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Abstract  A new routing scheme, Topological Routing, for 

large-scale networks is proposed. It allows for efficient routing 
without large routing tables as known from traditional routing 
schemes. It presupposes a certain level of order in the networks, 
known from Structural QoS. The main issues in applying 
Topological Routing to large-scale networks are discussed. 
Hierarchical extensions are presented along with schemes for 
shortest path routing, fault handling and path restoration. 
Further research in the area is discussed and perspectives on the 
prerequisites for practical deployment of Topological Routing in 
large-scale networks are given. 

 
Keywords  Communication system planning, 

communication system routing, network, routing, topology, 
WAN. 

 
1. Introduction 

 
The growth of large-scale networks, particularly the global 

networks comprising the Internet, has put pressure on 
traditional routing schemes for such networks; this includes 
size of routing tables and ability to support the increasing 
demands for QoS. From the field of multiprocessor systems 
table-free routing schemes have been known for years. These 
schemes are not directly applicable to large-scale networks; 
they rely on the structure having highly regular properties and 
operating on a limited scale, conditions which are not 
practicable in large-scale networks. Recent work, however, in 
the field of large-scale networks has proposed the design of 
networks with global structural properties for the improved 
support of QoS, termed Structural QoS or SQoS [1],[2]. Such 
network design offers the opportunity for applying concepts 
from multiprocessor systems to large-scale networks, taking 
advantage of the global properties to introduce table-free 
routing. This class of routing schemes, taking advantage of 
defined structural properties, is labelled Topological Routing. 
In this paper, characteristics of Topological Routing will be 
described in relation to large-scale networks. 

 
2. Methods 

 
The concept of Topological Routing is introduced and 

related to already known schemes from multiprocessor 
systems. Two structures known from multiprocessor systems 
are dealt with in details, and it is analysed how the structural 
demands of large-scale networks differ from these. This leads 
to a discussion on how the structures and schemes can be 
revised in order to satisfy the demands of large-scale 

networks. A number of problems are identified, and some 
solutions suggested. 

The 4-regular grid structure and the honeycomb structure 
[3] form the basis of the further study. Both structures 
support Topological Routing. The structures can be studied as 
meshes or toruses. Throughout this paper, the meshes are 
considered. However, the algorithms are provided without 
considering the problems that occur due to nodes on the edge 
of a structure having smaller degree than the nodes of the 
structure in general. The algorithms are easily extended to the 
toruses. 

  
3. Notation 

 
Basic notation is given here. Throughout the paper more 

notation is introduced as it is used. A structure LNS U=  
consists of a set of nodes N  and a set of undirected lines L , 
such that each line is interconnecting two different nodes. 
Every node has a name/address associated to it. A path of 
length n  between a node u  and another node 'u , is a 
sequence of nodes ')(,,,,),( 1210 uuuuuuu nn == −K  such that all 
pairs of nodes ),( 1+ii uu  for 10 −≤≤ ni  are connected by a line 

1+ie . Thus it can also be written ',,,,,,,, 11211 ueueeueu nnn −−K . 
The hop distance between two nodes, u  and v , corresponds 
to the length of the shortest path between these two nodes, 
and is written ),( vudh . )(uN  denotes the set of neighbours of 
a node u  and consists of all nodes w such that 1),( =wudh . 

 In this paper it is assumed that all structures without 
failures are finite and connected: For every pair of nodes 

Nvu ∈ , , there exists a path between u  and v . In case of 
failures, a structure 'S  can contain a number of components. 
A component of S  is a set of nodes NN ⊆'  and a set of lines 

LL ⊆'  so that every such line is incident only with nodes in 
'N . Furthermore, from a node 'Nu∈  a path exists to another 

node v  if and only if ' Nv∈ . 
 

4. Topological Routing 
 
The basic idea of Topological Routing is the routing 

schemes known from multiprocessor systems as described in 
e.g. [3], [4], [5]: In all cases an addressing scheme is 
provided, and from any node any packet can be routed from 
only knowledge of the address of the current node as well as 
the destination node. Therefore, the name Topological 
Routing has been chosen. 

