Elektrohemijska svojstva kompozita grafen-oksida i kobalt-ferita dopiranog cinkom i galijumom

MARIJA B. GRUJIČIĆ, Univerzitet u Beogradu,	Originalni naučni rad
Institut za nuklearne nauke "Vinča", Beograd	UDC: 620.197.6
ŽELJKO V. MRAVIK, Univerzitet u Beogradu,	DOI: 10.5937/tehnika2202155G
Institut za nuklearne nauke "Vinča", Beograd	
DANICA V. BAJUK-BOGDANOVIĆ, Univerzitet u Beogradu,	
Fakultet za fizičku hemiju, Beograd	
DAMJAN VENGUST, Jožef Stefan Institute,	
Advanced Materials Department, Ljubljana, Slovenija	
ZORAN M. JOVANOVIĆ, Univerzitet u Beogradu,	
Institut za nuklearne nauke "Vinča", Beograd	
IVANA B. STOJKOVIĆ SIMATOVIĆ, Univerzitet u Beogradu,	
Fakultet za fizičku hemiju, Beograd	
SONJA M. JOVANOVIĆ, Univerzitet u Beogradu,	
Institut za nuklearne nauke "Vinča", Beograd	

U ovom radu prikazana su elektrohemijska svojstva kompozita grafen-oksida i nanočestica kobalt-ferita, kao i kobalt-ferita dopiranog sa cinkom i galijumom. Grafen-oksid (GO) sintetisan je modifikovanom Hamerovom metodom. Magnetne nanočestice sintetisane su solvotermalnom metodom, nakon čega je izvršena izmena oleinske kiseline dihidrokofeinskom kiselinom sa ciljem dobijanja hidrofilnog materijala. Kompoziti grafen-oksida i magnetnih nanočestica sintetisani su hidrotermalnom metodom, prilikom čega je udeo magnetnih čestica bio 5 i 15 težinskih % u odnosu na grafen-oksid. Rezultati rendgeno-strukturne i FTIR analize potvrdili su potpunu oksidaciju grafenskih slojeva. SEM i TEM analize pokazale su depoziciju magnetnih nanočestica na sloju grafen-oksida, bez promene veličine ili oblika nanočestica. FTIR analiza hidrotemalno tretiranog grafen-oksida i kompozita pokazala je da dolazi do delimične redukcije epoksi grupa, kao i da se uspostavlja vodonična veza između komponenti kompozita. Ciklovoltamogrami pokazuju da su kompoziti stabilni pri brzinama polarizacije od 5 do 400 mV s⁻¹, kao i da je njihov kapacitet pretežno pseudokapacitivne prirode. Pseudokapacitivnost potiče od oksidoredukcionih reakcija H^+ jona iz elektrolita i površinskih funkcionalnih grupa grafen oksida. Na osnovu ciklovoltamograma izračunati su specifični kapaciteti svih kompozita, pri čemu je najveću vrednost pokazao kompozit CFO GO 15% koja iznosi 36,86 F g⁻¹ pri brzini polarizacije od 5 mV s⁻¹.

Ključne reči: grafen-oksid, kobalt-ferit, elektrohemija

1. UVOD

Istraživanja su pokazala da su materijali na bazi

grafena pogodni za elektrohemijske kondenzatore i baterije, jer poseduju visok kapacitet skladištenja naelektrisanja usled dobre provodljivosti i velike specifične površine [1, 2].

Grafen-oksid (GO) nastaje kovalentnim vezivanjem kiseoničnih funkcionalnih grupa za monosloj grafena. Zahvaljujući planarnoj strukturi GO predstavlja idealnu podlogu na koju se adsorpcijom ili hemijskim putem mogu vezati brojni nanomaterijali i

Adresa autora: Marija Grujičić, Univerzitet u Beogradu, Institut za nuklearne nauke, Vinča, Mike Petrovića Alasa 12-14

e-mail: marijagrujicic@vin.bg.ac.rs Rad primljen: 12.03.2022. Rad prihvaćen: 12.04.2022.

