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Abstract—In this paper, we describe the design, 

implementation, and installation of a digital twin version of a 

physical CO2 monitoring system with the aim of 

democratizing access to affordable CO2 emission measuring 

and enabling the creation of effective pollutant reduction 

strategies. The presented digital twin acts as a replacement 

that enables the measuring of CO2 emissions without the use 

of a physical sensor. The exhibited work is specifically 

designed to be installed on a low-powered Micro Controller 

Unit (MCU), enabling its accessibility to a broader base of 

users. To this end, an optimized Artificial Neural Network 

(ANN) model was trained to be capable of predicting CO2 

emission concentrations with 87.15% accuracy when 

performing on the MCU. The ANN model is the result of a 

compound optimization technique that enhances the speed 

and accuracy of the model while reducing its computational 

complexity. The results outline that the implementation of the 

digital twin is 86.4% less expensive than its physical CO2 

counterpart, whilst still providing highly accurate and 

reliable data. 
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I. INTRODUCTION 

The global challenge of reducing Carbon Dioxide (CO2) 
emissions has become an urgent priority for governments 
and businesses worldwide. Despite the growing awareness 
of the devastating effects of greenhouse gases on the 
environment, the implementation of effective CO2 emission 
reduction strategies remains a significant challenge. One of 
the major obstacles is the lack of accessible and affordable 
CO2 sensing/monitoring tools, which are essential for 
implementing and evaluating emission reduction 
mechanisms and policies. 

Traditionally, CO2 emission measuring equipment has 
been expensive and invasive, requiring specialized 
knowledge and expertise to install and operate, with 
Portable Emissions Monitoring Systems (PEMS) being the 
preferred choice. As a result, only a limited number of 
organizations, mainly regulatory institutions, have access to 
accurate monitoring tools, hindering the widespread 
knowledge of emissions levels. 

As an alternative, a digital twin version of a CO2 
monitoring system can provide a cost-efficient, feasible 
solution that enables permanent measurement and 
monitoring of CO2 emissions without the need for installing 
any additional sensors. A digital twin is a virtual 
representation of a physical object or system by replicating 
its behaviour in a virtual environment. By creating a digital 
twin of a vehicle CO2 monitoring system, it is possible to 

continuously measure CO2 exhausts and analyse the impact 
of emission reduction strategies without the need for 
physical sensors. 

Internet of Things (IoT) devices are characterized by 
their small size, low power consumption, and adaptability, 
making them an ideal choice for distributed monitoring 
systems. However, IoT devices are recognized for their 
limited hardware capabilities in comparison with 
workstations, which typically renders them inadequate for 
executing large and complex tasks, such as Artificial Neural 
Network (ANN) model executions. Scholarly literature 
indicates that research efforts have been directed towards 
compressing ANN models through various techniques, 
including quantization, pruning, fusion, and other methods 
to convert a model into a simpler version. 

 Consequently, considerable research attention has been 
focused on executing pre-trained converted ANN models on 
edge devices. Nonetheless, most of this research is oriented 
towards the use of resource-limited conventional 
computers, such as Raspberry Pi or Nvidia Jetson [1]. 
Nevertheless, the implementation of ANN models in Micro 
Controller Unit (MCU)s is still a shallowly explored topic, 
given the challenges posed by its reduced computational 
capabilities [2]. Normally, the original model has to 
undergo several network modifications to fit the 
requirements demanded by micro controllers in terms of 
float precision, model size and ANN layers compatibility, 
usually having a negative impact in the model accuracy. 

 This work proposes a new digital twin CO2 monitoring 
system and its real-world use case in a commercial vehicle. 
By integrating the proposed digital twin in a MCU, a 
continuous monitorization and prediction of the CO2 
emission concentrations can be conducted cost-effectively 
in a resource-constrained environment. The main 
contributions of this paper are listed below: 

• Presentation of a new CO2 emissions monitoring 

system. 

• ANN model optimisation for micro controller-

compatible execution. 

• Deployment of an ANN model in micro controller 

installed within a vehicle. 

• Comparative analysis of performance indicators 

between sensor-based measurement system and its 

digital twin. 



 

The remainder of this document is structured as 

follows. Section II introduces and explores the 

implementation of the reference physical CO2 monitoring 

system. Section III details the approaches taken for the 

design, implementation and validation of the developed 

digital twin. Section IV discusses some of the insights 

obtained during this research, and Section V concludes this 

paper. 