The principle is illustrated in the 4-regular grid structure 
shown in fig. 1. Clearly, this scheme will route packets from 
source to destination in a number of hops corresponding to 



the sum of the differences of the coordinates in the two 
directions. This routing principle is generalised in the 
following. 

 
Figure 1. An example of a 4-regular grid structure. The nodes are 
addressed according to the coordinate system. Routing a packet 
from u  to v  is done hop-by-hop: In every node, the address of v 
is compared to the current address. Based on the differences in 
x and y coordinates a next hop is chosen, which reduces the 
difference in one of the directions. The scheme is not 
deterministic since in some nodes two next hops can be chosen 
between. In this example, the packet is always send in the x 
direction if such a choice is to be made. 

 
To every node, an address is associated. This address can 

be formulated by words, coordinates or numbers, forming 
ordered sequences. Every node knows its own address as well 
as the addresses of its neighbours. Topological Routing 
works on a hop-by-hop basis: Given a packet p  and its 
destination node v , in every node receiving p , say u , the 
address of v , is compared to the addresses of all neighbours 
of u , and p  is sent to an address closest to v . The notation 

),( vuda  is used for the address distance between two nodes.  
How this distance is calculated depends on the chosen 
addressing scheme. In this paper 

||||)),(),,(( 12122211 yyxxyxyxda −+−=  is used as the addressing 
distance measure for the 4-regular grid.  For any node u  in 
the 4-regular grid structure we write ),( yx uuu= , where xu  and 

yu  corresponds to x and y coordinates of the address of u . 
Clearly, the performance of such a scheme depends on 

both network structure and addressing scheme. In the 
following, sufficient conditions for an addressing scheme to 
support Topological Routing are stated. Two levels of 
support are introduced: Schemes supporting Topological 
Routing, and schemes strongly supporting Topological 
Routing. In schemes supporting Topological Routing, any 
packet will finally reach its destination, while in schemes 
strongly supporting Topological Routing, an additional 
condition is that a chosen path always has to be a shortest 
path. 

Let S  be a structure consisting of a set of nodes N , and a 
set of lines L . It is assumed that Nvuuvdvud aa ∈∀=  ,),(),( , 
that ),( vuda  is always finite and that vuvuda =⇔=0),( .  If for 
every pair of nodes, vuNvu ≠∈ , , , there exists a node 

)( uNw∈  such that ),(),( vudwud aa < , then S  supports 
Topological Routing: Clearly, when routing, the addressing 

distance is reduced by every hop, and thus a packet routed 
will always reach its destination, assuming S  without errors. 

The following further conditions ensure strongly support of 
Topological Routing: Assume vu≠ . Let )( uNw∈  such that 

),( wvda  minimum. Then vzuNz ≠∈ ),(  must imply that 
),(),( wvdwzd hh ≥ . As a consequence Topological Routing in 

such a structure ensures that a shortest path is chosen. In the 
4-regular grid Svuvuvuvudvud yyxxah ∈∀−+−==  ,||||),(),( . This 
is sufficient to ensure strong support of Topological Routing. 
The same is true for the honeycomb structure. The addressing 
is similar to the scheme above, but extended to three 
coordinates [3]. This is illustrated in fig. 2. 

 

 
Figure 2. The addressing scheme of the honeycomb structure. 

  
5. Large-scale network demands 

 
The routing scheme introduced has until now been widely 

used in multiprocessor systems.  These systems differ from 
large-scale networks in several ways. In order to identify 
what changes should be made to the scheme in order to make 
it applicable for large-scale networks, five major differences 
have been identified.  

• Where multiprocessor systems can take 
advantage of cube and hypercube designs to increase 
connectivity, and can stack nodes close to each other, 
large-scale networks must follow an essentially two-
dimensional surface, and natural formations as well as 
human structures form the major constraints on 
placement of the nodes. Node density varies greatly from 
deserted landscapes to heavily populated areas. 

• Large-scale networks today contain 
thousands of transport nodes and millions of network 
termination points. Therefore, the structures must scale 
very well.  

• Traffic in large-scale networks is 
increasingly Internet traffic; this traffic, opposed to many 
other traffic types, exhibits a non-localised pattern; 
hence, most of the traffic passing nodes in networks is 
transit traffic.   



