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Abstract— Goal: Clinical interpretation of an 

electrocardiogram (ECG)  can be detrimentally affected by noise. 

Removal of the electromyographic (EMG) noise is particularly 

challenging due to its spectral overlap with the QRS complex. 

The existing EMG-denoising algorithms often distort signal 

morphology, thus obscuring diagnostically relevant information. 

Methods: Here, a new iterative regeneration method (IRM) for 

efficient EMG-noise suppression is proposed. The main 

hypothesis is that the temporary removal of the dominant ECG 

components enables extraction of the noise with the minimum 

alteration to the signal. The method is validated on SimEMG 

database of simultaneously recorded reference and noisy signals, 

MIT-BIH arrhythmia database and synthesized ECG signals, 

both with the noise from MIT Noise Stress Test Database.  

Results: IRM denoising and morphology-preserving performance 

is superior to the wavelet- and FIR-based benchmark methods. 

Conclusions: IRM is reliable, computationally non-intensive, fast 

and applicable to any number of ECG channels recorded by 

mobile or standard ECG devices.  

 
Index Terms— mobile ECG, EMG noise, ECG acquisition, 

filtering  

I. INTRODUCTION 

N recent years, the number of mobile health devices on the 

market has been rapidly increasing. Among them, mobile 

electrocardiographs (ECGs) are the most frequently used 

devices [1]. These devices are mainly utilized outside the 

clinical setting, making them highly susceptible to noise. 

Commonly, ECG signals can be contaminated by different 

noise sources [2]: (i) baseline wander (BLW) - a low-

frequency (<1 Hz) noise component caused by a variety of 
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sources, including perspiration, respiration, body movements, 

and poor electrode contact; (ii) power-line interference (PLI) – 

a narrowband component (50/60 Hz) (iii) motion artifact—

originating from the change in impedance at the electrode-skin 

contact, with the spectral content mainly between 1 and 10 Hz; 

(iv) electromyographic (EMG) noise—a broadband 

component caused by muscle activity with the spectrum 

spreading predominantly at higher frequencies (>10 Hz) and 

overlapping with the spectrum of QRS complex. The latter 

two are particularly relevant to the mobile ECG signals. The 

motion artifact can be ameliorated by measurement under 

stationary conditions. However, the underlying physiology of 

the EMG noise, resulting from the engagement of fingers 

during measurement by handheld devices [1], [3], does not 

allow for an obvious mitigation strategy and must be 

eliminated in postprocessing.  

Success of the EMG noise removal highly depends on the 

targeted application. Conventional linear filtering methods are 

sufficient for the diagnoses relying on detection and analysis 

of R-R intervals, such as atrial fibrillation [3], [4]. However, 

filter-induced distortions of the QRS complex may render 

these methods unsuitable for diagnoses requiring the 

preservation of heartbeat morphology, such as clinical 

diagnosis of myocardial infarction (MI) and some arrhythmias 

[5], [6], [7], [8]. Even the advanced filtering methods based on 

discrete wavelet transformation lead to signal distortion when 

a significant variation of noise energy is presented [9]. The 

filters based on adaptive methods require either a reference or 

generic signal at the input, which is not known a priori [10]. A 

hybrid method that combines adaptive and wavelet filters 

shows excellent performance, but retains the problem of signal 

distortion in the presence of large changes in noise energy 

[11]. Similarly, the model-based filtering method successfully 

suppresses noise, compresses and classifies ECG signals, but 

can introduce heartbeat over-processing thus occluding 

clinically significant information [12], [13], [14]. 

Other algorithms suffer from mechanical and practical 

limitations. For example, the quality of highly-successful 

ensemble averaging (EA) technique, is proportional to the 

number of heartbeats included in the averaging process, which 

may represent a challenge for recordings made with the ECG 

handheld devices with typical duration below 30 seconds. 

Furthermore, inter-beat variations of the heartbeat are lost in 

the averaging procedure [2]. Methods including independent 

component analysis are powerful; however they require more 
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than one lead for noise signal decomposition, often not present 

in mobile ECG devices [12]. Finally, over the last decade, 

denoising methods based on deep learning, such as 

autoencoders [15] or U-net-like networks [16], have been 

standard in the literature. The main limitation of these 

methods is their interpretability and trustworthiness. However, 

even with these problems surpassed, the necessity for a large 

amount of data and the result dependence on the quality and 

dynamics of the training set remain practical limitations of the 

deep learning method [17], [18].  

Therefore, although the problem of EMG filtering of ECG 

signals has been well-studied in theory and practice, the 

sweeping solution which would enable exploitation of mobile 

ECG in cardiovascular diagnostics outside a small number of 

arrhythmias has not been reached. 

In this paper, we present a new Iterative Regeneration 

Method (IRM) for the suppression of broadband EMG noise. 

The hypothesis behind the IRM method is that after removing 

approximations of the dominant components from the ECG 

signal (primarily QRS and T waves), the remaining cardiac 

components have a very small frequency overlap with the 

EMG noise, thus allowing for an easy removal of the EMG 

noise. It has been found that the EMG noise occurs mainly at 

frequencies above 10Hz, T and P waves at frequencies below 

10Hz, while the dominant QRS frequency content is below 50 

Hz [19]. We justified the hypothesis by a posterior analysis of 

the EMG-ECG spectral overlap. Namely, we found that in the 

frequency region below 10 Hz, in which the spectra of the T 

and P waves overlap with that of the EMG noise, the spectral 

power of the EMG noise carries less than 1% of the total EMG 

spectral power. 

Comparison with other techniques on the standard databases 

shows excellent performance of our method in terms of signal 

morphology preservation. The algorithm performance shows 

good potential for telemedical ECG monitoring. 

