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Particulate matter (PM) in air has been proven to be hazardous to human health. 
Here we focused on analysis of PM data we obtained from the same campaign 
which was presented in our previous study. Multivariate linear and random 
forest models were used for the calibration and analysis. In our linear regression 
model the inputs were PM, temperature and humidity measured with low-cost 
sensors, and the target was the reference PM measurements obtained from SEPA 
in the same timeframe. 
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Introduction 

Pollutant concentrations in ambient air have been measured and regulated for many 

decades now, to prevent negative effects of air pollution to health and the environment [1]. 

Evidence on adverse effects of ambient air pollution has been mounting steadily, and public 

interest in the quality of the air we breathe has been on the rise especially since the outbreak 

of COVID-19 pandemic [2, 3]. While until recently, monitoring of air quality has been done 

by professional agencies, today, the availability of portable, low cost microsensor devices and 

the exponential growth of Internet of Things (IoT) in everyday life has enabled widespread 

monitoring of air quality also by lay people [4, 5]. This development raises a number of tech-

nical and scientific challenges, among them, comparability, accuracy and repeatability of 

measurements, but also provides a number of opportunities to obtain data from locations that 

are important for human exposure but not well assessed with traditional methods. 

A number of new low-cost devices for monitoring air quality are commercially 

available. They are equipped with multiple sensors for measuring the concentration of pollu-
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tant gases (CO, NO, NO2, SO2) as well as PM, air pressure, temperature, humidity. Low-cost 

sensors measuring PM mostly use light scattering principle. However, the light scattering 

method is sensitive to external environment and in particular, to meteorological conditions 

(especially to temperature, humidity). This can lead to accuracy and stability drawbacks [6-9]. 

For instance, PM low-cost sensors often report PM concentration increasing in presence of 

water droplets in humid meteorological conditions. 

Field calibration is an approach to correct the signal of low-cost sensors for the in-

fluences of their interfering environment [10-12]. This technique is based on models such as 

multi-linear or machine learning regression, using the measurements of the low-cost sensor 

and variables from external environment as features and monitoring stations as reference [13-

17]. To improve the quality of data, the raw signal from the low-cost sensor is post-processed 

[18]. Removing noise is often the main task in post-processing and data enrichment the se-

cond one, missing or incomplete data can be supplemented [19], and existing data can be 

enhanced either with surrounded pattern [20, 21] or with its decomposition into several com-

ponents [22]. For data enrichment, to reduce noise and to derive calibration curves, several 

techniques can be used both at the device level and at a cloud level, including mathematical, 

statistical or machine learning approaches. The common drawback of data processing using 

machine learning is the processing requirements for e.g., power consumption or processing 

time that make them unsuitable for use on individual low-cost platforms. Such in-situ data 

processing would however alleviate the large-scale system performance by reducing data 

transfer and connectivity requirements [23].  

Could we, by a sequence of low-processing data enrichment and a simple calibration 

method, reach accuracy as close as a calibration based on machine learning? We introduce the 

term low-processing as used in [23] as an opposition to heavy computational processing. The 

main objectives of this paper are: 

 to propose low-processing data enrichment for low-cost PM2.5 sensor measurement, and 

 to test the approach on existing data, comparing a computationally simple and a more 

complex calibration model. 

The results indicate possible future direction for signal low-processing to achieve 

the required quality of data from low-cost sensor devices monitoring air quality. 

Materials and methods 

The CITI-SENSE air monitoring campaign in Belgrade, Serbia 

Our data come from campaigns performed in the CITI-SENSE project [24]. The CITI-

SENSE explored ways how to increase the involvement of the public in environmental deci-

sions, both directly and through provision of citizen collected data. In the City of Belgrade peo-

ple participated both in outdoor measurements and in air quality measurements around schools. 