II. PROPOSED PHYSICAL AND DIGITAL TWIN CO2 

MONITORING SYSTEMS 

In this research, firstly a physical CO2 monitoring 

system, previously presented in [3], is defined. This system 

is composed of an ESP32 micro controller mounted on a 

Pycom PySense board to ease the communication with the 

peripherals through the GPIO ports. Furthermore, the 

micro controller is powered by a 5V line from a 

transformed vehicle’s +12V power supply that the OBDII 

port features. In order to allow bidirectional CAN bus 

communication, a CAN transceiver was connected via 

serial port to the micro controller. The reason why the 

physical sensor is directly connected to the vehicle’s CAN 

bus is because it was originally intended to serve as a CO2 

emissions recorder that could report CO2 measurements 

through the CAN bus to collect vehicle on-board metrics 

[4]. As for the CO2 sensor, a SprintIR-R 20 sensor was used 

for measuring and recording the vehicle’s exhaust CO2 

concentration, expressed in parts per million (ppm). The 

Sprint-IR sensor is able to report CO2 concentration values 

of up to 20% with an accuracy of ±70 ppm and a resolution 

of 10 ppm at a maximum sampling frequency of 50 Hz via 

non-dispersive infrared (NDIR) technology. 

Fig. 1 illustrates the components involved in the use of 

the physical and digital twin CO2 monitoring systems, 

labelled with A and B respectively, to measure the CO2 

concentration from the vehicle’s exhaust gases. The blue 

boxes are the exclusively used by the physical monitoring 

system only and not by its digital twin. Therefore, the 

digital twin CO2 monitoring system does not need any 

physical CO2 sensors. 

For the exhausts gases collection, a set of tubes and 

filtering/cleaning components were installed in the 

vehicle’s exhaust pipe in order to separate impurities and 

water vapour from the CO2 analyte, whose presence in the 

sensor would cause inaccuracies (shown in Fig. 2 and Fig. 

6). The set of filtering tools included a hydrophobic filter, 

a water trap, and a particulate filter. Furthermore, an 

electric pump helped the system to have a constant 0.5 

l/min sample flow rate through the sensor’s measurement 

chamber. Ultimately, a set of heat sinks were installed in 

the metal tubes to prevent the PVC tubes from melting due 

to the exhaust gasses high temperatures, which can easily 

reach 500 °C. 

    (1) 

The board in which the ESP32 is mounted features an 

altitude sensor that helps correct the CO2 measurement 

based on the present atmospheric pressure. To this end, the 

physical CO2 sensor is commanded to update the 

atmospheric pressure to adjust the measurement every 850 

iterations. Ultimately, the system corrects the obtained CO2 

concentration by applying equation 1, where CA represents 

the adjusted concentration value in ppm, C represents the 

reported concentration by the sensor in ppm, F represents 

the compensation factor and P represents the atmospheric 

pressure (mbar) obtained from a MPL3115A2 barometric 

pressure/altitude sensor embedded in the PySense board. 

More information regarding the sensor measurement 

process can be found in [5]. The complete sequence 

diagram that illustrates the process of CO2 collection by 

means of the physical monitoring system is depicted in Fig. 

3a. 

Fig. 1. Components diagram showing the connections made from the physical monitoring system (A) and the digital twin (B). Note that the 

elements in blue indicate that their use is exclusively made by the physical monitoring system only. 



 

III. DIGITAL TWIN MODEL DEVELOPMENT 

This section details the process carried out for the 

development and installation of the digital twin for the 

prediction of vehicle CO2 emission concentration. Aiming 

to replicate as much as possible the characteristics of the 

physical sensor, the MCU chosen for the development of 

the digital twin was also a Pycom FiPy board. As in the 

physical monitoring system, it features an ESP32 

microprocessor with 4MB of RAM and 8 MB of flash 

memory. The limited hardware specifications were crucial 

for the design and adaptation of the ANN model. Fig. 4 

summarizes the different steps taken for its 

implementation. In order to optimize the model to ease its 

execution on the MCU, a compound optimization strategy 

including three optimization techniques was carried out: 1) 

ANN model structure redefinition, 2) model pruning and 3) 

model conversion. The network modifications and 

optimizations were using TensorFlow (TF) and TF Lite 

framework, which is noted to be one of the most prominent 

artificial intelligence development frameworks. 