The paper is structured as follows: in section II, we present 

the new filtering method and describe the three databases used 

for IRM validation and comparison with other denosing 

methods. Results are presented in section III and discussed in 

section IV. Concluding remarks and future steps are presented 

in Section V.  

II. MATERIALS AND METHODS 

A. IRM method 

The IRM method is an iterative process that aims to remove 

EMG noise from the ECG signal. The main idea behind the 

method is to free the noisy signal from the dominant ECG 

components, QRS complex and T wave, upon which the EMG 

noise can be easily extracted and removed. This is 

implemented in 3 stages (Fig. 1): 

 Preprocessing stage, in which the frequency components 

which can affect the IRM stage performance or are 

content insignificant are spectrally filtered out and the 

QRS segments are detected; 

 IRM stage, in which the EMG noise is extracted and 

removed from the signal; and 

 Postprocessing stage, in which the low-frequency signal 

components filtered out in preprocessing stage are 

returned to the denoised signal. 

In the preprocessing stage, the following filters are 

applied:  

 Low-pass 2nd–order Butterworth filter with a cutoff 

frequency of 100 Hz for removal of the high-frequency 

components of the EMG noise that do not spectrally 

overlap with QRS complexes.  

 The 2nd-order IIR notch filter with the frequency of 50Hz 

in both forward and reverse directions for removal of 

PLI; 

 High-pass 5th–order Butterworth filter with a cutoff 

frequency of 2 Hz to obtain higher similarity between 

heartbeats. As this filter changes the heartbeats’ 

morphology, we restore the low-frequency signal 

component in the postprocessing stage. 

All filters were applied in both forward and reverse 

directions to ensure zero-phase filtering. 

 
Fig. 1. (a) Block diagram of the 3-stage IRM method. IB stands for the signal at the input of the IRM block, OB for the signal at the output of the IRM block. 

The SNRiter_1 stands for the SNR after first iteration. (b) Signals at different steps of the IRM stage: 1) IB signal in 1st iteration, 2) EMG noise approximation, 

3) OB signal after 1st iteration, 4) signal at the end of the processing stage (3 iterations). Presented is the signal with SNRiter_1=4.5 dB.  
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 Finally, Pan-Tompkins algorithm is applied to detect QRS 

complexes and heartbeats [20], [21]. Here, heartbeats are 

related to the R points. The start and the end of the ith 

heartbeat are defined as: 

       
                (  ),     (1) 

 

       
         

   .         (2) 

 

In (1), RR is a vector of intervals between consecutive QRS 

complexes. Note that this definition maintains the heartbeat 

length.  

IRM stage comprises a 2-step IRM block: 

 Step 1: Beat-by-beat generation of auxiliary signal (AS) 

using EA technique and its subtraction from the input 

signal. EA evaluates the standard arithmetic mean of the 

beats included in averaging, 

 Step 2: Extraction of the EMG noise (Fig. 1b-2) and its 

removal from the input signal (Fig. 1b-3),  

and a decision on the number of iterations which is applied 

only in the first filtering iteration. 

We denoted the signal at the input of the IRM block as IB 

and the signal at the output of the IRM block as OB. We now 

describe the IRM steps in detail. 

In Step 1, IB signal is processed beat-by-beat to obtain the 

AS in which each heartbeat is replaced by its denoised 

heartbeat approximation – an auxiliary heartbeat (AHB). The 

AHB is obtained by EA of all beats morphologically similar to 

a beat at hand and filtering. Two beats are considered similar 

if their correlation is greater than the correlation threshold 

xcorrthr. As the quality of noise reduction depends on the 

number of heartbeats included in the averaging procedure, 

nHB, and their morphological similarity, xcorr, we optimize 

AHB calculation by the adaptive procedure described in detail 

in Appendix A.  

Upon applying AHB calculation to all heartbeats of the 

signal, AS is obtained. The AS represents an approximation of 

a noise-free signal without inter-beat variation. Hence, after 

subtracting the AS signal from the IB signal, the difference 

signal comprises the EMG noise and inter-beat variation. 

In Step 2, the EMG noise is obtained by applying 

Butterworth high-pass filter with a cutoff frequency of 10 Hz 

to the difference signal. The cutoff frequency is chosen based 

on the spectrum strength of the EMG signal, which is 

negligible under 10 Hz [19] [22]. At the end of the IRM block, 

the tentative EMG noise approximation (Fig. 1b-2) is removed 

from the IB signal (Fig. 1b-3), creating an OB signal. 

 The number of times the signal will pass through the IRM 

block is determined based on the estimated Signal-to-Noise 

Ratio (SNR) after the first pass through the IRM block, 

SNRiter_1, calculated as the ratio between the OB signal and a 

tentative EMG noise approximation, following the rule: 

 If SNRiter_1 > 16 dB, the signal is filtered once, 

 If 8 dB < SNRiter_1 ≤16 dB, the signal is filtered twice, 

 If SNRiter_1 ≤ 8 dB, the signal is filtered three times. 

These thresholds are obtained empirically and fixed for all 

tests. 

Postprocessing stage. At the end of the IRM stage, we 

obtained a signal with reduced EMG noise but with 

morphological differences compared to the raw signal. The 

difference stems from the high-pass filter applied in the 

preprocessing stage. Hence, in the postprocessing stage, the 

low-frequency content is returned to the signal to obtain the 

EMG-noise-free ECG signal with minimal morphological 

alterations. 

The algorithm was implemented in MATLAB (MathWorks 

Inc.). 

B. Databases 

Three different databases were used to study the 

performance of the proposed IRM method. Here they are 

described briefly, while a more detailed description is given in 

the Appendix B. 