• Large-scale networks are dynamic entities, 
which are extended and upgraded continuously, and in 
which failures occur, and must be handled while the 
network is still in operation. In addition, large-scale 
networks have to be established over time. By nature, 
only add-on’s can be performed to change the structure. 
Consequently, it needs to be extendable so that its 
coverage area as well as its node density in already 
covered areas can be expanded. 

• Large-Scale networks support many services 
where continual operation is essential, and therefore 
there is a need for independent paths in order to support 
protection and fast restoration. 

 
6. Revised Schemes 

 
The problems are suggested solved by a number of 

extensions of the scheme. These results all refer to the 4-
regular grid structure, but most of them are extendable to the 
honeycomb structure as well. 

 
6.1. Hierarchical extension 

 
Hierarchies are introduced in order to deal with scalability 

issues as well as the need for larger node density in some 
areas than in other, because the lower hierarchical levels may 
exist in selected areas only, as shown in fig. 3. This also 
makes the structure gradually extendable. However, the 
structure only supports topological routing if all lowest 
hierarchical layers exist globally, and even in this case it is 
not supported strongly. In the following, a revised algorithm 
is presented, which always gives a shortest path, even if parts 
of the lower hierarchical layers are left out. 

 

 
Figure 3. An example of how hierarchies can be used to create 
structures, which are more scalable than the basic structure. At 
the same time, it is gradually extendable and allows for varying 
node density.  

 
Hierarchies are established by adding lines to the basic 

structure. For constructing just one hierarchical layer, an odd 
integer 1>g  is chosen for granularity. Now every node 

),( yx uuu=  such that xu  and yu  are both divisible by g , is 

connected by new lines to the four nodes ),( yx ugu − , 
),( yx ugu + , ),( guu yx −  and ),( guu yx + . More hierarchical 

layers are constructed in a similar manner.  Constructing n 
layers, these are denoted nn HHH ,,, 10 −K , where nH  is said to 
be the highest layer and 0H  the lowest. SH =0  corresponds 
to S  without hierarchical extensions and is said to be the 
basic structure. In the rest of the section nk≤ . In general a 
node u  belongs to kH  if and only if Nu∈ , k

x gu mod 0≡  and 
k

y gu mod0 ≡ . kH  also contains a set of lines, so that every 
node u  is connected to the nodes ),( y

k
x ugu − , ),( y

k
x ugu + , 

),( k
yx guu −  and ),( k

yx guu + , which are all nodes in kH .The 
hop distance between two nodes, with the restriction that only 
lines of kHH ,,0KU  are used, is written ),( vudk .  

An operator, round , is defined, which simply returns a 
closest integer value of a fraction: For two integers a  and b  
the operator )/( baround  determines an integer I  such that 

 (a/b)||I −  minimum. In all cases where the operator is 
applied, b  is odd. Thus, never more than one value of I  
exists. 

Before stating the algorithm, three basic properties are 
listed. Let S  be a hierarchical 4-regular grid structure, where 
g  is the granularity chosen, and n  is the number of 
hierarchies. Assume for now that all hierarchical layers exist 
globally. Property 1: From a given node kHHu KU ,0∈  the 
node 1 ' +∈ kHu  such that )',( uuda  minimum is unambiguously 
determined as ))/(),/((' 1111 ++++ ⋅⋅= k

y
kk

x
k guroundgguroundgu . 

Property 2: Let u  be a node in kH , and let 'u  be the node in 
1+kH  such that )',( uuda  minimum. Let Nv∈  and 'v  be the 

node in 1+kH  such that )',( vvda  minimum. If a shortest path 
between u  and v  is passing a node in 1+kH , a shortest path 
between u  and v , passing 'u  and 'v  exists. Property 3: If 

),(),( 1 vudvud kk +≤  then ),(),( vudvud nk ≤ . 
 

 
Figure 4. Hierarchical routing of a packet p from u=(2,9) to 
v=(6,4). In u it is determined that routing should be done through 
the upper hierarchical layer, and p forwarded towards (0,10). 
From (0,10) the packet is forwarded to the neighbour closest to 
v, which is (5,10). The neighbour of (5,10) closest to v is (5,5). 
From (5,5) the node closest to v is (6,5), and from this node p is 
forwarded to v.  