A. Proposed ANN Model Structure 

The network structure employed was a modified 

version of the model shown in [4], where a Long Short-

Term Memory (LSTM)-based ANN model with 8 different 

vehicle operational parameters was presented. In this study, 

the same input parameters were used to train, evaluate and 

execute the developed ANN model: vehicle acceleration 

(m/s2), engine exhaust flow rate (kg/h), engine mode, 

engine speed (rpm), vehicle speed (MPH), mass air flow 

(g/min), engine coolant temperature (°C) and hybrid 

battery SOC (%). Despite the adequate results exhibited in 

[4] (97.5%), the model size was 7.7 MB, which made it 

unsuitable for our use-case given the MCU memory 

constraints. 

As a result, the network size was reduced by decreasing 

the number of neurons of each layer, resulting in a network 

with an input layer of dimensions 32x8, where two stacked 

LSTM layers featured 128 and 64 neurons, respectively. In 

addition, the second LSTM layer had a dropout layer with 

a dropout rate of 0.2. As opposed to the original model, the 

modified model was provided with a flatten layer after the 

second LSTM layer, which proved to improve drastically 

the accuracy when implemented in the MCU. 

Subsequently, another dropout layer with a dropout rate of 

0.3 precedes two dense layers with 8 and 1 neurons, 

respectively, being the latter the model output layer. 

Thanks to these modifications, the model size was 

decreased from 7.7 MB to 202.1 KB (97.37% lighter). 

                            (2) 

As for the training, the model utilized the training, 

validation and test dataset described in [4]. In order to 

facilitate the model convergence, the dataset was re-scaled 

between 0 and 1 by applying normalization, 

 

 

Fig. 2. Physical sensor installation setup in the vehicle’s exhaust pipe. 

 

(a) Physical monitoring system’s CO2 emission concentration 

collection sequence diagram. 

 

(b) Digital twin’s CO2 emission concentration prediction sequence 

diagram. 

Fig. 3. Sequence diagrams. 



 

defined by equation 2. In this equation, x̃i represent the 

normalized ith value, xi is the original ith value, and xmin and 

xmax are the minimum and maximum value of a feature in 

the dataset, respectively. Furthermore, the model training 

was performed using batch size value of 32 for 50 epochs 

using the mean squared error as the loss function. During 

the training a changing learning rate scheduler was 

implemented to help reduce the over-fitting. Thus, the 

learning rate parameter was chosen for every epoch 

following equation 3, where Lr is the computed learning 

rate at epoch t. During the evaluation tests, the model 

exhibited an accuracy of 97.22% (R2 score), closely 

comparable to the 97.5% accuracy of the original model, 

which proves an outstanding trade-off between accuracy 

drop and model size. 

     () 

B. Model Pruning 

During this process, a model pruning technique was 

first performed to augment the sparsity of the model, which 

is defined as the proportion of weights or connections 

between neurons that are zero or near-zero. Pruning has 

proved to reduce the complexity of neural networks by 

zeroing the less useful weights of a network, speeding up 

its execution and enhancing its generalization by reducing 

the over-fitting [6] [7]. The pruning was performed for 13 

epochs, where an initial and final sparsity of 0 and 75% 

were configured, respectively. The pruning process 

increased the model accuracy from 97.22% to 97.77%. 

C. Model Conversion 

After the optimization, the model was compressed and 

converted to a TensorFlow Lite compatible version. When 

converting a model to TensorFlow Lite flat buffer, some 

operations of the original model are discarded due to 

limitations in the operations catalogue. When this happens, 

these operations can often be replaced with 

approximations, which may cause an accuracy drop in 

comparison with the original model. Although quantization 

can significantly decrease the model size and improve the 

inference time, no quantization option was chosen for the 

conversion since previous attempts with float-16 and int-8 

led to a drastic accuracy drops. Thus, the decimal 

representation of the converted model was float-32. After 

the conversion, the size of the TF Lite model was 19.76 

KB. Lastly, since the target MCU did  

 

(a) Accuracy evaluation among the presented ANN models. 

 

(b) Pruned and not pruned model execution speed comparison. 

