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A B S T R A C T 

We apply a toy model based on ‘pendulum waves’ to gas sloshing in galaxy clusters. Starting with a galaxy cluster potential filled 

with a hydrostatic intracluster medium (ICM), we perturb all ICM by an initial small, unidirectional velocity, i.e. an instantaneous 
kick. Consequently, each parcel of ICM will oscillate due to buoyancy with its local Brunt–V ̈ais ̈al ̈a (BV) period, which we show 

to be approximately proportional to the cluster radius. The oscillation of gas parcels at different radii with different periods 
leads to a characteristic, outward-moving coherent pattern of local compressions and rarefactions; the former form the sloshing 

cold fronts (SCFs). Our model predicts that SCFs (i) appear in the cluster centre first, (ii) mo v e outwards on several Gyr time- 
scales, (iii) form a staggered pattern on opposite sides of a given cluster, (iv) each mo v e outwards with approximately constant 
speed; and that (v) inner SCFs form discontinuities more easily than outer ones. These features are well known from idealized 

(magneto)hydrodynamic simulations of cluster sloshing. We perform comparison hydrodynamic + N -body simulations where 
sloshing is triggered either by an instantaneous kick or a minor merger. Sloshing in these simulations qualitativ ely behav es as 
predicted by the toy model. Ho we ver, the toy model somewhat o v erpredicts the speed of sloshing fronts, and does not predict 
that inner SCFs emerge with a delay compared to outer ones. In light of this, we identify the outermost cold front, which may 

be a ‘failed’ SCF, as the best tracer of the age of the merger that set a cluster sloshing. 
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 I N T RO D U C T I O N  

ergers between galaxy clusters leave observable features in the X- 
ay emitting intracluster medium (ICM) of a galaxy cluster. These 
eatures include shocks and cold fronts (Markevitch & Vikhlinin 
007 ). Cold fronts differ from shocks in that the pressure is contin-
ous across a cold front, so that the denser side of the discontinuity
s colder than the more diffuse side. 

Here, we focus on sloshing cold fronts (SCFs), which arise when 
he ICM of a cluster is perturbed by, e.g. a minor merger as first
roposed by Tittley & Henriksen ( 2005 ) and Ascasibar & Markevitch
 2006 ). They showed that the gravitational disturbance caused by a
ubcluster passing through the primary cluster is sufficient to cause 
he ICM of the primary cluster to ‘slosh’ about the gravitational 
otential minimum, leading to the familiar arc-shaped ‘edges’ in 
-ray surface brightness, wrapped around the cluster core. SCFs 
av e been observ ed in man y galaxy clusters (for a re vie w, see
uHone et al. 2016 ) and are thought to be ubiquitous in cool-core

CC) clusters (Markevitch, Vikhlinin & Forman 2003 ; Ghizzardi, 
ossetti & Molendi 2010 ). 
The development and evolution of SCFs have been well studied 

sing hydrodynamic simulations both in the interest of constructing 
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luster merger histories (Roediger et al. 2011 ; Roediger & ZuHone
012 ; Su et al. 2017 ; Sheardown et al. 2018 ; Vaezzadeh et al. 2022 )
nd constraining transport processes within the ICM (ZuHone 2011 ; 
oediger et al. 2013b ; ZuHone et al. 2013 , 2015 ; Brzycki & ZuHone
019 ). Keshet et al. ( 2023 ) describe a spiral structure as a quasi-
tationary solution for the ICM. 

The positive entropy gradient in the ICM leads to the ICM being
table against convection, i.e. after a perturbation a parcel of ICM
scillates rather than keeping rising or sinking. The frequency of such
 radial oscillation is known as the Brunt–V ̈ais ̈al ̈a (BV) frequency
Cox 1980 ), and can be written as 

 BV ( r) = �K 

√ 

1 

γ

d ln K( r) 

d ln r 
, (1) 

here �K = 

√ 

GM 

r 3 
is the Keplerian frequency, γ = 5/3 is the ratio

f specific heats, and K = kTn −2/3 the entropy inde x. Churazo v et al.
 2003 ) and Su et al. ( 2017 ) have used the BV period, 