površinski aktivne supstance [2]. Na ovaj način GO se funkcionalizuje pri čemu mu se znatno menjaju svojstva, kao i moguće primene. Mogućnost površinske funkcionalizacije i formiranja stabilnih vodenih suspenzija čine grafen-oksid pogodnim za formiranje kompozitnih materijala, posebno sa nanočesticama. Danas se intenzivno ispituju različita svojstva nanočestica, pri čemu magnetna zauzimaju posebno mesto. Magnetna svojstva nanočestica određuju mnogi faktori poput hemijskog sastava, vrste defekata u kristalnoj rešetki, veličina i oblik čestica, interakcija čestica sa susednim česticama [3]. Spinelni feriti su feromagnetni materijali, opšte formule MFe2O4 gde je M2+ katjon prelaznih metala (Co2+, Ni2+, itd.), koji imaju izuzetna električna i magnetna svojstva [4]. Među spinelnim feritima, kobalt-ferit (CoFe2O4, CFO) ističe se usled svojih jedinstvenih svojstava kao što su visoka Kirijeva temperatura, visoka koercitivnost, odlična hemijska stabilnost, mehanička tvrdoća, itd [3, 4]. Ove karakteristike čine CFO pogodnim materijalom za skladištenje podataka, za primenu u katalizi, prečišćavanju otpadnih voda, kao i medicinsku dijagnostiku. Međutim, nedovoljno se zna o uticaju heteroelemenata na svojstva skladištenja naelektrisanja kobalt-ferita. U tu svrhu, u ovom radu izvršena je solvotermalna sinteza nanočestica CFO i CFO dopiranog cinkom i galijumom. Sintetisane nanočestice su hidrofobne i radi elektrohemijskog ispitivanja u vodenoj sredini je izvršena izmena liganada čime je monosloj oleinske kiseline zamenjem dihidrokafeinskom kiselinom. Grafen-oksid sintetisan je modifikovanom Hamerovom metodom. Kompoziti GO i spinelnih ferita su hidrotermalno sintetisani na temperaturi od 120 °C, dok maseni udeo magnetnih nanočestica na GO iznosi 5 i 15 težinskih %. Nakon toga izvršena je karakterizacija hidrotermalno sintetisanih kompozita GO i CFO, kao i CFO dopiranog cinkom i galijumom, u cilju nalaženja materijala što boljih elektrohemijskih svojstva.

2. EKSPERIMENTALNI DEO

Sinteza magnetnih nanočestica. Postupak sinteze nanočestica kobalt-ferita CoFe₂O₄ (CFO), kobalt-ferita dopiranog cinkom Co_{0.5}Zn_{0.5}Fe₂O₄ (CFO_Zn) i kobaltferita dopiranog galijumom CoFe_{1.5}Ga_{0.5}O₄ (CFO_Ga) opisan je u literaturi [5]. U teflonski uložak zapremine 50 ml dodato je 0,4 g NaOH u 2 ml dejonizovane vode uz mešanje na magnetnoj mešalici. Kada se NaOH rastvorio dodato je 10 ml pentanola i 3,8 ml oleinske kiseline. Rastvor je ostavljen da se meša na sobnoj temperaturi tokom 30 min. U međuvremenu, pripremljen je vodeni rastvor Co²⁺, Zn²⁺ i Fe³⁺ jona, odnosno Co²⁺, Ga³⁺ i Fe³⁺ jona. Kao izvori jona metala korišćene sledeće soli: $Co(NO_3)_2 \cdot 6H_2O$, su Fe(NO₃)₃·9H₂O, Zn(NO₃)₂·6H₂O i Ga(NO₃)₃·H₂O. Nakon mešanja od 30 min, u prvi rastvor je dodat vodeni rastvor odgovarajućih metalnih jona i novi rastvor je mešan tokom 1 h na sobnoj temperaturi, nakon čega je teflonski uložak prebačen u autoklav i u pećnici zagrevan 8 h na 180 °C. Posle termičkog tretmana autoklav je ohlađen prirodno do sobne temperature. U teflonskom ulošku su se mogle primetiti tri faze: donja (vodena), srednja (faza u kojoj se nalazi uzorak) i gornja (uljana) faza. Pasterovom pipetom pažljivo su uklonjene donja i gornja faza, zatim je uzorak redispergovan sa 6 ml n-heksana, prebačen u staklenu čašu u koju je dodato 10 ml etanola. Uzorak se od tečnosti odvajao pomoću jakog magneta. Postupak ispiranja ponovljen je još 4 puta, zatim je uzorak redispergovan u n-heksanu i ostavljen da se suši u digestoru tokom 24 h.