Fig. 5. Performance comparison 

 not have a native file system, the compressed TF Lite 

model had to be converted into a C array to be compiled by 

the microprocessor at run time. After this conversion, the 

final model size was 132.5 KB. 

D. Model Evaluation 

1) CO2 Emissions Percentage Calculation Accuracy 

In order to assess the ability of the developed model to 

predict the CO2 concentrations from the vehicle’s exhausts, 

a comparative analysis was conducted, where the accuracy 

of each of the models generated in the stages of this 

research was contrasted. The results are summarised in Fig. 

5a, where 4 different model performances are shown 

alongside the real ground truth data captured with the 

physical sensor. It is noted that the data present in the 

validation ground truth dataset used for this evaluation has 

not been used for any of the model trainings. In favour of 

the chart readability, the graph represents just a reduced 

part of the validation dataset used to measure the accuracy. 

Nonetheless, the R2 accuracy scores shown on the legend 

refer to the complete validation dataset, composed of over 

14,000 data samples. As visible, the reduced models before 

and after pruning show the best accuracy of over 97%, 

closely comparable to the ground truth. However, having 

achieved an enormous decrease in the model size after the 

network modifications and optimisations yet preserving an 

adequate model accuracy, the models had to necessarily 

undergo a conversion that reduced the accuracy to 87.15%, 

 

Fig. 4. Digital twin development flowchart. 



 

which is still a decent result for a highly usable solution. 

Moreover, thanks to the pruning process, the pruned model 

outperformed the non-pruned model (78.72%), reducing 

the impact of the model conversion. 

2) Inference Time 

The model inference time was also evaluated to validate 

the suitability of the optimised model when executed in the 

MCU. To this end, the inference time of the pruned and not 

pruned model were assessed. Fig. 5b illustrates the 

cumulative average execution time (ms) recorded by both 

models, calculated after the application of equation 4. In 

this equation, x is the inference time at a time step i and t is 

the current time step. The inference time was measured 

since the input is fed to the model until the results are 

provided in the output. 

As can be seen, the pruned model shows a faster 

inference time, averaging 61.99 ms per model execution, 

whereas the not pruned model manifests a 0.52% slower 

execution, averaging 62.32 ms. To this respect the benefits 

of pruning the model are visible in both accuracy and 

execution speed. 

          () 

E. CO2 Emissions Concentration Prediction Process 

As opposed to the physical sensor implementation, this 

digital twin version is able to calculate and report CO2 

concentrations out of some vehicle’s performance 

parameters without using any physical CO2 sensor. The 

complete iteration process that the digital twin follows to 

infer a measurement is depicted in Fig. 3b. Thus, by 

removing the physical CO2 sensor, the digital twin 

eliminates the process of having to calibrate the sensor 

every 850 iterations. On the contrary, the ESP32 starts by 

querying the vehicle’s necessary Electronic Control Units 

(ECU) by means of the Unified Diagnosis Services (UDS) 

protocol, defined in ISO 14229 [8]. The correspondent 

messages are sent by the pertinent ECUs and received by 

the ESP32 via the CAN bus, accessed through the vehicle’s 

OBDII port with almost no hardware invasion within the 

vehicle premises. When each of the 8 model inputs 

parameters are received by the ESP32, these have to be 

parsed and converted to its original measurement scale and 

unit to afterwards be fed into the model. Once all the 

parameters have been collected from the vehicle’s CAN 

bus and parsed, the ESP32 normalises the obtained 

parameters to scale them in using equation 2. By this step, 

the model will be able to recognise the input parameters on 

the same scale as the model was trained with. Furthermore, 

the ESP32 performs the model inference, and the resulting 

CO2 concentration is de-normalise by applying the inverse 

formula of equation 2. Ultimately, the ESP32 yields the re-

scaled value to the PC. 

IV. DISCUSSION 

In this study, the development, modification and 

optimisation of a previously unveiled ANN model able to 

predict vehicle exhausts CO2 concentration is presented. 

One of the main motivations of this work was to 

democratise the access of vehicle CO2 emissions 

concentrations by reducing capital costs derived from the 

commercial off-the-shelf measuring equipment. Table I 

reflects the expenses breakdown derived from the 

development of the physical measuring system and its 

digital twin. As can be seen, by solely utilising a reduced 

set of affordable and widely accessible electronic 

components, the total price of the designed system was 

drastically lowered, resulting in a 86.4% cheaper total cost. 