1) SimEMG database is a unique resource that provides 

back-to-back recorded ECG signals with and without EMG 

noise [23]. It contains 37 noise-free and 110 noise-

contaminated single-lead recordings generated from 14 

healthy subjects (9 females and 5 males aged 40±13). The 

average SNRIN of the noise-contaminated signals is 8.53±5.5 

dB.  

2) In MIT-BIH-EMG database, the noise-free signals 

originate from the MIT-BIH arrhythmia database [24], [25]. 

Noise-contaminated signals were created by addition of the 

genuine muscle artifact recordings taken from the MIT Noise 

Stress Test [26]. The total number of recordings in MIT-BIH-

EMG is 228, out of which 51 are reference recordings and 171 

are noise-contaminated with the average SNRIN of 11.90±3.25 

dB. Over 25% of recordings are with arrhythmias.  

3)  Synth-EMG database was constructed by adding the 

EMG noise originated from the MIT Noise Stress Test 

Database [26] to the noise-free ECG signals obtained by the 

ECG signal generator described in [27]. The total number of 

signals in Synth-EMG is 200, out of which 50 are reference 

signals and 150 are noise-contaminated signals with the 

average SNRIN of 6.22±3.11 dB.  

C. Benchmark method 

In order to compare the performance of the proposed 

methods with conventional techniques for noise elimination in 

ECG signals, we included the Adaptive Wavelet Wiener Filter 

(AWWF) [11], Wavelet Transform (WT) [9], and Finite 

Impulse Response (FIR) Low-Pass Filter [14] in the analysis. 

The principles behind these methods are described in 

Appendix C. 

D. Performance metric 

Upon applying a method for denoising ECG signals, it is 

necessary to establish a quantitative criterion for success of the 

filtering process. We assess the noise extraction quality via 

improvement in SNR and the preservation of the signal 

morphology via cross-correlation and Pearson coefficients. 

The SNR improvement (SNRIMP) is defined by: 

 

                    ,      (4) 
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where the SNR of the filtered signal (SNROUT) is calculated as 

a ratio of the noise-free signal and the noise obtained as the 

difference between the filtered and noise-free signal. Given 

the same noise-free signal in both terms on the right-hand side, 

this measure practically assesses the ratio of the original and 

extracted noise. The higher it is, the better is filter 

performance. 

To estimate the morphology preservation after applying 

filtering procedure, we calculated correlation coefficient of the 

whole filtered signal (A) and the whole noise-free signal (B) 

as: 

 (   )      
 

   
∑ (

     

  
)  (

     

  
)   

      (5) 

 

where µA and σA are the mean and standard deviation of the 

noise-free signal, respectively, and μB and σB are the mean and 

standard deviation of filtered signal, respectively. We further 

assessed the morphology preservation in the fiducial points (P, 

R, J and Tmax) by calculating Pearson coefficients applying (5). 

Here, µA and σA are the mean and standard deviation of the 

noise-free signal amplitude at a given fiducial point, 

respectively, and μB and σB are the mean and standard 

deviation of the filtered signal amplitude at the same point, 

respectively. Fiducial points were determined manually and 

verified by a cardiologist. 

III. RESULTS 

The performance of the IRM filter method on different 

databases is shown in Table I. The values are averaged for 

different SNRIN ranges. The Num stands for number of 

recordings for specific SNRIN range; the third column shows 

the SNRIMP value of the IRM algorithm with the number of 

iterations determined based on SNRiter_1. For a more detailed 

analysis of the IRM method, we let all signals pass 3 times 

through the IRM block and show the SNRIMP values after each 

iteration - columns SNRIMP 1-3 for the first, second, and third 

filtering iteration, respectively. Gray values represent the 

optimum number of iterations for specific SNRIN range.  

Based on the results from Table I, we can conclude that 

multiple passes through the IRM block improve the filter 

performance when the SNRIN values are < 12 dB. The first 

pass through the IRM block reduces the noise, while some 

noise components remain in the filtered signal (Fig. 2a). At the 

second pass through the filtering block, more heartbeats are 

included in creating the AHB due to the cleaner signal, which 

leads to better noise suppression (Fig. 2b). The same effect 

appears in the third pass (Fig. 2c) when the best noise 

suppression is achieved. For SNRIN > 16 dB, we obtained the 

best performance for a single pass through the IRM block. 

This indicates that multiple passes can lead to ―over-

processing‖ of signals with low noise level. 

 

 

 
 

 

TABLE I 

SNRIMP VALUES OBTAINED BY IRM  

ON SIMEMG, MIT-BIH-EMG AND SYNTH DATABASES 

 

SNRIN 

[dB] 
Num 

SNRIMP 

[dB] 

SNRIMP 1 

[dB] 

SNRIMP 2 

[dB] 

SNRIMP 3 

[dB] 

S
im

E
M

G
 

<4 33 10.31 6.61 9.29 10.31 

4-8 19 10 7.83 9.84 10.06 

8-12 23 7 6.61 7 6.93 

12-16 28 5.17 5.24 5.17 4.95 

16-20 6 3.36 3.63 3.36 3.12 

>20 1 1.32 1.85 1.32 1.02 

total 110 7.8 6.27 7.46 7.72 

M
IT

-B
IH

-E
M

G
 

<4 0 - - - - 

4-8 15 7.56 4.82 7.37 8.3 

8-12 84 8.07 5.69 8.07 8.11 

12-16 55 7.41 6.7 7.41 6.86 

16-20 15 4.86 5.45 4.73 3.89 

>20 2 1.83 1.83 -0.73 -2.02 

total 171 7.46 5.87 7.4 7.23 

S
y

n
th

 

<4 31 7.38 4.65 6.32 7.38 

4-8 89 8.81 5.19 8.25 9.96 

8-12 24 8.93 5.58 8.93 10.25 

12-16 4 9.56 5.64 9.56 10.24 

16-20 2 8.15 8.15 11.23 11.54 

>20 0 0 - - - 

total 150 8.54 5.19 8.04 9.5 

SNRIN - SNR of input signals; Num - number of recordings in specific SNRIN 

range; SNRIMP - SNR improvement at the end of the IRM algorithm; SNRIMP 

1-3 - SNRIMP after 1st, 2nd and 3rd iteration, respectively. Gray values 

represent the optimum number of iterations for specific SNRIN range. 