 BV = 2 π/ω BV (2) 

s an estimate of the sloshing time-scale. 
In this paper, we present a toy model that links local oscillations

f ICM parcels with their BV period to the global motion of SCFs,
ollowing in broad terms the scenario outlined in Churazov et al.
 2003 ). In essence, our toy model draws an analogy between sloshing
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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Figure 1. Agreement of the correct sloshing time-scale for our model cluster 
used in Section 3 with the simple approximation from equation ( 4 ). Solid 
black line: Sloshing time-scale calculated from the BV period (equation 
1 ) for our M 200 = 5 × 10 14 M � cluster as a function of its radius out to 
r 200 (1.67 Mpc). Dash–dotted black line: A linear regression fitted to the 
sloshing time-scale which yields a characteristic sloshing front speed of u = 

0.133 Mpc Gyr −1 (see equations 4 and 12 ). Dotted green line: The linear 
approximation from equation ( 4 ) assuming a single sound speed within r 200 , 
which yields a sloshing speed of u = 0.124 Mpc Gyr −1 . Dotted blue and red 
lines and shaded region: The linear approximation from equation ( 4 ) using 
the maximum and minimum values of the sound speed within r 200 . 
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ronts and pendulum waves (e.g. Flaten & Parendo 2001 ). To this
nd, in Section 2 we describe the basic toy model, summarizing its
redictions in Section 2.6 . Section 2.7 discusses extensions to the
asic toy model, in particular variations of the initial perturbation.
ection 3 introduces the hydrodynamic simulations of sloshing
esulting from an instantaneous kick and from a minor binary cluster
erger, and compares the motion of the sloshing fronts in the

imulations with the toy model predictions. Sections 4 and 5 discuss
imitations and implications, and summarize the results, respectively.
 more detailed account of the phenomenology of sloshing in terms
f the linear perturbations of a cluster atmosphere is presented in
ulsen et al. (in preparation). 

 T H E  BA SIC  TOY  M O D E L  

s a first step whose result is needed later, we show that the BV
eriod, T BV , in a galaxy cluster is approximately a linear function of
adius. To this end, we write the BV period (equation 2 ) using the
epler speed v K = �K r : 

 BV ( r) = 2 π v −1 
K γ

1 / 2 

(
d ln K( r) 

d ln r 

)−1 / 2 

r. (3) 

n galaxy clusters, it is established empirically that both the Kepler
peed v K and the logarithmic deri v ati ve of the entropy index d ln K ( r ) 

d ln r 
re approximately constant with radius. If K is a power law K ∝ r q , its
ogarithmic deri v ati ve is its po wer index q . Theoretically deri ved and
bserv ed entropy power-la w indices are 1.1–1.2 (Tozzi & Norman
001 ; Voit 2005 ; Cavagnolo et al. 2009 ). Thus, we can write the BV
eriod as 

T BV ( r) = 

1 

u 

r (4) 

ith u = 

1 

2 π

√ 

q 

γ
v K ≈ 0 . 13 v K for q = 1 . 1 

or u ≈ 0 . 15 c s . 

n the last step, we made use of the fact that in a hydrostatic cluster,
he Kepler speed v K is comparable to the sound speed c s . We write
he proportionality constant as 1/ u , as the quantity u will turn out
o be the characteristic sloshing front speed. Later in this paper, we
resent hydrodynamic sloshing simulations for a model cluster. In
ig. 1 , we compare the BV period of our model cluster, calculated
y the full equation (equation 1 ), with the approximation from
quation ( 4 ). 

.1 A row of simple harmonic oscillators whose period depends 
n the position of their equilibrium points 

ur model starts with a galaxy cluster potential filled with a
ydrostatic ICM. In the simplest version, we imagine the ICM to
e perturbed by an instantaneous, unidirectional ‘kick’, i.e. all ICM
s given an initial small velocity in the same direction. For the sake of
he toy model, we first focus on the resulting motion of ICM parcels
long the cluster radius, r , parallel to the kick direction, such that
he kick is directed outwards, in positive r -direction. As a result of
he kick, each ICM parcel along this radius will oscillate radially
ue to buoyancy with its local BV period (equation 4 ). Due to the
adial variation of the oscillation period, patterns of compression and
arefaction regions will arise. In this toy model, we assume that the
CM parcels simply oscillate locally without influencing each other
ike in a pendulum wave experiment (Flaten & Parendo 2001 ), which
s a simplification of the fluid nature of the ICM. 
NRAS 529, 563–574 (2024) 
To visualize the resulting patterns, we imagine a row of simple
armonic oscillators along this radius. To start with, we assume
hat each oscillator is kicked such that all oscillators have the same
ositive amplitude, A . Variations to this perturbation are discussed
elow. 
The displacement of each oscillator away from its equilibrium