Izmena liganada. Izmena liganada je rađena pomoću dihidrokafeinske kiseline (DHCA), pri čemu je maseni odnos DHCA:CFO = 1:1. Prilikom svake izmene liganada, prvi rastvor sastojao se od 100 mg solvotermalno sintetisanih magnetnih nanočestica funkcionalizovanih monoslojem oleinske kiseline i 4 ml tetrahidrofurana (THF), dok se drugi rastvor sastojao od 100 mg DHCA i 10 ml THF. Ova dva rastvora su pomešana i nastala suspenzija je mešana tokom 3 h na temperaturi od 50 \pm 1 °C pomoću magnetne mešalice. Nakon mešanja, suspenzije su prebačene u epruvete za centrifugu i u svaku je dodato 15 ml THF i 2 ml 0,5 M rastvora NaOH. Posle centrifugiranja od 15 min, Pasterovom pipetom pažljivo je uklonjen supernatant, dodato je po 10 ml THF u svaku epruvetu za centrifugu, nakon čega je suspenzija centrifugirana 15 min. Nakon toga, ponovo se Pasterovom pipetom pažljivo uklonio supernatant i dodato je 10 ml dejonizovane vode, kako bi se čestice redispergovale. Koncentracija vodene suspenzije magnetnih čestica je 10 mg ml^{-1} .

Sinteza grafen-oksida. Grafen-oksid sintetisan je korišćenjem modifikovanog Hamerovog postupka, opisanog u literaturi [6]. Prvo se 150 ml koncentrovane H₂SO₄ hladilo na ledu tokom 30 min, zatim je dodato 2 g prirodnog grafita. Nakon toga, polako je dodato 1,5 g NaNO₃ i nastavljeno je sa mešanjem 5 min, a zatim je vrlo polako, u vremenskom periodu od sat vremena, dodato ukupno 9 g KMnO₄. Dobijena smeša mešana je na ledu tokom 2 h, zatim je mešanje nastavljeno na sobnoj temperaturi tokom 5 dana. Nakon 5 dana polako je dodato 280 ml vodenog rastvora 5% H₂SO₄, tako da pri dodavanju temperatura nije prelazila 50-55 \pm 1 °C. Nakon što je dodato svih 280 ml H₂SO₄, temperatura je podignuta na 98 ± 1 °C i održavana tokom 2 h. Zatim je smeša ohlađena na 60 ± 1 °C, dodato je 6 ml 0,5% rastvora H₂O₂ i smeša se mešala na sobnoj temperaturi još 2 h. Koncentracija dobijene suspenzije grafen-oksida iznosila je 6,5 mg ml⁻¹. Čist grafen-oksid je hidrotermalno tretiran na temperaturi od 120°C tokom 3 h. Nakon hidrotermalnog tretmana, uzorak je prebačen u odgovarajuću posudu nakon čega je ostavljen u sušnici na 80°C do potpunog sušenja.

Sinteza kompozita grafen-oksida i magnetnih čestica. Sintetisani su kompoziti masenog udela 5 i 15 težinskih % spinelnih ferita u odnosu na grafen-oksid. Prvo je odmereno 8 ml suspenzije grafen-oksida i tretirano na ultrazvučnom kupatilu tokom 1 h, radi eksfolijacije grafenskih slojeva. Nakon ultrazvučnog tretmana, u 8 ml grafen-oksida, dodato je 0,274 ml suspenzije spinela za 5% kompozit, odnosno 0,918 ml suspenzije spinela za 15% kompozit. Zatim je u tu smešu dodato 18 ml dejonizovane vode i sve zajedno stavljeno na šejker tokom 30 min, nakon čega je dodato još 4 ml dejonizovane vode. U sledećem koraku, smeša je prebačena u odgovarajući teflonski uložak, zatim u autoklav i izložena temperaturi od 120°C tokom 3 h. Radi lakšeg praćenja u nastavku teksta, koristiće se oznake prikazane u tabeli 1. Posle hidrotermalnog tretmana uzorci su prebačeni u odgovarajuću posudu nakon čega su ostavljeni u sušnici na 80°C do potpunog sušenja.