In 2015, two CITI-SENSE campaigns were carried out with 25 units of AQ MESH 

pods equipped with a PM2.5 sensor. We co-located these 25 low-cost units to an automatic 

monitoring station (AMS) at Stari Grad (GPS: 44.82113, 20.45912) which belongs to the 

State Network run by the Serbian Environmental Protection Agency (SEPA). The area of the 

study, fig. 1(c), was located about 150 m from a high-traffic arterial road and represented a 

typical street in the city center. It was frequented by pedestrians and cars, but without public 

transport, and the local ambient air pollution levels are representative of a residential-traffic 

area of the Belgrade city center. The AQMESH, fig. 1(d), were located at 20 m from the sam-

pling inlet of the automatic monitoring station.  
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Data from PM
2.5

 SEPA monitoring station and 

AQ MESH low-cost sensor devices 

The AMS at Stari Grad performed a continuous measurement of PM2.5 with a 

GRIMM Aerosol Spectrometer EDM 180. This method is an equivalent method for PM2.5-10 

and PM2.5 [25, 26]. In our study, this station provided the air quality measurements as 1 mi-

nute averages. An illustration of its 1 minute PM 2.5 signal is shown in fig. 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The AQ MESH v. 3.5 units combine new sensor technologies, hardware platform, 

General Packet Radio Service (GPRS) communications and cloud-based data post processing 

Figure 1. (a) OpenStreet maps of Serbia 
with the mark for Belgrade, (b) Belgrade 
metropolitan area with the experiment 

location mark, (c) the location of the 
experiment, and (d) a photo of AQ MESH 
unit on collocation near the referent station 

Figure 2. (a) Timeseries of 1 minute PM 2.5 from 2015-07-26 00:00 to 2015-08-27 00:00 and 
(b) timeseries of 1 minute PM2.5 for subset between 2015-08-01 00:00 to 2015-08-05 00:00 
from the monitoring station (green) and the seven AQMESH low-cost sensors; from top to down: 

#702150, #716150, #722150, #810150, #839150', #870150, #875150 
(for color image see journal web site) 

(a) (b) 

(c) (d) 
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in a monitoring unit [27]. The PM2.5 value are obtained by the conversion from number to 

mass concentration, performed by the manufacturer. These PM sensors and their internal 

pumps were idle most of the time, measuring continuously for one minute every 15 minutes. 

The AQ MESH measurements of the CITI-SENSE air monitoring campaign in Belgrade, 

Serbia were presented in our previous paper [17]. For this study, we chose 7 devices that pro-

vided the most complete data, device numbers #702150, #716150, #722150, #810150, 

#839150', #870150, and #875150. An illustration of their 1 minute PM 2.5 signal is shown in 

fig. 2(a). A subset for the period 2015-08-01 to 2015-08-05 is presented in fig. 2(b). 

Data enrichment and model calibration 

We focused our study on using low-processing methods. This section presents a 

methodology to resample a signal, then to build-up new features describing the concentration 

of PM2.5 from the reference monitoring station, to extract all the relevant information from the 

signal of the low-cost sensors, and finally to present a simple calibration model. 

Supplementing missing values and removal of the highest spikes 

The AQ MESH devices provide a PM2.5 value obtained from a measurement of 1 

minute duration every 15 minutes. In order to keep data processing to a minimum, we have 

replaced the missing measurements by their last preceding valid value. The highest spikes 

from the low-cost PM2.5 signal were removed when they were higher than seven times the 

median of the PM2.5 concentration within the CITI-SENSE measurement campaign period. 

As done previously, these removed values were supplemented by their last preceding valid 

value. 

Encoding periodic time-related features using B-splines 

The 1 minutes PM2.5 SEPA monitoring station data exhibit two main pattern, hourly 

and daily, fig. 3. These patterns are directly connected to the emission strengths of PM2.5 and 

its precursors, and to the diurnal meteorological patterns. Without having any direct quantita-

tive information about PM2.5 emission, encoding the periodic pattern of the concentration into 

features will bring valuable information into calibration models. These features are related to: 

hours within a day and day of week. 