osition at time, t , shall be D ( t ); its period is the BV period, assumed
o depend linearly on radius as shown in equation ( 4 ). Thus, we can
rite the displacement, D , away from equilibrium of the oscillator
ith equilibrium position, r , at time, t , as 

( r, t) = A sin 

(
2 π

T BV ( r) 
t + φ

)
. (5) 

f indeed all oscillators receive their first kick at the same time, t =
, the phase is zero ( φ = 0). In a more general case, the different
scillators could start at different moments in time, and thus have
ifferent phases; we discuss this case below. 
With equation ( 4 ), the displacement, D , of the oscillator with

quilibrium position, r , at time, t , becomes 

( r, t) = A sin 

(
2 πu 

r 
t 

)
= A sin 

(
2 πL 

r 

)
with L = ut ; (6) 

ts dependence on radius for a fixed time, t , is shown in Fig. 2 . 
The 1/ r term in the argument of the sine function distorts the sine

unction such that its ‘wavelength’ decreases with decreasing r . The
isplacement D ( r ) approaches zero for r > 4 L , and its outermost
 -axis intercept is at r = 2 L . 

.2 Relating sloshing cold fronts to the row of oscillators 

nce the oscillators start their oscillation, the variation in period
long r will lead to a pattern of enhanced, and reduced, densities of the



Sloshing toy model 565 

Figure 2. Displacement, D , away from the equilibrium position of oscillators 
as a function of their equilibrium position, r (see equation 6 ). 
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scillating parcels. The locations of enhanced densities of oscillating 
arcels mark the locations of actual SCFs. These locations occur 
lose to those r -intercepts (zeros) of D ( r ) where D ( r ) has a ne gativ e
lope. The zeros can be found easily by setting the argument of the
ine function to multiples of π , i.e. the zeros occur at 

 n = 

2 L 

n 
, n = 1 , 2 , 3 , . . . , 

ut only the even-numbered ones are those with a ne gativ e slope. The
scillators with equilibrium points just left of these zeros have moved 
owards the right (outwards), and the oscillators with equilibrium 

oints just right of these zeros have moved towards the left (inwards).
onsequently, the density of oscillators is enhanced around those 
eros. This pattern of alternating inward and outward motion is 
ell known in hydrodynamic simulations of sloshing; the SCFs are 

ocated where outward-moving ICM meets inward-moving ICM, as 
escribed abo v e. 
A second method to visualize the enhanced density of oscillators 

s to consider the actual positions of the oscillators at a given time t .
he position of the oscillator with equilibrium position, r , at time, t ,
ith respect to the cluster centre is 

P ( r, t) = r + D( r, t) = r + A sin 

(
2 πu 

r 
t 

)
, (7) 

.e. its equilibrium position plus its local displacement. We show the 
unction P ( x ) along with D ( x ), both zoomed into a rele v ant range of
 , in Fig. 3 in the left-hand column. 

SCFs will occur where the density of oscillating parcels is 
nhanced. This is at the radii where the slope of P ( r ) has local minima,
hich is at, or near, the zeros of D ( r ) with ne gativ e slopes. These

adii are marked by cyan lines in Fig. 3 . Ho we ver, at smaller radii,
eighbouring enhanced regions start overlapping, which washes out 
he enhancements again. This would be apparent if we took the black

arkers in the bottom left panel of Fig. 3 (which are equidistant in
heir equilibrium position) and project them on to the P -axis. The
esult of such a projection is shown by the band of blue dots on the
ight of the panel. Instead of projecting the black markers directly on
o the P -axis, i.e. setting all their r -coordinates to zero, we projected
hem into a small r -range in the margin of the plot, giving each a
andom r -coordinate in that range to a v oid crowding. There are bands
f clearly enhanced densities: these mark the locations of SCFs. 
As stated abo v e, due to o v erlap at inner radii, there are only a

imited number of regions with actual enhanced oscillator density. 
his washing-out of inner SCFs will be reduced with a more realistic
nitial perturbation, as discussed below. As real ICM parcels cannot 
ross through each other, this washing-out effect might not happen in
eality. The outermost SCFs do not suffer from crowding and should
l w ays e xist, though the y may not be discontinuities, as discussed
elow. 