Apart from the cost’s reduction, another benefit of the 

digital twin is the independence from the real vehicle 

exhaust gasses, and therefore, from the need to install any 

physical measuring tools, such as the tubes, pump, etc. Fig. 

1 depicts a comparison of the components needed per each 

approach. The elements coloured in blue indicate that its 

use is exclusively carried out by the physical measuring 

system and not by its digital twin. 

Another aspect taken into consideration for the design 

of the digital twin is the elimination of the altitude sensor 

present in the physical monitoring system. Given the fact 

that the digital twin does not need to update its atmospheric 

pressure-based compensation value to perform the 

inference, it was no longer required. However, the reader 

the reader may interpret that its absence might damage the 

ANN accuracy, not being able to interpret the altitude at 

which the vehicle is located, and leading to a less accurate 

measurement. Nonetheless, the reader must take into 

account that the CO2 correction done by the physical sensor 

TABLE I.  PHYSICAL SENSOR AND DIGITAL TWIN EXPENSES BREAK-
DOWN COMPARISON. 

 Physical sensor Digital twin 

Microprocessor 
(FiPy) 

72 USD 72 USD 

Development board 

(PySense) 

30 USD 30 USD 

CAN transceiver 14.4 USD 14.4 USD 

OBDII cable 10.8 USD 10.8 USD 

CO2 sensor 429 USD N/A 

Heat sink 9 USD N/A 

Pump, tubing and 
filtering kit 

199 USD N/A 

Total 737.2 USD 100.2 USD 

 

Fig. 6. Physical sensor (A) and digital twin (B) installed inside the 

vehicle. Labels A and B refer to the same labels as in Fig. 1. 



 

is a post-processing practice made after the sample 

measurement, and therefore does not affect the isolated 

measuring process. As for the possibility to include the 

altitude or pressure as part of the training dataset 

parameters, this option was considered to be 

counterproductive in [4] as it increased the model over 

fitting, which would cause the model to perform poorer 

upon altitudes/pressure values unseen during the training. 

Furthermore, in terms of memory usage, despite the use 

of the necessary TF-related libraries, both the physical 

sensor and the digital twin showed very similar levels of 

allocated RAM memory in use, with the former averaging 

3.19 MB and the latter averaging 3.25 MB. Lastly, the 

digital twin is more power-efficient than the physical 

version since the elimination of the air pump and the CO2 

sensor provokes a reduction in the power consumption 

from 2.02 W to 1.74 W (13.8% less). 

As for the digital twin implementation, Fig. 6 displays 

the final installation of both systems side by side. As 

observed, the digital twin (B) just needs to be connected to 

the vehicle’s CAN bua via the OBDII port, whereas the 

physical sensor needs to be attached to the rest of the tubing 

and gas filtering system. The accuracy comparison of the 

digital twin and the physical sensor shown in fig. 5a 

indicate that, despite the slight measurement accuracy loss, 

the presented digital twin can be conceived as a promising 

solution to enable a widespread access of vehicle CO2 

emission monitoring that can operate under the same 

conditions as a real physical sensor. 

V. CONCLUSIONS 

In this paper we have presented a practical and cost-

effective solution for democratizing access to affordable 

CO2 emission monitoring. Through the design, 

implementation, and installation of a digital twin version of 

a physical CO2 monitoring system, we have demonstrated 

that it is possible to create an accurate and reliable CO2 

emission monitoring system using low-powered micro 

controllers with limited computational resources. To this 

end, we proposed a modified ANN model to optimize it for 

its deployment on a microcontroller, resulting in a 

significant reduction in model size from 7.7 MB to 132.5 

KB, whilst still maintaining a very usable accuracy of 

87.15%. This proves the effectiveness of the optimization 

techniques used to create a more efficient and accurate 

model. Moreover, the elimination of some hardware 

components has made the digital twin version 13.8% more 

power-efficient, averaging only 1.74 W of power 

consumption. Furthermore, thanks to the removal of these 

physical components, the derived capital costs from its 

implementation were reduced by 86.4%, resulting in a total 

summation of costs of 100.2 USD. Although the accuracy 

achieved with our digital twin is adequate for the hardware 

constraints, we recognize the need for further research 

towards more refined model optimization and conversion 

to help mitigate the accuracy drop and enable faster 

inference time. 
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