 

 

 

Hours are naturally described as values from 1 to 24, and days of week as labels 

from Monday to Sunday, often described as values from 1 to 7 in data science. We paid atten-

tion avoiding any jump between the first and the last value of these periodic ranges and avoid-

Figure 3. Hourly and daily patterns of PM2.5 concentration at the SEPA monitoring 
station, Stari Grad 
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ing giving more weight to hour 24 than hour 1, or day 7 than day 1. For this purpose, we en-

coded each of these two periodic ranges into two sets of B-splines [28, 29].  

Splines are piecewise polynomials, parametrized by their polynomial degree and the 

positions of the knots. The periodic encoding function, f, of the time-related, x, is a spline that 

reads: 
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We used B-splines to encode the periodic ranges. For any d > 0, B-spline basis func-
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In our case, we used B-splines of order 3 and spline coefficients equal to 1. Features 

of the hours of day are described by a set of 12 splines with 13 knots regularly spread from 0 

to 24, and features of the weekdays are described by a set of 3 splines with 4 knots regularly 

spread from 0 to 7, fig. 4. 

Decomposition of the low-cost sensor signal with 

low-pass Butterworth filter 

The signals from the low-cost sensor were noisy and had unexplained spikes. None-

theless, they could provide relevant information at different timescales [22]. To increase the 

amount of information a low-cost sensor signal could give, we decided to extract the signals 

corresponding to 24 hours, 12 hours, 6 hours, 1 hours, 30 minutes, 15 minutes, and 5 minutes. 

Extracting such patterns by processing rolling window average would require too much pro-

cessing. An efficient alternative is the use of low-pass filter for each frequency of interest and 

recursively subtracting their outcomes to keep the signals of interest. In this study, and be-

cause of its low processing requirement, we used the low-pass Butterworth filter [30]. The 

transfer function of the low-pass Butterworth filter reads: 

Figure 4. Encoded periodic features as splines for the hours of day (a) and days of week (b) 
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where G0 is the gain at zero frequency, s – the frequency of the signal, wc – the cutoff fre-

quency, and n – the order of the transfer. In our study, G0 was chosen equal to one and the 

order n to one as well. The term sk is called the k
th

 pole and reads: 
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given the time resolution of signal fs, the choice of the timescale to be cut-off fc and the 

Nyquist frequency, the cutoff frequency reads: 
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given the 1 minute time resolution of the low-cost signal, and given the timescale of interest, 

the timescale cut-off, fc, got the values: 1440, 720, 360, 60, 30, 15 and 5. 

Finally, the residual signal at the timescale of interest is retrieved by subtracting to 

the filtered signals the one at higher timescale. For instance, the residual signal of 720 

minutes resulted as a difference between the signal filtered at 720 minutes and the signal fil-

tered at 1440 minutes. An illustration of these seven features for the low-cost station #702150 

is presented in fig. 5.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Filtered signals at a timescale 1 day, and residual signals 

at 12 hours, 6 hours, 1 hour, 30 minutes, 15 minutes, and 
5 minutes for instrument # 702150 
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Calibration with a multivariate linear model 

Calibration based on a multi-linear regression model [31, 32] respects the low-

processing condition. The multivariate linear calibration model reads: 

 0

1

 
N

i i

i

Y X 


   (6) 

where Y is the target, Xi – the features, and bi – the coefficients. In our case the target was the 

reference monitoring station and the features were the ones described in this section. 

Experimentation plan  

The dataset between 27/07/2015 and 26/08/2015 was used for the training and the 

testing of the calibration model; the dataset between 31/08/2015 and 09/09/2015 was used for 

its validation. The first period was randomly split in two parts with a ratio 60/40 for the train-

ing and the testing steps. Several experiments were done in this study to analyse the effects of 

each data enrichment on the calibration model. In addition to a multivariate linear model, we 

used Random Forest (RF) [33] to get a comparison. The RF is well known for providing pre-

diction with high accuracy but at a higher processing cost. In total, we performed seven exper-

iments, the overview is presented in tab. 1. 