 

 
Fig. 2. An example signal after passing through the IRM block a) one, b) two 

and c) three times (blue lines). Gray line represents the original noise-

contaminated signal, SNRIN= 6.72 dB. 
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Table II compares SNRIMP achieved by IRM, AWWF, WT, 

and FIR methods when applied to SimEMG, MIT-BIH-EMG, 

and Synth-EMG databases, respectively. The best-

performance values are shown in grey. We conclude that on 

the whole ECG signals, IRM and AWWF have excellent 

performance, while the SNR improvement by WT and FIR is 

not guaranteed. This is illustrated by example signals in Fig. 3. 

The IRM algorithm outperforms AWWF across most SNR 

ranges and databases. Exceptions are the signals with 

extremely low signal or high level of noise (SNR < 4 dB) in 

the Synth-EMG database, and low-noise level (SNR > 20 dB) 

signals. Importantly, the IRM also works efficiently when the 

noise level changes within the same recording. For example, it 

successfully removes lower-level noise around the 1st beat in 

Fig. 3, higher-level noise around the subsequent beat, as well 

as the noise of the varying level between the two beats.  

The excellent filtering performance of IRM and AWWF 

algorithms is achieved at the expense of extending their 

runtime. Table I in Supplementary material shows comparison 

of the algorithm runtimes on SimEMG database. The IRM is 

for one and two orders of magnitude slower than WT and FIR, 

respectively. However, it is 2.5 times faster than the AWWF 

with the comparably high performance parameters. 

  Table III shows the morphology-similarity assessment 

based on the whole-signal cross correlation and Pearson 

coefficients calculated at fiducial points. Since the SNR 

analysis identified AWWF as the main competing method, 

IRM is compared back-to-back with it.  

It is evident that both methods preserve signal morphology 

to a high correlation level of above 0.95. The IRM performs 

better on the noisy signals with SNR<16 dB in both databases 

with recorded signals, SimEMG and MIT-BIH. AWWF 

performs better on the recorded signals with SNR > 16 dB 

(with a minor advantage at the second digit behind the decimal 

point). Also extremely noisy synthetic signals with SNR < 4 

dB are better filtered by AWWF, while for all other noise 

levels IRM is more successful.  

 

 
With regard to the diagnostically relevant signal features, 

the IRM better reproduces signal amplitudes at P, J and T 

points while AWWF better reproduces R point amplitude on 

recorded signals. This can be observed in Fig. 3, in which the 

AWWF distorts the P-wave of the 2nd beat beyond recognition 

and significantly decreases the P-wave amplitude in the 3rd 

beat. On synthetic signals, AWWF loses advantage at R point, 

but gains advantage at P point. This can be explained by the 

compliance of the function used in P-wave synthesis with the 

wavelet used by the AWWF algorithm [11].  

Based on all above, we can recommend the IRM for 

applications with signals with medium-to-high level of noise 

and for evaluation of the ST elevation interval in the vicinity 

of J point (from J+10 ms to J+60 ms), highly relevant as the 

marker of MI [28]. On the other hand, AWWF is 

recommended for the signals with low-level noise and for 

precise reproduction of R point. 

For a more objective comparison, we calculated statistical 

TABLE II 

SNRIMP VALUES OBTAINED BY DIFFERENT FILTERING METHODS  

ON SIMEMG, MIT-BIH-EMG AND SYNTH DATABASES 

 
SNRIN 

SNRIMP/std  

IRM [dB] 

SNRIMP/std 

AWWF [dB] 

SNRIMP/std 

WT [dB] 

SNRIMP/std 

FIR [dB] 

S
im

E
M

G
 

<4 10.31/ 2.6 9.23/ 2.1 4.59/ 1.1 4.19/ 0.7 

4-8 10/ 3 8.57/ 2.4 3.84/ 1.1 3.83/ 1.1 

8-12 7/ 2 6.27/ 1.8 2.15/ 1.5 3.18/ 0.8 

12-16 5.17/ 2.9 4.57/ 2.1 -1.41/ 2.6 2.17/ 1.1 

16-20 3.36/ 1.6 3.26/ 1.3 -2.38/ 2.1 1.45/ 0.8 

>20 1.32/ 0 2.14/ 0 -7.18/ 0 0.22/ 0 

average 7.8/ 3.6 6.92/ 3 1.94/ 3.2 3.22/ 1.3 

M
IT

-B
IH

-E
M

G
 

<4 - - - - 

4-8 7.56/ 1.2 7.03/ 1 1.41/ 0.9 0.67/ 0.1 

8-12 8.07/ 1.4 5.8/ 0.9 0.59/ 0.9 0.47/ 0.2 

12-16 7.41/ 1.9 5.52/ 0.8 -0.08/ 1.7 0.43/ 0.2 

16-20 4.86/ 2.3 4.7/ 1.2 -0.39/ 1.5 0.23/ 0.5 

>20 1.83/ 1.5 2.7/ 0.8 -0.71/ 0.1 0.22/ 0.1 

average 7.46/ 2 5.69/ 1.1 0.35/ 1.4 0.45/ 0.3 

S
y

n
th

 