.3 A more realistic perturbation: constant initial velocity 
nstead of amplitude 

he velocity amplitude of the oscillation stated in equation ( 6 ) would
e 

 max = 

2 πAu 

r 
, 

.e. it would depend on r because the oscillation period depends on
 . This would mean oscillators at lower r would have a much higher
nergy if they had equal masses. A more even energy distribution
ith radius would be more realistic for the ICM of a cluster. Under

he impulse approximation, i.e. assuming the perturber passes a 
egion faster than the matter can respond, the perturbation caused 
s a constant velocity kick if the perturber is an isothermal sphere. 

To achieve a constant velocity amplitude, the oscillation ampli- 
ude, A , needs to be a matching function of radius, r : 

 = A ( r) = αr, (8) 

here α is a positive dimensionless parameter (signifying an outward 
ick), and consequently the velocity amplitude is constant: 

 max = 2 παu or α = 

v kick 

2 πu 

(9) 

he abo v e relationship links the proportionality constant α for A ( r )
o the initial kick velocity if we want to think of a scenario where
he initial condition is a constant speed for all oscillators instead of
 constant amplitude. Thus, the position of each oscillator now is 

 ( r, t) = r + αr sin 

(
2 πu 

r 
t 

)
= r + αr sin 

(
2 πL 

r 

)
with L = u

(10)

his new displacement, D ( r ), and new oscillator position, P ( r ), are
hown in the right-hand column of Fig. 3 . Again, the oscillators will
ile up where the slope of P ( r ) has its local minima. Differentiating
 ( r ) with respect to r yields its slope, 

∂ P 

∂ r 
= 1 + α sin 

(
2 πL 

r 

)
− 2 παL 

r 
cos 

(
2 πL 

r 

)
, 

ifferentiating again to find the minima of the slope yields 

∂ 2 P 

∂ r 2 
= −4 π2 L 

2 α

r 3 
sin 

(
2 πL 

r 

)
, 

hich has zeros where the argument of the sine function equals
nteger multiples of π . Thus, minima and maxima of the slope of
 ( r ) occur again at 

 n = 

2 L 

n 
, n = 1 , 2 , 3 , . . . , 

ut only the even-numbered instances are minima, i.e. locations of 
loshing fronts. We mark them with cyan lines in Fig. 3 . 

In the blue dotted band next to the bottom right panel of
ig. 3 , we repeat the e x ercise of visualizing the enhanced oscillator
ensities at SCFs. Making the amplitude a linear (or, more generally,
onotonically growing) function of r strongly reduces the washing 

ut of inner SCFs. In the shown e xample, sev en to eight SCFs can
e identified instead of only three fronts in the left-hand panels. 
MNRAS 529, 563–574 (2024) 
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M

Figure 3. Oscillator positions and enhanced densities. The left-hand panels are for the case of constant oscillator amplitude, the right-hand panels illustrate the 
case where the amplitude grows linearly with radius. The top panels show the displacement D ( r ) of the oscillators around their equilibrium position (compare 
to Fig. 2 ). The bottom panels show the distance of the oscillator positions to the cluster centre at a given time. The bar of blue dots on the right in the bottom 

panels visualizes the enhanced densities of oscillators at certain radii, see the text for full description. The cyan lines in all panels mark locations of potential 
SCFs, i.e. locations of enhanced densities of oscillators, i.e. locations of zeros of D ( r ) with ne gativ e slopes. 
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.4 The location and motion of sloshing cold fronts 

e established that along the radius along which the initial kick was
irected outwards, SCFs appear at the even-numbered instances of 

 n = 

2 L 

n 
= 

2 u 

n 
t, for n = 1 , 2 , 3 , . . . . (11) 

o consider the case of a kick in the ne gativ e r -direction, i.e. the
ther side of the cluster in the case of a cluster-wide unidirectional
ick, we need to invert the sign of the amplitude, A , in equations ( 6 )
nd ( 7 ), and of the parameter α in equation ( 10 ). Finding again the
ocations of minimum slope in P ( r ) now identifies the odd-numbered
nstances of equation ( 11 ). 