 
The revised routing algorithm works as follows: When a 

packet p  with destination node v  is received in a node u , 
which is in kH  but not 1+kH , it is decided if p  should be 



routed through 1+kH (or even higher layers).  This is done by 
deciding if ),(),(1 vudvud kk <+ , illustrated in fig. 4. Due to 
property 3 higher hierarchies need not be considered. v  
might not be in kH , but due to property 2 it is sufficient to 
compare the distances between u  and ''v , ''v  being the node 
in kH  such that )'',( vvda  minimum. 

Since u  and ''v  are both in kH , no shortest path uses lines 

of 1−kH  or lower layers. Thus, k
yyxx

k
g

vuvuvud |''||''|)'',( −+−
=  

If a shortest path exists in 1+kH  using only lines in kH  and 
lower layers, this path does also exist in kHH KU ,0 , implying 
that )'',()'',( 1 vudvud kk += . If this is not the case, a line in 

1+kH is contained in a shortest path. Due to property 2 this 
implies that such a path exists, passing both 'u  and 'v , where 

'u  is the node in 1+kH  such that )',( uuda  minimum, and 'v  is 
the node in 1+kH  such that )',( vvda  minimum: 

)'','()','()',()'',( 11 vvdvuduudvud kkkk ++= ++ . 
Clear, also this distance is easily calculated given the 

addresses as well as values of g and n : 

1
1

|''||''||'''||'''||'||'|)'',(
+

+
−+−

+
−+−+−+−

=
k

yyxx

k

yyxxyyxx
k

g
vuvu

g
vvvvuuuuvud

The value of k is easily derived from the address of u. 
 If )'',()'',( 1 vudvud kk +< , routing is done following the 

normal routing scheme: )( uNw∈  so that ),( wvda  minimum 
is determined, and p  forwarded to w . If )'',()'',( 1 vudvud kk +>  
routing along the shortest path happens by forwarding p  to a 
node )( uNw∈ , such that ),'( wuda  minimum. If 

)'',()'',( 1 vudvud kk +=  either scheme may be applied.  
If lower layers are omitted in parts of the structure, the 

above may not hold, since only paths in the highest 
hierarchical layer can be assumed to exist globally. However, 
such left out parts of the lower hierarchies are complete 
squares as shown in figure 3. A problem may only arise if a 
path should be established between nodes in two different 
squares, passing one or more left out squares. However, in 
this case another path of same or shorter length can be 
established using higher layer nodes. Therefore, the only 
revision of the scheme needed in case of left out parts, is that 
routing should be done through 1+kH  if )'',()'',( 1 vudvud kk += . 

The algorithm presented ensures that routing upwards and 
downwards hierarchies are done, so that a shortest path is 
always chosen. The scheme is easily extended to support 
different granularity in different layers. 

 
6.2. Path restoration and Topological Routing 

 
Algorithms for routing in incomplete structures are 

necessary in order to deal with network failures. Such 
algorithms have been evolved for the 4-regular grid structure 
[5], [6]. However, these algorithms need to be revised to deal 
efficiently with failures of arbitrary shape in packet-switched 
networks. It is of great importance that the routing is efficient 
in the sense that short paths are chosen, and the use of tables 
minimised. At the same time, routing should be possible 
between any pair of nodes between which a path exists, even 
in case of failures. Therefore, a new algorithm is proposed 
that works by constructing small tables in nodes incident to 
lines, which are unavailable. These tables require update 

information from the given area of failure only. The scheme 
presented here deals with a basic 4-regular grid structure. 

In a 4-regular grid structure LNS U= , with a standard 
),( yx  addressing scheme, suppose that a set of nodes NN ⊆''  

and a set of lines LL ⊆''  is removed, and let '''''' LNS U= . 
Throughout this paper ''S  is assumed connected, but this is 
easily generalised. 

 If ''SS−  is connected then ''' SSS −= . Otherwise, choose a 
node ''SSu −∈ . The nodes of 'S  are then u and all nodes v  
such that a path between u  and v  exists in ''SS − . The lines 
of 'S  are the entire set of lines incident with two nodes in 'S . 