<4 7.38/ 1.4 8.39/ 1 1.22/ 0.9 1.07/ 0.1 

4-8 8.81/ 1.7 7.93/ 0.8 1.17/ 0.7 1.06/ 0.1 

8-12 8.93/ 1.8 6.85/ 0.8 0.82/ 0.5 1.02/ 0.1 

12-16 9.56/ 1.9 5.84/ 1.2 0.8/ 0.3 0.98/ 0.1 

16-20 8.15/ 1.5 4.48/ 0.4 1.16/ 0.1 0.98/ 0 

>20     

average 8.54/ 1.8 7.75/ 1.1 1.11/ 0.7 1.05/ 0.1 

SNRIN - SNR of input signals; SNRIMP - SNR improvements for different 

denoising algorithms. Gray values represent highest SNRIMP for specific 

SNRIN range. Bolded values indicate that there is statistical significance 

between the IRM and AWWF methods. 

Fig. 3. Example of different filtering methods applied on a typical signal 

from the SimEMG database. Each frame shows the original noise-

contaminated signal (gray line). The red line in a) shows SNR of the input 

signal (SNRIN) for 1-second window. SNRIN averages at 3.71 dB. The 

blue lines represent: a) recorded noise-free signal, b) IRM-filtered signal, 

c) AWWF-filtered signal, d) WT-filtered signal, e) FIR-filtered signal. 
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significance of performance differences between these two 

methods. We checked the distribution of data points and found 

that it was Gaussian. Hence, we applied the Student t-test. It 

revealed that the statistical difference exists in the MIT-BIH 

database for SNR range between 8 dB and 16 dB and in the 

Synth database with SNR range up to 16 dB (shown as bolded 

values in tables II and III). Details and results of the Student t-

test calculation along with the effect size estimation are shown 

in Supplementary material. 

IV. DISCUSSION 

To evaluate the IRM applicability in telemedical monitoring 

by mobile ECGs, we have checked the algorithm speed and 

compatibility with lower sample rate recordings typical of 

these devices. The algorithm needed roughly 0.5 s for a 30s 

ECG signal on an average PC, which is sufficient for the 

immediate presentation of the signal to a doctor on the 

medical service provider side. In particular, we have 

downsampled our 500 Hz signals to 300 Hz, as used by 

KardiaMobile (AliveCor Inc., CA, United States), a mobile 

handheld device, and performed the cross correlation 

morphology check. We obtained a negligible difference 

between the IRM-filtered original and downsampled signals 

(with a maximum correlation difference of 0.3 %), thus 

confirming applicability of IRM at lower sampling rates. 

Furthermore, we assessed the IRM applicability to the 

measurements in which the significant noise amplitude 

transition within a single recording is present. Indeed, the 

minimal signal morphology distortion for SNRIN > 4 dB 

(correlation > 0.98) enables successful filtering across signals 

with transitions. An example is shown in Fig. 3a) in which all 

signal features are preserved despite the SNR excursion of 3 

orders of magnitude, from the clear SNR minima generated at 

T-P intervals to the maxima generated at QRS complexes. 

Here, the SNR is calculated within 1 second wide moving 

window.  

The performance of the IRM critically depends on the 

quality of AS, i.e., the quality of each AHB. The EA used in 

AHB calculation implies that the IRM’s performance depends 

on the signal length - the more heartbeats are included in the 

process, the more suppressed is the noise in AHB. Therefore, 

the proposed method has limited performance when filtering 

very short signals, such as 10-second signals obtained with 

standard ECG devices or the signals shortened to eliminate 

extreme motion artefacts. However, we designed the method 

primarily for filtering signals obtained by mobile ECG 

devices, which are mostly 30 seconds long [5], [6]. In this 

setup, we verified by calculations that enough heartbeats can 

be selected to create a low-noise AHB. Redundant noise was 

additionally removed by a moving average filter to reach a 

high-quality AHB. While other filtering methods, such as 

those based on wavelet or frequency filtering can also be used 

for this purpose, we have chosen the moving average filtering 

method as the most straightforward and fastest approach. 

Likewise, it is possible to completely omit filtering after the 

EA; however, this would increase the number of IRM 

TABLE III 

CROSSCORRELATION AND PEARSON COEFFICIENTS IN DIFFERENT POINTS OF INTEREST CALCULATED ON  SIMEMG, MIT-BIH-EMG AND SYNTH DATABASES 

 

SNRIN XCORR/std 
Pearson coefficient in 

P point 

Pearson coefficient in 

R point 

Pearson coefficient in 

J point 

Pearson coefficient in 

T point 

[dB] IRM AWWF IRM AWWF IRM AWWF IRM AWWF IRM AWWF 

S
im

E
M

G
 

<4 96.6/ 3 95.6/ 3.2 0.47/ 0.2 0.36/ 0.2 0.53/ 0.2 0.5/ 0.2 0.11/ 0.3 0.11/ 0.2 0.17/ 0.2 0.12/ 0.2 

4-8 98.6/ 1 98.2/ 1 0.27/ 0.5 0.26/ 0.4 0.68/ 0.2 0.5/ 0.2 0.28/ 0.3 0.26/ 0.3 0.34/ 0.2 0.33/ 0.3 

8-12 98.9/ 0.9 98.7/ 0.9 0.44/ 0.4 0.32/ 0.4 0.72/ 0.2 0.7/ 0.1 0.26/ 0.3 0.19/ 0.3 0.38/ 0.3 0.32/ 0.2 