Thus, equation ( 11 ) lists the locations of potential SCFs on both
ides of the cluster, counting SCFs from the outermost one inwards,
lternating sides of the cluster. The sloshing fronts form a staggered
attern. The outermost front is expected on the side of the cluster
hat experienced the inward kick. 

Each SCF mo v es outwards with a constant speed, 

 n = 

2 u 

n 
, for n = 1 , 2 , 3 , . . . , (12) 

he inner fronts mo v e slower than outer ones, and the pattern of
 ( r ) remains self-similar. As the characteristic speed, u , is much

maller than the sound speed, all SCFs mo v e subsonically. We note
hat in the toy model framework, SCFs are simply a pattern of
ocal enhancements that is travelling through space, similarly to the
atterns seen in a pendulum wave experiment (Flaten & Parendo
001 ). 
NRAS 529, 563–574 (2024) 
.5 True and ‘failed’ sloshing fronts 

t the locations of the potential cold fronts identified by equation
 11 ), the slope of the function P ( r ) decreases with decreasing r .
or the outermost potential fronts, the slope of P ( r ) can still be
ositive, but for more inner potential fronts it is ne gativ e. In the
ramework of the toy model, a region of ne gativ e ∂ P / ∂ r means
scillators have crossed through each other, whereas at the outermost
ronts where the slope of P ( r ) is positive, the oscillators have not
hanged their order but simply mo v ed closer together. A profile
f oscillator density as a function of radius shows a continuous
nhancement at an outer potential front when ∂ P / ∂ r > 0, but the
scillator density shows a discontinuous enhancement if ∂ P / ∂ r < 0
see Fig. 3 ). It is known from hydrodynamical sloshing simulations
hat for mild mergers the outermost sloshing ‘fronts’ can fail to
ecome discontinuities, whereas the inner fronts are discontinuous.
hus, by analogy, in the toy model we identify potential sloshing

ronts with ∂ P / ∂ r > 0 as ‘failed’ fronts. True, discontinuous fronts
equire ∂ P / ∂ r < 0. 

We note that in a 1D scenario, ICM parcels would not pass
hrough each other, and with adiabatic processes alone the gaseous
CM would not form discontinuities. Ho we ver, we kno w from
bservations and hydrodynamic simulations that in 3D discontin-
ous fronts form. The toy model alone cannot explain the exact
rocess, though. Within the toy model framework, the formation
f true, discontinuous fronts occurs where the slope of P ( r ) not
nly has a local minimum, but the slope is zero or ne gativ e at
hat minimum. Equi v alent considerations for both sides of the
luster lead to the following condition for true, discontinuous



Sloshing toy model 567 

f

T
n  

e  

d  

‘

2
m

I

h

k

h
r  

c  

t

(

 

l
t

b

 

s
 

e  

s

s

 

a
t

 

f
d
s  

c  

a
e
s

f

2

A
i
t

o

i  

i

a  

a  

p  

t
a  

e  

w

2

I  

t  

o

P

H  

t
t  

p  

a

r

a

v

A

t
f  

t  

f  

t

T
c

2
v

I  

h  

e  

o  

c
g  

a

2

W  

t  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/529/1/563/7616099 by U
niversity of H

ull user on 22 April 2024
ronts: 

∂ P 

∂ r 
( r n ) = 1 − παn = 1 − v kick 

u 

n 

2 
≤ 0 or 

2 u 

v kick 
≤ n. (13) 

his is progressively easier to fulfil for potential fronts with higher 
 , i.e. closer to the cluster centre. If this condition is not fulfilled, we
xpect the SCF to not be a discontinuity but only a gradient in ICM
ensity and temperature in the correct direction, and we call this a
failed’ SCF. 