'SS−  is said to be a lake of S  and denoted lS . 
If ''SS−  is not connected, the definition clearly depends on 

the choice of u . This reflects the fact that if the network is 
split into more components, from a node in one such com-
ponent, all other components seem to be failing. 

 A node is said to be a border node (BN) of lS  if it is inci-
dent with lines in both 'S  and lS . The set of all nodes of lS  
and all lines of lS  not incident with any node in 'S  is said to 
be the interior of lS . 

 In this paper, only the handling of one such lake is consid-
ered. The algorithm is easily extended to deal with any num-
ber of lakes. This corresponds to allowing ''S not connected.   

The presented algorithm, called the lake algorithm, works 
in the following way: When a lake lS  is detected, all BNs of 

lS  maintain a table of the border of lS . Whenever a packet 
p  with destination v  could be forwarded by the normal 

scheme only along lines in lS , a lookup in the table is made. 
p  is then routed around lS , towards a node w  on the border 

so that ),( vwda minimum. From here, the standard Topologi-
cal Routing scheme is again applied. The principle is 
illustrated in fig. 5. 

 

 
Figure 5. Routing a packet p from u to v in a structure with a 
lake. In (1,3) no path exists to a node closer to v, and thus the 
lake algorithm is applied. (5,3) is the node on the border of the 
lake, closest to v, and p is forwarded to this node, following a 
shortest path around the lake. 

 
In the following, consider a structure S  containing a lake 

lS . For every node, u , the neighbours of it are ordered as a 
sequence: K),,1(),,1,(),,1(),1,(),,1( yyxyxyxyx uuxuuuuuuuu ++−−+  



An element is said to be to the right of the preceding element. 
See fig. 6. 

 
Figure 6. From u the neighbour nodes are ordered (ux+1,uy), 
(ux,uy-1), (ux-1,uy), (ux,uy+1). (ux,uy+1)  is said to be the first node 
on the left-hand side of  (ux+1,uy), and (ux,uy-1) the first node on 
the right-hand side of  (ux+1,uy). 

 
When a node u  detects that it cannot establish contact to a 

neighbour node, it becomes aware that a lake has appeared, 
and u  has become a BN. The next step is to detect this lake, 
and collect the information necessary for running the lake 
algorithm. This is done by sending a left-control-packet uq : 
From u  it is send to the first available node on the left hand 
side of the detected unavailable node. When a node v  re-
ceives uq  it is first checked if vu= . If this is not the case, v  
is added to a list carried by uq , storing the addresses of all 
nodes passed, in that particular order. It is then send to the 
first available node on the left hand side of the node from 
which it is was received. If vu=  the information of nodes 
passed is stored in a table uT  and uq  terminated. The nodes 
stored in uT  are the nodes defining the border of lS : The 
BNs are only a subset of these. 

Both right-control-packets and left-control-packets can be 
used. They provide the same information, the only difference 
being the ordering of the nodes. By sending such control 
packets in specified intervals, uT  is kept up to date. In the 
following, TuS  denotes the set of nodes listed in uT  as well 
as the set of lines connecting all pairs of nodes listed 
preceding each other in uT . Clearly TuS  is connected. The 
shortest path between two nodes vu,  both in TuS  using only 
lines of TuS  is written ),( vud TuS . When it is experienced that 
the failure has been recovered from, the table is deleted and 
routing is done following the normal Topological Routing 
scheme. 

The same scheme is followed in all other BNs. In an im-
plementation of the scheme some optimisation may be done 
in order to reduce the number of control packets, by letting 
control packets carry information for use in all BNs, and not 
only their origin. Now, assume that every BN maintains a 
table as described. When a packet p  with destination v  is 
received in u , the following happens: 

• It is determined if any node )(' uNSw I∈ , 
satisfies that ),(),( vudvwd aa < . If this is the case p  is for-
warded to such a node. 