Tabela 1. Pregled oznaka kompozita koji će biti korišćeni u daljem tekstu

Oznaka uzorka	Nanokompozit
CFO_GO_5%	grafen-oksid i 5% udela CFO
CFO_GO_15%	grafen-oksid i 15% udela CFO
CFO_Zn_GO_5%	grafen-oksid i 5% udela CFO_Zn
CFO_Zn_GO_15%	grafen-oksid i 15% udela CFO_Zn
CFO_Ga_GO_5%	grafen-oksid i 5% udela CFO_Ga
CFO_Ga_GO_15%	grafen-oksid i 15% udela CFO_Ga

Karakterizacija. Kristalna struktura uzorka grafenoksida ispitana je pomoću rendgenske strukturne analize (XRD). Rendgenski difraktogrami su snimani na difraktometru AXS D4 Endeavor, Bruker sa CuK α (λ = 1,5406 Å) kao izvorom zračenja. Rendgenski difraktogrami su dobijeni na sobnoj temperaturi, gde se opseg uglova 20 kretao od 20° do 80° sa korakom od 0,02°. Morfologija nanokompozita ispitana je pomoću SEM-a (FEG SEM 7600F, JEOL). Postupak je obuhvatao nanošenje uzorka na provodnu karbonsku traku bez nanošenja provodnog sloja. Morfologija nanokompozita ispitana je i pomoću TEM-a (JEM-2100, JEOL) pri energiji od 200 keV. Postupak je obuhvatao dispergovanje uzorka u etanolu i ultrazvučno tretiranje tokom 10 min, nakon čega je nekoliko kapi naneto na bakarnu mrežu prevučenu ugljenikom. Struktura uzoraka je ispitivana infracrvenom spektroskopijom sa Furijeovom transformacijom (FTIR) korišćenjem Avatar System 370 spektroskopa (Thermo Nicolet). FTIR spektri su snimani u opsegu od 400 cm⁻¹ do 4000 cm⁻¹ korišćenjem KBr pastile. Elektrohemijska

svojstva uzoraka ispitana su metodom ciklične voltametrije (IviumSoft). Ciklovoltamogrami su snimani u 1 M H₂SO₄ troelektrodnim sistemom. Troelektrodni sistem sastojao se od radne elektrode, široke platinske (Pt) folije kao pomoćne elektrode i zasićene kalomelske electrode (ZKE) kao referentne elektrode. Radna elektroda je pripremljena tako što je odmereno 5 mg ispitivanog uzorka, 0,6 mg ugljenika (carbon black Vulcan XC72) i 6,5 µl 5% rastvora nafiona u etanolu. Maseni odnos uzorka, ugljenika i nafiona je bio 85:10:5, redom. Dobijena pasta je homogenizovana na ultrazvučnom kupatilu 1 h, nakon čega je naneta na staklasti ugljenik i sušena na sobnoj temperaturi. Aktivna masa uzorka dobijena je množenjem razlike mase elekrode nakon i pre nanošenja paste sa 0,85. Specifični kapacitet uzoraka dobijen je tako što je prvo određena vrednost kapaciteta na osnovu kompjuterskog programa u okviru IviumSoft uređaja, a zatim ta vrednost podeljena sa aktivnom masom.

3. REZULTATI I DISKUSIJA

Početni grafen-oksid. Na slici 1a i 1b prikazani su rendgenski difraktogram i FTIR spektar grafen-oksida, redom. Na difraktogramu se uočava difrakcioni maksimum na 12,3° koji potiče od difrakcije sa (002) ravni. Difrakcioni maksimum čistog grafita se javlja na oko 26° [7], međutim u toku oksidacije dolazi do uvođenja kiseoničnih funkcionalnih grupa između slojeva što se u difracionom spektru manifestuje kao pomeraj difrakcionog maksimuma prema manjim 2 θ vrednostima. Na osnovu FTIR spektra (slika 1b) mogu se videti karakteristične trake za ovaj material [8-11].

Slika 1 – Rendgenski difraktogram (a) i FTIR spektar (b) grafen-oksida

Asignirane trake FTIR spektra početnog grafenoksida prikazane su u tabeli 2. Ove dve metode predstavljaju potvrdu potpune oksidacije grafenskih slojeva.