.6 Predicted behaviour of sloshing cold fronts from basic toy 
odel 

n summary, our toy model made the following assumptions: 

(i) We considered the ICM along one diameter in an initially 
ydrostatic cluster. 

(ii) All ICM parcels along this diameter simultaneously receive a 
ick, i.e. a small, unidirectional, initial velocity. 
(iii) As a result, the ICM parcels will oscillate locally as simple 

armonic oscillators along the diameter around their equilibrium 

adius with their local BV period. Their amplitude shall be small
ompared to the radial range of interest (this defines ‘small kick’ in
he assumption abo v e). 

(iv) The BV period depends linearly on cluster radius, see equation 
 4 ). 

We showed that the dependence of the oscillation period on radius
eads to density enhancements appearing in the ICM. We identified 
hose as (potential) SCFs. 

Based on these assumptions, this toy model predicts the following 
ehaviour of SCFs: 

(i) The radii of SCFs on opposite sides of the cluster make a
taggered pattern. 

(ii) At an y giv en time, SCFs are located at the radii given in
quation ( 11 ) (the index counts inwards), i.e. their radii keep a self-
imilar pattern o v er time. 

(iii) Each SCF mo v es outwards with constant, clearly subsonic 
peed (equations 4 and 12 ). 

(iv) Inner SCFs mo v e slower than outer ones (equation 12 ). 
(v) F or ev ery time, t , there is an outermost SCF, i.e. despite the

ssumed cluster-wide perturbation, the SCF pattern will grow from 

he cluster centre outwards. 
(vi) Not all sloshing fronts identified by equation ( 11 ) are true

ronts. In particular, the outer ‘fronts’ could fail to become true 
iscontinuities. Forming true discontinuities requires a sufficiently 
trong initial kick velocity as specified in equation ( 13 ). This
ondition is easier to fulfil for inner sloshing fronts. Ho we ver, e ven
 very mild kick velocity will lead to a sloshing-front-like pattern, 
xcept that the classic discontinuities are replaced by corresponding 
lopes in density and temperature. 

The qualitative aspects of these predictions are well-known SCF 

eatures in hydrodynamic simulations. 

.7 Variations to the toy model 

n obvious question is whether the chosen initial perturbation 
mpacts the prediction. To this end, we discuss some variations to 
he initial perturbation, namely 

(i) an initial offset instead of an initial velocity, 
(ii) a constant oscillation amplitude throughout the cluster instead 
f a constant oscillator velocity or energy, 
(iii) a non-simultaneous perturbation where the perturber’s veloc- 

ty through the cluster is much faster than the characteristic speed u
dentified abo v e. 

This section reveals that all qualitative conclusions are unaffected, 
nd e ven quantitati ve results for sloshing front locations, and speeds,
re very similar. The strongest impact could arise from the second
oint. The constant oscillator velocity throughout the cluster fa v ours
he appearance of numerous true fronts, whereas in the constant 
mplitude case inner cold fronts could be washed out by o v erlapping
ach other, although the toy model cannot predict how gas parcels
ould behave in this scenario. 

.7.1 Initial offset instead of initial kick 

f we consider the case of an initial offset instead of an initial kick,
he equation describing the position of each oscillator as a function
f its equilibrium position (equi v alent of equation 10 ) becomes 

 ( r, t) = r + αr cos 

(
2 πu 

r 
t 

)
. (14) 

ere, we have kept a radius-dependent initial offset or amplitude, i.e.
he maximum oscillation velocity (and energy) of each oscillator is 
he same. Considerations equi v alent to the ones abo v e rev eal that now
otential SCFs are expected at locations (equi v alents to equations 11
nd 12 ) 

 n = 

2 ut 

n + 1 / 2 
, for n = 1 , 2 , 3 , . . . . (15) 

nd their speeds are 

 n = 

2 u 

n + 1 / 2 
, for n = 1 , 2 , 3 , . . . . (16) 

gain, sloshing fronts are numbered from the outermost one inwards. 
Odd-numbered fronts appear on the side where the offset per- 

urbation was directed towards the cluster centre, even-numbered 
ronts on the other side. The difference of front speeds between the
wo perturbation modes becomes less with increasing n , i.e. for inner
ronts. For front number n to be a true front, i.e. an ICM discontinuity,
he kick velocity needs to obey (equi v alent of equation 13 ) 

2 u 

v kick 
≤ n + 1 / 2 . (17) 

hus, all qualitative conclusions remain, and quantitative conclusions 
hange only mildly. 