• If no )(' uNSw I∈  satisfies ),(),( vudvwd aa < , 
p  would in S  be sent on a line which does not exist in 
'S . Now uTw∈  is found such that ),( vwda minimum. If 

),(),( vudvwd aa = , then v  is in the interior of lS , so no 
appropriate path can be established. In this case, p  is 
discarded. Otherwise p  is forwarded to a node uTz∈  
such that ),(),( vwdvzd aa = . Among these possible nodes 
z  is chosen as to minimise ),( zud TuS . A shortest path in 

TuS  from u  to z  is determined, and p  is routed along 

this, keeping explicitly specified route information, so 
that any node passed simply check this and routes ac-
cordingly. Assuming that the lake does not change 
during the routing process, p  is forwarded to a node z  
such that ),(),( vudvzd aa < . It is easy to see that a path be-
tween z  and v  of length ),( vzda  exists in 'S , and thus 
p  will reach its destination. Some optimisation can be 

done in this scheme, in order to shorten the path between 
u and z . This can be done by using lines not in TuS . 
Nodes not in TuS  can also be used, but care must be 
taken, especially if more lakes exist. 

If a packet with an explicitly specified route is received in 
a node, and the next node listed on the route is unavailable, 
the explicitly defined route is discarded, and a new route set 
up using the scheme above.  

It might happen that a node u  detects a failure, but has to 
route a packet p  with destination v  before a table has been 
set up. One suggestion for handling this case is to forward p  
as a right- or left packet, being routed as the corresponding 
control packets. At some point, e.g. when p  reaches a node 
z  such that ),(),( vudvzd aa < , p  is in z  routed according to 
the general scheme. In u  it is possible to copy p , and send it 
as both right- and left packets ito provide faster transmission. 

The scheme provided could be revised by enlarging the set 
of nodes, which are maintaining tables: Larger tables, kept in 
a larger set of nodes, can reduce the length of paths chosen. 
This trade-off between table sizes and path lengths comprises 
an interesting field for further research. 

Handling of failures in hierarchical extensions of the 
structure is not supported by this algorithm. If a packet needs 
to be routed through higher hierarchies, it is send towards the 
nearest higher hierarchy node. If this node is unreachable, it 
has to be determined in which direction the packet should be 
routed. Further research is needed clarifying how this should 
be done. 

 
6.3. Mappings 

 
Large-scale networks must, as mentioned, conform to 

physical landscapes and can not be built entirely regularly; 
therefore, a mapping from the structure represented by the 
addressing scheme onto the physical network is necessary. 
Such mappings, while not arbitrary, can give considerably 
freedom in placement of nodes and lines in the landscape, as 
long as two conditions are fulfilled:  

First, the two dimensions x, y in the addressing must be 
preserved as general physical directions in the network; 
distances measured as a given number of hops, though, need 
not be of similar length in kilometres. Therefore what is 
represented as a grid of squares in the addressing scheme 
may be mapped such that the four nodes comprising the cor-
ners of a square are placed as the corners of an arbitrary 
trapezoid; the lines may follow any path through the 
landscape, as long as they do not overlap. 

Second, no two distinct lines or nodes in the addressing 
scheme may be placed in such proximity in the physical net-
work, that they become a singe point of failure.  

It is possible to add nodes of degree one or two to the 
physical structure, even though they do not exist in the ad-



dressing scheme; in this case, such nodes are simply associ-
ated with the closest node(s) in the structure. 

 
6.4. Independent paths for protection 

 
In general, the schemes proposed offer fast line restoration. 

However, in order to support applications not tolerating any 
restoration latency, it is necessary to send data through two or 
more independent paths, an approach recognized as protec-
tion. In the following, a scheme allowing for this is intro-
duced. It is first introduced for the 4-regular grid and then 
extended to the hierarchical extension.  

In general, the 4-regular grid offers four independent paths 
between any pair of nodes. Paths are considered independent 
only if they share no nodes. 

Assuming the structure is complete, the routing scheme 
can be made deterministic and predictable, depending on how 
lines are chosen when different shortest paths are available. If 
several different such predictable routing schemes are chosen 
carefully, a corresponding number of independent paths be-
tween any pair of nodes can be established. For a rather sim-
ple example, assume that a packet p  has origin u  and 
destination v . Two copies of p , namely p and 'p  are sent 
from u .  