12-16 99.3/ 0.5 99.3/ 0.4 0.25/ 0.5 0.27/ 0.5 0.79/ 0.1 0.8/ 0.1 0.24/ 0.3 0.26/ 0.2 0.37/ 0.2 0.37/ 0.2 

16-20 99.6/ 0.2 99.6/ 0.2 0.26/ 0.5 0.26/ 0.4 0.84/ 0.1 0.84/ 0.1 0.48/ 0.2 0.35/ 0.2 0.52/ 0.2 0.46/ 0.2 

>20 99.7/ 0 99.8/ 0 0/ 0.3 0/ 0.4 0.91/ 0 0.87/ 0 0.64/ 0 0.36/ 0 0.55/ 0 0.5/ 0 

average 98.3/ 2.1 97.9/ 2.4 0.39/ 0.4 0.32/ 0.4 0.68/ 0.2 0.64/ 0.2 0.23/ 0.3 0.21/ 0.3 0.32/ 0.3 0.28/ 0.2 

M
IT

-B
IH

-E
M

G
 

<4 - - 
        

4-8 98/ 0.6 97.8/ 0.4 0.75/ 0.3 0.72/ 0.3 0.9/ 0.1 0.88/ 0.1 0.52/ 0.3 0.42/ 0.4 0.83/ 0.2 0.81/ 0.3 

8-12 99.2/ 0.3 98.7/ 0.4 0.67/ 0.3 0.63/ 0.3 0.8/ 0.2 0.84/ 0.2 0.48/ 0.3 0.39/ 0.3 0.74/ 0.2 0.65/ 0.3 

12-16 99.6/ 0.3 99.4/ 0.2 0.72/ 0.2 0.61/ 0.3 0.71/ 0.3 0.87/ 0.1 0.53/ 0.3 0.41/ 0.3 0.75/ 0.2 0.64/ 0.3 

16-20 99.7/ 0.3 99.7/ 0.1 0.9/ 0.1 0.86/ 0.1 0.88/ 0.2 0.95/ 0.1 0.65/ 0.4 0.63/ 0.3 0.88/ 0.1 0.81/ 0.2 

>20 99.8/ 0 99.9/ 0 0.93/ 0 0.86/ 0.1 0.96/ 0 0.98/ 0 0.86/ 0 0.83/ 0.1 0.87/ 0 0.77/ 0 

average 99.3/ 0.6 99/ 0.6 0.72/ 0.3 0.65/ 0.3 0.79/ 0.2 0.86/ 0.1 0.52/ 0.3 0.42/ 0.3 0.77/ 0.2 0.67/ 0.3 

S
y

n
th

 

<4 94.2/ 3 95.6/ 1.6 0.19/ 0.6 0.57/ 0.3 0.53/ 0.3 0.55/ 0.3 0.55/ 0.3 0.55/ 0.3 0.53/ 0.4 0.53/ 0.3 

4-8 98.2/ 0.9 98/ 0.5 0.39/ 0.5 0.6/ 0.3 0.44/ 0.3 0.41/ 0.3 0.5/ 0.3 0.43/ 0.3 0.38/ 0.3 0.37/ 0.3 

8-12 99.2/ 0.4 98.8/ 0.3 0.3/ 0.7 0.63/ 0.3 0.49/ 0.3 0.39/ 0.2 0.56/ 0.3 0.4/ 0.3 0.45/ 0.3 0.36/ 0.3 

12-16 99.7/ 0.1 99.4/ 0.2 0.47/ 0.7 0.75/ 0.3 0.61/ 0.3 0.47/ 0.2 0.76/ 0.2 0.56/ 0.3 0.49/ 0.3 0.17/ 0.3 

16-20 99.9/ 0 99.8/ 0 0.66/ 0.3 0.58/ 0.4 0.97/ 0 0.83/ 0.1 0.86/ 0.1 0.84/ 0.1 0.83/ 0.1 0.77/ 0.1 

>20 
          

average 97.6/ 2.4 97.7/ 1.4 0.34/ 0.6 0.6/ 0.3 0.48/ 0.3 0.44/ 0.3 0.53/ 0.3 0.46/ 0.3 0.43/ 0.3 0.4/ 0.3 

SNRIN- SNR of input signals; XCORR- crosscorrelation applied between noise-free and filtered signal. Bolded values indicate that there is statistical 

significance between the IRM and AWWF methods. 
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iterations to achieve a high-quality AHB.   

One drawback of the method is related to the QRS detector- 

when an R point is omitted, the frequency components of that 

heartbeat higher than 10 Hz will be marked as the EMG noise 

and removed from the signal. This detrimentally reduces the 

information available for that heartbeat. 

The number of IRM iterations depends on the SNR level 

after the first iteration (SNRiter_1). The overall performance of 

the IRM method showed low sensitivity to changing the 

thresholds for choosing the number of iterations for ±2 dB. 

This demonstrates the method’s robustness to the threshold 

selection, along with an excellent performance for a small 

number of iterations (≤ 3). We have also tested an automated 

method for determining the number of iterations that is based 

on SNR convergence. We processed the signal with the IRM 

block iteratively until SNR between two consecutive iterations 

became insignificant (SNR>30 dB). Such automation not only 

makes the algorithm less supervised, but offers an opportunity 

for a slight improvement in denoising performance at the cost 

of computational time. 

A discussion in [29] and the references therein suggest that 

the high frequency content of the ECG signal between 300 Hz 

and 500 Hz is important. The low-pass filter with the 100 Hz 

cut-off applied in the preprocessing stage clearly prevents 

observation of these high-frequency features. We have 

examined the IRM performance upon removal of the low-pass 

filter and found out that SNRIMP improved, which is expected 

due to the higher noise content. The comparison of IRM and 

AWWF on the SimEMG database in Table II in 

Supplementary material is consistent with the comparison in 

Table II here, with the IRM performing better in all SNR 

ranges except on the very clean signals with SNRIN>20dB. 