Tabela 2. Talasni brojevi i asignirane trake FTIR spektra grafen-oksida

Talasni broj (cm ⁻¹)	Asignirana vibracija
3417	–O-H istežuća vibracija
1725	C=O istežuća vibracija karbonilne i/ili karboksilne grupe
1621	C=C istežuća vibracija
1367	C–OH istežuća vibracija
1246	C–O–C istežuća vibracija
1067	C–O istežuća vibracija

Kompoziti grafen-oksida i magnetnih nanočestica. Na slici 2a i 2b prikazane su SEM slike CFO_Zn_GO_5% i CFO_Zn_GO_15%, redom. Može se primetiti da su slojevi usko povezani, formirajući čvrst i neuređen materijal. Analiza nije pokazala razliku između kompozita sa različitim udelom magnetnih nanočestica. Na TEM slikama kompozita CFO Zn GO 5% (slika 2c) i CFO Zn GO 15% (Slika 2d) mogu se uočiti crne tačke koje su raspoređene na jednom sloju grafen-oksida koje su identifikovane kao magnetne nanočestice spinelnih ferita. Evidentna je razlika u gustini raspodele između 5% i 15% kompozita. Uočena je i visoka disperzija magnetnih nanočestica na sloju grafen-oksida bez promene oblika ili veličine nanočestica. U literaturi [12] zapaženo je da prilikom hidrotermalnog tretmana grafen-oksida na temperaturi 120°C dolazi do blagog uklanjanja epoksi, C-O i C-OH funkcionalnih grupa.

Na osnovu FTIR spektra hidrotermalno tretiranog grafen oksida i kompozita sa 5% (slika 3a) i kompozita sa 15% (slika 3b) magnetnih nanočestica može se uočiti prisustvo traka istih funkcionalnih grupa, s tim što je C-O istežuća vibracija (~1059 cm⁻ ¹) manjeg intenziteta u odnosu na početni grafenoksid, čime se potvrđuje da je došlo do delimičnog uklanjanja C-O grupe. Svi spektri prikazuju vrlo intenzivne trake na oko 3200 cm⁻¹ do 3600 cm⁻¹ i ~1610 cm⁻¹ koje odgovaraju –O-H istežućoj vibraciji i C=C istežućoj vibraciji sp^2 mreže ugljenika, redom [57]. Vibracija koja se javlja na ~1715 cm⁻¹ odgovara C=O istežućoj vibraciji karboksilne i/ili karbonilne grupe. Takođe, može se primetiti da je i ova traka nižeg intenziteta u odnosu na čist GO, čime se potvrđuje da je došlo do delimičnog uklanjanja karboksilne i/ili karbonilne grupe.

Slika 3 – FTIR spektri hidrotermalno tretiranog grafen-oksida i kompozita sa 5% (a) i 15% (b) magnetnih nanočestica

Pomeranje trake koja se javlja na 1617 cm⁻¹ kod hidrotermalno tretiranog grafen-oksida ka nižim vrednostima talasnog broja u kompozitima (slika 4) može se pripisati stvaranju vodonične veze između kiseoničnih funkcionalnih grupa grafen-oksida i magnetnih čestica [13]. To ukazuje da je došlo do promene okruženja oko C=C veza, usled promene u funkcionalnim grupama stvaranjem vodoničnih veza. Pored toga, treba uzeti u obzir mogućnost interakcije nanočestica spinela sa C=O grupom, budući da traka na 1617 cm⁻¹ ima i određeni doprinos C=O istežuće vibracije.

Pomeraj ove dve trake iznosi 32 cm⁻¹ za 5% kompozit i 37 cm⁻¹ za 15% kompozit. Veći pomeraj kod 15% kompozita se može objasniti stvaranjem većeg broja vodoničnih veza.