.7.2 Constant amplitude throughout cluster instead of constant 
elocity/energy 

f the initial perturbation would lead to oscillators at different radii
aving the same amplitude rather than the same energy, we would
xpect fewer true cold fronts. Inner cold fronts w ould w ash each
ther out easily (see the bottom left panel of Fig. 3 ). In the case of
onstant oscillator energy throughout the cluster, the resulting radial 
rowth of amplitude reduces fronts being washed out at smaller radii,
nd supports fronts being true fronts at larger radii. 

.7.3 Non-simultaneous perturbation 

e return to the case of an initial kick. So far we considered the case
hat the perturbation occurs at the same time throughout the cluster.
MNRAS 529, 563–574 (2024) 
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e relax this condition now by expressing the displacement of an
scillator with equilibrium position r at time t as 

( r, t) = A sin 

(
2 πu 

r 
[ t − τ ( r)] 

)
, (18) 

.e. we use a location-dependent delay time, τ ( r ). For t < τ , D shall
e zero. As a simple case, we write the location-dependent delay
ime τ ( r ) as 

( r) = τ0 − 1 

v p 
r. (19) 

his describes a perturber arriving at cluster radius r max = v p τ 0 at t =
, which takes the time, τ 0 , to travel to the cluster centre, travelling
ith constant speed v p inwards. 
Inserting the delay function, t ( r ), into the displacement function

ields 

( r, t) = A sin 

(
2 π

[
u 

r 
( t − τ0 ) + 

u 

v p 

])
. (20) 

he zeros, i.e. the locations of potential sloshing fronts on alternating
ides of the cluster, can be derived as above, and are 

 n = 

2 u ( t − τ0 ) 

n − 2 u/v p 
, for n = 1 , 2 , 3 , . . . , (21) 

nd their speeds are 

 n = 

2 u 

n − 2 u/v p 
, for n = 1 , 2 , 3 , . . . . (22) 

or a typical cluster, the velocity, u , characterizing the dependence
f BV period of radius, is only about 15 per cent of the sound
peed (equation 4 ), whereas the infall velocity of a subcluster, i.e. a
erturber, is easily 1.5 times the sound speed. Thus, the characteristic
loshing front speed, u , is at least 10 times smaller than the typical
peed of a perturber crossing the cluster, and u / v p is small. Thus, if we
hift into the time frame ̃  t = t − τ0 where the perturber arrives in the
luster centre at ̃  t = 0, the positions and speeds of the potential cold
ronts are only slightly larger compared to the fully instantaneous
erturbation approach. The effect is largest (of the order of 10
er cent) for the outermost front. All qualitative conclusions remain
he same. Ho we ver, we note that this scenario still assumes a locally
nstantaneous perturbation, and not a perturbation o v er an e xtended
mount of time or region. 

.7.4 BV period not a linear function of radius 

he outward motion of SCFs will occur, even if not at constant speed,
s long as the BV period is a monotonically increasing function of
adius. The positions and speeds of sloshing fronts can be calculated
y the same formalism as abo v e but may require a numerical solution.

 C O M PA R I S O N  WITH  H Y D RO DY NA M I C A L  

IMULATIONS  

.1 Simulation method 

n order to test the efficacy and predictive power of the toy model,
e perform a set of three highly idealized simulations (dubbed
ick1, Kick2, and Kick3) in addition to an idealized binary merger

imulation for comparison. We initialize a spherically symmetric
luster ( M 200 = 5 × 10 14 M �, r 200 = 1.67 Mpc) in hydrostatic
quilibrium. Details of the method used to generate the cluster used
n these simulations can be found in Vaezzadeh et al. ( 2022 ) which
NRAS 529, 563–574 (2024) 
ollows the methods of ZuHone ( 2011 ). The particles are set up to
orm a dark matter halo, as explained in Vaezzadeh et al. ( 2022 ),
t rest in the grid, i.e. the particles are not given any bulk velocity.
he gas in our simulation domain is initialized with a uniform initial
elocity to the right which we vary between our three simulations.
his method is similar to the one used by Churazov et al. ( 2003 )
ho used a planar shock front running o v er a cluster to initiated

loshing. In simulations Kick1, Kick2, and Kick3, the gas has an
nitial velocity of 100, 250, and 500 km s −1 , respectively. The cluster
as a typical sound speed (calculated via c s = 