We applied two usual metrics to quantify the accuracy of the output; the root mean 

square error (RMSE), and the coefficient of determination, R
2
. The Pearson correlation coeffi-

cient is processed to compare our results with previous studies. The experimentations were 

run on an Intel(R) Core (TM) i7-6600U CPU at 2.60 GHz 2.81 GHz. We measured the time 

processing for experimentations E2 to E7. We did not implement any CPU parallelisation to 

ease comparisons in-between experimentations. 

Results and discussion 

An illustration of the calibration of E2 to E7 at AQ MESH # 702150 is shown in fig. 

6 and the quantile-quantile plot in fig. 7. 

Metrics of the seven experiments for the evaluation phase are presented in tab. 2. For 

both multivariate linear and RF models, increasing the number of features with the composition 

of signal at different time scale increase most of the time both metrics RMSE and R
2
. Adding 

periodic features have not always a positive consequence: for e.g., with node #722150 or # 

716150. For experimentation E6 and E7, RF sees its coefficient of determination between 0.57 

and 0.78 and multivariate linear model between 0.42 and 0.85. For experimentation E6 and E7, 

RF sees its RMSE between 4.23 and 5.91 and multivariate linear model between 3.44 and 6.86. 

Table 1. Overview of the seven experimentations 

Experimentation ID Data enrichment Calibration model type 

E1 S None 

E2 S ML 

E3 S RF 

E4 S + C ML 

E5 S + C RF 

E6 S + C + T ML 

E7 S + C + T RF 

Note: S – supplementing, C – composition from low-band Butterworth filter, T – Temporal features, 
ML – Multivariate-linear, and RF – Random Forest 
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Figure 6. Timeseries for the period of the evaluation phase for the 
reference monitoring station (top) and the calibrated AQMESH # 
702150 for experiment E2 (second line), E3 (third line), 

E4 (fourth line), E5 (fifth line), and E6 (sixth line) 

Figure 7. Quantile-quantile plots of the calibrated node # 702150 
against a reference monitoring air quality station; each plot 
corresponds to one experiment; (a) E2, (b) E3, (c) E4, (d) E5, 

(e) E6, and (f) E7 



Stojanović, D. B., et al.: Low-Processing Data Enrichment and Calibration for … 
THERMAL SCIENCE: Year 2023, Vol. 27, No. 3B, pp. 2229-2240 2237 

Average processing time of the seven experiments for the training phase are present-

ed in tab. 3. Experiments with a multivariate linear based calibration sees its processing time 

from 0.004 seconds to 0.046 seconds on average, and experiments with a Random Forest 

based calibration sees its processing time from 5 seconds to 34 seconds on average. 

Low-processing data enrichment such as supplementing missing values, encoding 

periodic time-related features, and making a composition of the initial low-cost signal at dif-

ferent time scale showed convincing results by improving the metrics of calibration with both 

multi-linear regression and RF regression. Moreover, using data enrichment with a multi-

linear regression outperforms RF with no data enrichment. 

Without any surprise, for most of the experiments and with identical data enrich-

ment, calibration with RF got better metrics than multi-linear prediction. Nonetheless, it is 

worth to point out two drawbacks: 

 Training a RF regression model is CPU consuming. Comparing experiments E6 and E7 for 

the training phase, shows that processing of a RF calibration model took 751 more time 

than a multi-linear calibration model. 