In u  as well as all other nodes passed until v  is reached, 
the routing follows the general scheme. Whenever a choice of 
next hop has to made between two nodes z  and 'z  so that 

),'(),( vzdistvzdist aa = , p  and 'p  are routed differently: In 
this case, p  is routed along the x direction while 'p  is routed 
along the y direction. 

If xx vu ≠  and yy vu ≠  p  and 'p  are send on two 
independent paths, and if xx vu =  or yy vu =  the same path is 
followed. This scheme always uses as many short paths as are 
available in the structure. If more paths exist, they cannot be 
shortest, which makes it necessary to revise the general 
scheme of always forwarding packets to a node closest to the 
destination. Two cases must be dealt with: 

• If xx vu ≠  and yy vu ≠  two paths can be estab-
lished as stated above. Two more paths are established 
by routing via three intermediate nodes, qqq vvv ''','','  and 

''' ''','',' qqq vvv  respectively. The routing between these is 
done using the normal Topological Routing scheme. 
When qv'  has been reached, routing is done towards qv '' , 
from where routing is done towards qv ''' . From here q  is 
routed towards v . A similar scheme is used for 'q . Let 

||/)( xxxxx uvuvr −−=  and ||/)( yyyyy uvuvr −−= . Then q  is 
routed via ) ,(' yxxq uruv −= , ) ,('' yyxxq rvruv +−=  and 

) ,(''' yyxq rvvv += , while 'q  is routed via ) ,('  ' yyxq ruuv −= , 
) ,(''  ' yyxxq rurvv −+=  and ) ,('''  ' yxxq vrvv += . The length of the 

paths of q  and 'q  are four hops longer than the two 
shortest paths. No four independent paths from u  to v  
in this structure can have lower maximum, average, or 
minimum lengths than the set of paths of qpp  ,' , and 'q . 

• If xx vu =  or yy vu =  (assume the latter) only 
one shortest path p  can be established. Three more 
packets, q , 'q  and ''q  are routed in a way similar to the 
former case. The paths of q  and 'q  are both 2 hops 
longer than the path of p , and constructed by routing 
through intermediate nodes qv' , qv ''  and ''qv , '''qv  respec-

tively, where )1,(' += yxq uuv , )1,('' += yxq uvv , )1,('  ' −= yxq uuv  
and  )1,(''  ' −= yxq uvv . The path of ''q  is eight hops longer 
than the shortest, with four intermediate nodes 

),('  '' yxxq uruv −= , )2,(''  '' +−= yxxq uruv , )2,('''  '' ++= yxxq urvv ,  
),(''''  '' yxxq vrvv += . ||/)( xxxxx uvuvr −−= .  

This approach will clearly yield four independent paths, 
such that the paths are shortest possible. However, this ap-
proach is not directly applicable in case of hierarchical 
structures. If a packet has to be routed in only one hierarchi-
cal layer, the approach will work, but consider that this is not 
the case. If a packet has to be routed through higher hierar-
chies, it is encapsulated and routed towards the nearest higher 
hierarchy node. Therefore, all copies of it are routed towards 
this node. The approach provided can be used for the routing 
towards this node, making the paths independent, except for 
the nodes where a change in hierarchy occurs. The same is 
true for packets travelling the opposite way in the hierarchies. 
This results in four line-independent paths, of which at least 
one is shortest possible. Only nodes, which involve hierarchi-
cal shifts, are dependent. This might be dealt with by making 
such nodes more reliable, for example by doubling equipment 
and power supply. 

 
7. Conclusion 

 
The fundamentals of a new promising routing scheme for 

large-scale networks, Topological Routing, have been pre-
sented. It has several advantages over the schemes used to-
day: Tables are only needed in case of network failures, and 
even in that case small tables are sufficient, and only little 
communication is needed to keep the tables updated. Fast 
restoration is supportable, and protection paths are easily set 
up. The scheme relies on the network structures satisfying 
certain global constraints. However, by establishing hierar-
chies and using appropriate mapping schemes, a high degree 
of freedom is provided and gradual extension of networks 
supported. Further research is needed before Topological 
Routing can be applied, especially in the fields of hierarchies, 
restoration, protection, QoS and load balancing, Here the 
need for a unified standard for construction and classification 
of network capabilities is crucial. 
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