Slika 4 - FTIR spektar hidrotermalno tretiranog grafen-oksida i kompozita sa 5% (a) i 15% (b) udela nanočestica spinelnih ferita na kom je prikazano pomeranje trake usled stvaranja vodoničnih veza

Na elektrohemijska svojstva kompozita u velikoj meri utiču površinske kiseonične grupe, koje su odgovorne za postojanje pseudokapaciteta usled toga što joni H+ iz elektrolita učestvuju u redoks procesima [14] i usled oksidoredukcionih reakcija površinskih funkcionalnih grupa grafen oksida [15]. Pseudokapacitivno ponašanje kobalt-ferita primećuje se na osnovu redoks pikova na oko 0,4 V u odnosu na ZKE [16], koji potiču od elektrohemijskih reakcija prikazanim jednačinama (1) i (2):

$$Co^{II} \leftrightarrow Co^0$$
 (1)

$$Fe^{III} \leftrightarrow Fe$$
 (2)

Je i saradnici [17] su pokazali da su u slučaju heterogenih reakcija koje se javljaju prenosom elektrona na oksidima tipa perovskita, aktivna mesta, koja predstavljaju mesta za adsorpciju naelektrisanja, su uglavnom joni prelaznih metala koji imaju delimično popunjene d orbitale, kakav je upravo kobalt. Ovo je potvrđeno u literaturi [18] prema kojoj joni metala deluju kao mesta za adsorpciju naelektrisanja i doprinose kapacitetu dvojnog električnog sloja, dok joni Fe3+ doprinose faradejskoj reakciji, odnosno pseudokapacitetu.

Na svih šest prikazanih ciklovoltamograma (slika 5), sa povećanjem brzine polarizacije dolazi do povećanja površine krivih, ali ne dolazi do promene oblika, što ukazuje na odličnu reverzibilnost materijala [15].

U oblasti od 0,1 V do 0,5 V može se uočiti oblik koji odgovara pravougaoniku koji ukazuje na postojanje kapaciteta dvojnog električnog sloja [19], a najviše je izražen u uzorcima CFO_GO_15% (Slika 5b), CFO_Ga_GO_5% (Slika 5e) i CFO_Ga_GO_-15% (Slika 5f). Prisustvo redoks pika na 0,4 V (katodni) i 0,2 V (anodni), koji je posebno izražen na uzorku CFO_Zn_GO_5% (Slika 5c), ukazuje na pseudokapacitivno ponašanje ovog materijala [20].

Slika 5 - Ciklovoltamogrami a) CFO_GO_5% b) CFO_GO_15% c) CFO_Zn_GO_5% d) CFO_Zn_GO_15% e) CFO_Ga_GO_5% i f) CFO_Ga_GO_15%

Izračunate vrednosti specifičnih kapaciteta u funkciji od brzine polarizacije prikazani su na slici 6. Specifični kapacitet za svih šest uzorka opada sa pora stom brzine polarizacije, jer aktivna mesta na površini elektrode ne mogu da održe redoks reakcije kako se brzina polarizacije povećava [21].

Slika 6 – Specifični kapaciteti u zavisnosti od brzine polarizacije a) CFO_GO_5% b) CFO_GO_15% c) CFO_Zn_GO_5% d) CFO_Zn_GO_15% e) CFO_Ga_GO_5% i f) CFO_Ga_GO_15%

Niže vrednosti kapaciteta grafen-oksida prilikom termičkog tretmana na tempetaturama ispod 300°C, Jovanović i saradnici [6] pripisali su prisustvu epoksi i karboksilnih grupa. Takođe, pokazali su da termička obrada može biti vrlo efikasan način za kontrolisanje elektrohemijskih osobina grafen-oksida [6]. Najveću vrednost specifičnog kapaciteta pri brzini polarizacije od 5 mV s-1 pokazuje kompozit CFO_GO_15% (slika 6b) i ta vrednost iznosi 36,86 F g-1. Ovo se može objasniti pretežno pseudokapacitativnom prirodom uzorka CFO_GO_15%. Na vrednost specifičnog kapaciteta veliki uticaj ima interakcija između grafenoksida i spinelnih ferita [22], koja je u slučaju ovog kompozita povoljna za kapacitet.

4. ZAKLJUČAK

Na osnovu FTIR spektara kompozita zapaženo je da se javljaju iste karakteristične vibracije kao i kod grafen-oksida, samo se njihov položaj i/ili intenzitet menja. Između slojeva grafen-oksida i nanočestica spinelnih ferita uspostavlja se vodonična veza, što je potvrđeno pomeranjem trake ovih veza, koja se kod hidrotermalno tretiranog grafen-oksida javlja na 1617 cm⁻¹, ka manjim vrednostima talasnog broja u kompozitima.