Therefore, we showed that IRM can be used without the low-

pass filter in the preprocessing stage equally. Considering the 

current embodiment with the low-pass filter applied, we 

remind that the ―Recommendations for the Standardization 

and Interpretation of the Electrocardiogram‖ suggest that most 

of the diagnostic information carried by the QRS, T and P 

waves is contained below 100 Hz [30]. Here, the EMG noise 

is filtered out only upon the removal of the auxiliary signal 

(AS), which is represented by medians containing the main 

signal features, such as QRS, T and P waves. Hence, the 

frequency content of these features, notwithstanding the 

frequencies above 100 Hz filtered in the preprocessing stage, 

retains a major part of the clinically relevant information. An 

intrinsic limit to the capability of the IRM to resolve their 

high-frequency features is induced by ensemble averaging. 

Finally, as various studies utilize different metrics for 

reporting their results [11-15, 31], we have tested the key ones 

and obtained similar results applying RMSE, Noise Reduction 

Factor (NRF) [13], [31] or Percentage Root Mean Square 

Difference (PRMS) [15]. Detailed results are given in 

Supplementary material. 

V. CONCLUSION 

In this study, we have introduced a new iterative 

regeneration method for EMG noise removal from ECG 

signals suitable for implementation in ECG mobile devices. 

Essential characteristics of the IRM are the preservation of 

heartbeat morphology by retaining the low-frequency content 

and the preservation of inter-beat variation. The morphology 

preservation is particularly important in segments with small 

amplitude, such as ST segment crucial for detecting MI and P 

wave crucial for diagnosis of antrioventricular blocks. The 

heart beat preservation is mandatory in detection of some 

arrhythmias, such as premature ventricular contractions. 

Results of the study show superiority of the IRM compared to 

the commonly used wavelet and FIR filtering methods, 

especially when the analysis is performed on signals with 

significant amount of noise, SNR < 12 dB. The robustness of 

IRM to the changes in the EMG noise level and the low 

computational cost make IRM a good candidate for direct 

application in mobile ECG devices. Moreover, with minor 

adaptations, concerning mainly the signal preprocessing and 

adjustment of thresholds, the IRM algorithm can be used for 

different kinds of noises with the known spectral range, such 

as baseline wander. 

Finally, by analyzing the MIT-BIH database we have 

implicitly included signals that represent different diagnoses, 

such as atrial fibrillation, left and right bundle branch block 

beats, premature ventricular contractions, non-conducted P-

wave, etc. Further development of the method will be in the 

direction of exact compliance with the particular diagnosis 

accessible by clinical and mobile ECG measurements. 
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APPENDIX 

A. AHB calculation 

In the proposed method, parameters used for signal filtering 

are selected in Table IV. 

 
The nHBthr and xcorrthr are initially set to 7 and 0.97, 

respectively. If there are not enough similar heartbeats 

(nHB<nHBthr), we reduce xcorrthr in increments of 0.02 until 

either nHB ≥ nHBthr or xcorrthr = 0.91 is reached. If it is still 

not possible to have nHBthr heartbeats, nHBthr is reduced by 3, 

while xcorrthr is restored to its initial value (0.97). This process 

is repeated until nHB ≥ nHBthr or nHB = 1 is reached (Fig. 4a). 

The number of similar beats increases with SNR.  

 

 
On average, we have detected less than 7 similar beats in 

signals that have SNR<3 dB, and 7 or more beats in signals 

with SNR>3 dB (a typical empirical value of noise at which 

the signal is discernible by bare eye [32]). Hence, by setting 

the initial nHBthr to 7, we ensure that the algorithm does not 

spend excessive time on beats that can be clustered as 

morphologically similar (xcorrthr>0.96 [33]) and are 

efficiently filtered by EA in the first iteration, as well as that it 

does not corrupt the average by morphologically non-similar 

signals. The latter is particularly important in noisy signals, 

the SNR of which dramatically improves after the 1st iteration.  

For example, in the SimEMG database, 25% of beats (with 

average SNR= 2.31 dB) are identified as individual in the 1st 

iteration, but in the 2nd iteration they were averaged with 9 

other beats. We further stress that the algorithm classifies 

beats solely according to their similarity, with no reference to 

their diagnosis-relevant normality, and, hence, render a good 

AHB also for signals in which the abnormal outnumber the 

normal beats. Nevertheless, it does correctly identify and 

average all single or multiple heartbeats with a significant 

morphological difference (e.g., premature ventricular 

contractions [33]). Fig. 4b-1 shows an example of the 

heartbeat after applying ensemble averaging. It is apparent that 

it contains residual noise. Thus, it was additionally processed 

by a moving average filter applied to two segments: (i) from 

the start of a heartbeat to the R-40ms; (ii) from the R+40ms to 

the end of the heartbeat (Fig. 4b-2). The length of the moving 

average window, MA, was set to approximately neutralize 

dependence of denoising efficiency on nHB. It ranged from 5 

samples when the nHB ≥ 11 to 15 samples when nHB = 1. 

B. Databases 

Three different databases were used to study the 

performance of the proposed IRM method. 

