evident in non-stationary time series. The
representation power and generality of the model promise
strong and wide applications in time series modeling. How-
ever, a notable limitation of the proposed model is the current
exclusion of time-dependent covariates such as weather and
price indices as inputs for forecasting. Recognizing this, we

10 20 30 40

identify the incorporation of these covariates as a potential
avenue for improvement, which we leave for future work.
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