Najbolja elektrohemijska svojstva u smislu najveće vrednosti specifičnog kapaciteta pokazao je kompozit CFO_GO_15% i ta vrednost iznosi 36,86 F g⁻¹ pri brzini polarizacije od 5 mV s⁻¹. Ovo se može objasniti time da je uzorak CFO_GO_15% pretežno pseudokapacitivne prirode i da je interakcija između grafen-oksida i spinelnih ferita u slučaju ovog kompozita povoljna za kapacitet.

Zbog toga, CFO_GO_15% predstavlja materijal koji se potencijalno može primeniti u elektrohemijskom skladištenju energije, pa bi se, shodno tome, u narednom periodu trebalo posvetiti daljem ispitivanju ovog materijala.

5. ZAHVALNOST

Rezultati su deo master rada urađenog na Fakultetu za fizičku hemij i u Laboratoriji za fiziku, Instituta za nuklearne nauke "Vinča".

LITERATURA

- Yu A, Chabot V, Zhang J. Electrochemical supercapacitors for energy storage and delivery: fundamentals and applications, Taylor & Francis, 2013.
- [2] Zhao J, Liu L, Li F. Graphene oxide: physics and applications, Springer, 2015.
- [3] Gubin S, Koksharov Y, Khomutov G, Yurkov G, Magnetic nanoparticles: Preparation, structure and properties, *Russian Chemical Reviews*, Vol. 74, No. pp. 539-574, 2005.
- [4] Mathew D. S, Juang R-S, An overview of the structure and magnetism of spinel ferrite nanoparticles and their synthesis in microemulsions, *Chemical Engineering Journal*, Vol. 129, No. 1, pp. 51-65, 2007.
- [5] Jovanović S, Spreitzer M, Tramšek M, Trontelj Z, Suvorov D, Effect of oleic acid concentration on the physicochemical properties of cobalt ferrite nanoparticles, *The Journal of Physical Chemistry* C, Vol. 118, No. 25, pp. 13844-13856, 2014.
- [6] Jovanovic Z, Bajuk-Bogdanović D, Jovanović S, Mravik Ž, Kovač J, Holclajtner-Antunović I, Vujković M, The role of surface chemistry in the charge storage properties of graphene oxide, Electrochimica Acta, Vol. 258, No. pp. 1228-1243, 2017.

- [7] Szabó T, Berkesi O, Forgó P, Josepovits K, Sanakis Y, Petridis D, Dékány I, Evolution of Surface Functional Groups in a Series of Progressively Oxidized Graphite Oxides, *Chemistry of Materials*, Vol. 18, No. 11, pp. 2740-2749, 2006.
- [8] He D, Peng Z, Gong W, Luo Y, Zhao P, Kong L, Mechanism of a green graphene oxide reduction with reusable potassium carbonate, *RSC advances*, Vol. 5, No. 16, pp. 11966-11972, 2015.
- [9] Ossonon B. D, Bélanger D, Synthesis and characterization of sulfophenyl-functionalized reduced graphene oxide sheets, *RSC advances*, Vol. 7, No. 44, pp. 27224-27234, 2017.
- [10] Krishnamoorthy K, Veerapandian M, Yun K, Kim S-J, The chemical and structural analysis of graphene oxide with different degrees of oxidation, *Carbon*, Vol. 53, No. pp. 38-49, 2013.
- [11] Chaiyakun S, Witit-Anun N, Nuntawong N, Chindaudom P, Oaew S, Kedkeaw C, Limsuwan P, Preparation and characterization of graphene oxide nanosheets, *Procedia Engineering*, Vol. 32, No. pp. 759-764, 2012.
- [12] Acik M, Lee G, Mattevi C, Pirkle A, Wallace RM, Chhowalla M, Cho K, Chabal Y, The Role of Oxygen during Thermal Reduction of Graphene Oxide Studied by Infrared Absorption Spectroscopy, *The Journal of Physical Chemistry* C, Vol. 115, No. 40, pp. 19761-19781, 2011.
- [13] Wang Y, He Q, Qu H, Zhang X, Guo J, Zhu J, Zhao G, Colorado HA, Yu J, Sun L, Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis, *Journal of Materials Chemistry* C, Vol. 2, No. 44, pp. 9478-9488, 2014.
- [14] Oh YJ, Yoo JJ, Kim YI, Yoon JK, Yoon HN, Kim J-H, Park SB, Oxygen functional groups and electrochemical capacitive behavior of incompletely reduced graphene oxides as a thin-film electrode of supercapacitor, *Electrochimica Acta*, Vol. 116, No. pp. 118-128, 2014.