1) SimEMG database contains 37 noise-free and 110 noise-

contaminated single-lead recordings generated from 14 

subjects (9 females and 5 males aged 40±13). All recordings 

are with duration of 30 seconds. The method relies on a 

particular placing of ECG electrodes to record signals with 

and without EMG noise. The noiseless reference measurement 

was performed with the ECG electrodes placed on the upper 

arm, which is known to be much less affected by EMG noise 

than the hands. The noisy measurement was performed with 

electrodes on fingers, meaning that all signals are equivalent 

to lead I of the standard ECG. Considering all electrode 

configurations, the average SNRIN of the noise-contaminated 

signals was 8.53±5.5 dB. Here, the SNRIN is calculated as 

following: 

              (
∑   ( )     

   

∑   ( )     
   

)     ,      (6) 

 

where s(n) is the reference signal, and z(n) is the EMG noise 

obtained by subtraction of the reference signal from the 

simultaneously recorded noisy signal. Here, we defined 

recorded EMG noise as the difference between the noise-

contaminated ECG signal from hands and the reference signal. 

Most signals obtained from fingers contain a high noise level 

(SNRIN < 8 dB), while only seven recordings have SNRIN 

beyond 16 dB. The total number of recordings in SimEMG 

was 147. The SimEMG database is available as open-source at 

[23].  

2) In the MIT-BIH-EMG database, the 2-lead noise-free 

signals originate from the MIT-BIH arrhythmia database [24], 

TABLE IV 

TRESHOLDS APPLIED IN IRM METHOD 

IRM algorithm parameters 

Preprocessing 

HPF 

cut-off 

LPF 

cut-off 

EMG 

cut-off 

Heartbeat 

start 

2 Hz 100 Hz 10 Hz 
Ri - 0.25 

RRmedian 

IRM stage 

 

xcorrmin 

Mov. average 

window 

nHB

min 

No. 

iterrations 

0.91 5 – 15 samples 1 1-3 

 

 
 

Fig. 4. Block diagram of AHB creation for a single bit. a) Algorithm that 

determines the number of beats nHB used in EA procedure and the length of 

the moving average filter MA. b) The beat is first averaged with ensemble of 

all beats from IB that contributed to the nHB count (IB beats (nHB)), and 

then filtered to obtain AHB. Example signals are shown in b-1 and b-2, 

where the noise-contaminated heartbeat is given in gray and the filtered 

signals in blue.   
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[25], which comprises 48 30-minute recordings. The first lead 

of these recordings was cut into 30-second segments and then 

estimated against the noise rejection criterion defined for the 

SimEMG database. As a result, 57 recordings obtained from 

11 subjects passed the rejection criterion from this database 

and could be considered noise-free. This subset contains 9 

recordings (16%) with atrial fibrillation, 3 with ventricular 

bigeminy (5%), 4 with ventricular trigeminy, and 1 with nodal 

(A-V junctional) rhythm. Additionally, the subset comprises 

normal beats (76.3% of the total number of beats), left bundle 

branch block beats (10.1%), premature ventricular 

contractions (8.9%), right bundle branch block beats (1.2%), 

and other abnormal beats in a smaller percentage. Noise-

contaminated signals were created by addition of the genuine 

muscle artifact (EMG noise) recordings taken from the MIT 

Noise Stress Test [26] to these signals. The MIT Noise Stress 

Test database comprises 12 30-minute ECG recordings and 3 

30-minute recordings of noise containing predominantly 

BLW, EMG, and motion artifact noise with different SNR 

ratios. Since this study focuses on eliminating EMG noise, we 

have used only the noise recordings that predominately 

contained this type of noise. To remove BLW, we additionally 

processed them with a Butterworth high-pass filter with a 

cutoff frequency of 3 Hz. For every noise-free signal, 3 

different randomly selected noise segments are added, 

resulting in 171 noise-contaminated recordings with an 

average SNRIN of 11.90±3.25 dB. The total number of 

recordings in MIT-BIH-EMG was 228. 

3)  In the Synth-EMG database, the noise-free ECG signals 

were obtained from the ECG signal generator described in 

[27], with 5 parameters randomized here. We generated 50 

noise-free ECG recordings with duration of 30 seconds. The 

EMG noise originated from the MIT Noise Stress Test 

Database. We added 3 different noise segments for every 

noise-free signal, resulting in 150 recordings with an average 

SNRIN of 6.22±3.11 dB. The total number of recordings in 

Synth-EMG was 200. 

 

C. Benchmark methods 

A detailed description of the AWWF method can be found 

in [11]. This algorithm uses the dyadic stationary wavelet 

transform in the Wiener filter. It improves the signal quality 

by adding the block for noise estimate, which monitors the 

time dependence of SNR within the signal. It also includes the 

algorithm for finding suitable parameter values by maximizing 

the average SNR improvement. We have used a MATLAB 

implementation of the AWWF algorithm from [34].    

WT is the standard method for filtering ECG signals from 

noise. Here, we applied the algorithm as described in [9]. In 

addition, we optimized the methods’ parameters (wavelet 

family, lower and higher thresholds) on the SimEMG dataset. 

It resulted in sym4 filter banks, a decomposition level of 5, 

and hard thresholding to manage the cD3 and cD4 

coefficients. 

Conventional FIR and IIR filters are commonly used to 

compare different ECG denoising algorithms [11], [14]. Here, 

we applied a low-pass Butterworth filter with the cut-off 

frequency set to 40 Hz. 

D. Code availability 

As a proprietary code of the HeartBeam, Inc. included in 

AIMIgo device, the IRM code is not available online. The 

code for AWWF is available at https://github.com/lisha-

chen/ECGtoolbox/tree/master/Denoising [34]. We published 

our implementation of WT algorithm from reference [9] here 

https://drive.google.com/file/d/1z-

QfXv35dHf65wgX9_vimimJPxaXtPyr/view?usp=drive_link 

and of FIR here 

https://drive.google.com/file/d/1xc7KlZablaveLrwHiLno0TG

GjUtlI9jI/view?usp=drive_link. 
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