 Calibration methods such as RF would only predict values from features it has been 

trained for and will struggle for phenomena outside of its knowledge [34]. As shown for 

Table 2. Metrics of the seven experimentations for 
the seven nodes during the evaluation phase 

ID Metrics E1 E2 E3 E4 E5 E6 E7 

702150 R2 0.16 0.66 0.53 0.84 0.72 0.85 0.76 

 RMSE 8.26 5.25 6.19 3.59 4.73 3.44 4.41 

 r 0.82 0.82 0.73 0.93 0.85 0.93 0.88 

716150 R2 0.01 0.28 0.24 0.39 0.59 0.42 0.57 

 RMSE 8.97 7.64 7.84 7.02 5.76 6.86 5.91 

 r 0.53 0.53 0.57 0.63 0.78 0.65 0.76 

722150 R2 -0.19 0.39 0.42 0.53 0.60 0.52 0.63 

 RMSE 9.81 7.04 6.88 6.18 5.67 6.20 5.46 

 r 0.66 0.66 0.68 0.76 0.77 0.73 0.8 

810150 R2 0.20 0.36 0.37 0.47 0.66 0.47 0.65 

 RMSE 8.05 7.20 7.16 6.57 5.24 6.53 5.29 

 r 0.6 0.6 0.66 0.69 0.81 0.69 0.81 

839150 R2 -0.28 0.47 0.52 0.63 0.75 0.64 0.78 

 RMSE 10.19 6.57 6.25 5.48 4.49 5.36 4.23 

 r 0.76 0.76 0.73 0.9 0.87 0.87 0.89 

870150 R2 -0.41 0.42 0.46 0.56 0.70 0.58 0.64 

 RMSE 10.67 6.84 6.58 5.96 4.95 5.83 5.41 

 r 0.78 0.78 0.72 0.91 0.88 0.88 0.84 

875150 R2 0.48 0.67 0.47 0.83 0.72 0.85 0.77 

 RMSE 6.46 5.20 6.57 3.67 4.79 3.50 4.32 

 r 0.83 0.83 0.71 0.93 0.85 0.93 0.89 

Table 3. Average processing time of the seven experimentations for 
the seven nodes during the training phase 

Experiments E2 E3 E4 E5 E6 E7 

Processing 
time [s] 

0.004 ±0.007 5.000 ±0.415 0.015 ±0.00 27.845 ±2.302 0.046 ±0.022 34.587 ±1.269 
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AQ MESH sensors #702150 and #875150, experiments with a multi-linear calibration 

outperform the ones with a RF calibration. Indeed, the period of measurement used for 

training the calibration model was one month long. This short period did not cover all the 

complexity a PM2.5 concentration phenomena can get all year long. 

Previous research [35] studied the basic statistics obtained during the co-location of 

24 identical AQ MESH nodes for the period April 13
th

-June 24
th
 2015, at the reference station 

of Kirkeveien. The results showed that even for identical sensors and platform, the perfor-

mance can vary from sensor to sensor. The average PM2.5 RMSE for all nodes was 5.57 and a 

Pearson correlation coefficient, r, of 0.51. By comparing these former results with sensor 

#716150 characterized by a similar Pearson correlation coefficient of 0.53, we show that data 

enrichment improves this metric to 0.65 with a multi-linear model and to 0.76 with a RF 

model. 

The results of combining data enrichment with calibration demonstrated in this pa-

per provide greater improvement in the metrics, and some solutions to optimize the calibra-

tion process considering the CPU processing time and the data complexity. Our future work 

includes understanding the signal from the low-cost sensor and having a low-cost platform 

with meteorological sensors. More data from inside the platform might give insight to predict 

spikes: e.g. Voltage at the power supply, intensity at the PM sensor, CPU-processing rate, 

input-output rate.  

Conclusions 

Our objective was to evaluate low-processing data enrichment and calibration of AQ 

MESH PM2.5 low-cost sensors which were co-located with a SEPA reference station. Low-

processing data enrichment such as resampling, encoding periodic time-related features and 

making a composition of the initial low-cost signal at different time scale showed convincing 

results on calibration both multi-linear and based on a RF regression. Besides in our case 

where period of measurement is short (one month), combining data enrichment with a multi-

linear can outperform RF. 
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