- [15] Aleksić K. M, Janošević-Ležaić AM, Gavrilov N. M, Calculation of the fraction of pseudo-capacitance and electric double layer capacitance in carbon-based electrochemical capacitors, *thenika*, Vol. 75, No. 2, pp. 135-140, 2020.
- [16] Rani B. J, Ravina M, Saravanakumar B, Ravi G, Ganesh V, Ravichandran S, Yuvakkumar R, Ferrimagnetism in cobalt ferrite (CoFe2O4) nanoparticles, *Nano-Structures & Nano-Objects*, Vol. 14, No. pp. 84-91, 2018.
- [17] Ye D, Xu Y, Luo L, Ding Y, Wang Y, Liu X, LaNi0.5Ti0.5O3/CoFe2O4-based sensor for sesitive determination of paracetamol, *Journal of Solid State Electrochemistry*, Vol. 16, No. 4, pp. 1635-1642, 2012.
- [18] Suresh S, Prakash A, Bahadur D, The role of reduced graphene oxide on the electrochemical activity of MFe2O4 (M= Fe, Co, Ni and Zn) nanohybrids, *Journal of Magnetism and Magnetic Materials*, Vol. 448, No. pp. 43-51, 2018.
- [19] Shao Y, Wang H, Zhang Q, Li Y, Fabrication of large-area and high-crystallinity photoreduced graphene oxide films via reconstructed two-dimensional multilayer structures, NPG Asia Materials, Vol. 6, No. 8, pp. e119-e119, 2014.
- [20] Rani B, Sahu NK, Electrochemical properties of CoFe2O4 nanoparticles and its rGO composite for supercapacitor, *Diamond and Related Materials*, Vol. 108, No. pp. 107978, 2020.
- [21] Kumbhar V, Jagadale A, Shinde N, Lokhande C, Chemical synthesis of spinel cobalt ferrite (CoFe2O4) nano-flakes for supercapacitor application, *Applied Surface Science*, Vol. 259, No. pp. 39-43, 2012.
- [22] Suresh S, Prakash A, Bahadur D, The role of reduced graphene oxide on the electrochemical activity of MFe2O4 (M=Fe, Co, Ni and Zn) nanohybrids, *Journal of Magnetism and Magnetic Materials*, Vol. 448, No. pp. 43-51, 2018.

SUMMARY

ELECTROCHEMICAL PROPERTIES OF COMPOSITES OF GRAPHENE-OXIDE AND COBALT-FERRITE DOPED WITH ZINK AND GALLIUM

This paper presents the electrochemical properties of graphene-oxide composites and nanoparticles of cobalt-ferrite, as well as cobalt-ferrite doped with zinc and gallium. Graphene-oxide (GO) was synthesized by a modified Hummer's method. The magnetic nanoparticles were synthesized by the solvothermal method, after which the oleic acid was exchanged with dihydrocaffeic acid to obtain the hydrophilic material. Composites of graphene-oxide and magnetic nanoparticles were synthesized by the hydrothermal method, where the share of magnetic particles was 5 and 15 wt.% on graphene-oxide. The results of X-ray structural and FTIR analysis confirmed the complete oxidation of graphene layers. SEM and TEM analyzes showed deposition of magnetic nanoparticles on the graphene-oxide layer, without changing the size or shape of the nanoparticles. FTIR analysis of hydrothermally treated graphene oxide and composites showed that there is a partial reduction of epoxy groups, also a hydrogen bond is established between the components of the composite. Cyclic voltammograms show that the composites are stable at polarization rates of 5-400 mV s⁻¹, and that their capacity is predominantly pseudocapacitive in nature. Pseudocapacitance originates from the oxidoreduction reactions of H^+ ions from electrolytes and surface functional groups of graphene-oxide. Based on the cyclic voltammograms, the specific capacities of all composites were calculated and the highest value being shown by the CFO_GO_15% composite, which is 36.86 F g^{-1} at a polarization rate of 5 mV s^{-1} .

Key Words: graphene-oxide, cobalt-ferrite, electrochemistry