√ 

γ kT ICM 

/m p , with
 ICM 

= T 200 = 2.78 keV) of 863 km s −1 (0.88 Mpc Gyr −1 ), which
eads to a characteristic sloshing speed (via equation 4 ) of 134 km s −1 

0.124 Mpc Gyr −1 ). 
The simulations are run using the hydrodynamic + N -body code,

LASH v4.6 (Fryxell et al. 2000 ). FLASH is an Eulerian adaptive
esh refinement hydrodynamics code which allows us to save

omputational effort in areas of the simulation domain that are of
ittle interest. We use FLASH ’s N -body solver with 5 × 10 6 particles
o realistically capture the response of the cluster potential to the
nduced gas sloshing. We use particle density to refine our domain:
hen the number of particles in a block (16 3 cells) exceeds 1750,

he block is refined, and conversely when the number of particles in
 block falls below 1500, the block will be de-refined. This allows
s to achieve a resolution ranging from ∼9.76 kpc within a radius of
1 Mpc of the cluster core to ∼2.44 kpc within a radius of 0.22 Mpc.
e run the simulations in a domain of 10 Mpc 3 in size with diode

isolated) boundary conditions. We allow the simulations to run for
10 Gyr with snapshots produced ev ery 50 Myr. F or simplicity, we

o not take account of cosmological expansion in the simulations,
or do we include radiative cooling or viscosity. 
To automatically detect, and thus track, the SCFs in our simu-

ations we use the SCF detection algorithm detailed in Vaezzadeh
t al. ( 2022 ), interpreting changes in the temperature profile of
 2 per cent o v er a radial range of 1.3 kpc as SCFs, and discarding

hose fronts that have a temperature ratio between the start and end
oints of < 10 per cent . Once SCFs have been detected in this way,
e relax the criterion that the temperature ratio across the front be
 10 per cent in order to carefully trace their evolution as far back

n time as possible. For our analysis of the simulations, we use the
YTHON -based library, yt (Turk et al. 2011 ). 

.2 Qualitati v e ev olution of the Kick simulations 

ig. 4 shows a series of snapshots for each of the Kick simulations
top 3 rows). The sloshing process evolves very similarly despite the
ifferent kick strengths. The motion of the ICM, after the kick along
he x -axis, results in a sloshing pattern that is clearly orientated along
he x -axis. The arc-shaped sloshing fronts have an angular extent
f approximately 180 ◦. Because the initial perturbation is perfectly
xisymmetric (i.e. contains no angular momentum), the sloshing
attern does not feature the characteristic ‘one-arm spiral’ pattern so
ften seen in binary merger simulations. The o v erall staggered pattern
f SCFs is present with approximately the same size and staggering
attern in all three Kick simulations. Indeed, at t max , corresponding
CFs across each simulation have positions within ∼20 kpc of one
nother. 

In the case of Kick1, the first discontinuity emerges at ∼0.2 Gyr,
ravelling to the left (in the opposite direction to the kick). Ho we ver,
his front is no longer detected by the detection algorithm beyond

100 kpc from the core, and is no longer visible by ∼0.5 Gyr, as
een in Fig. 4 . The second front emerges to the right of the core
t ∼0.4 Gyr [as seen in the left-hand column (0.5 Gyr) of Fig. 4 ],
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Figure 4. Time series of temperature slices of the simulations centred on the minimum of gravitational potential. Each row is for a different simulation, from 

top to bottom: Kick1, Kick2, Kick3, and binary merger. The columns show the simulations at 0.5, 1.0, and 5 Gyr after the initial perturbation, and at maximum 

simulation time. As perturbation time, we take 0 Gyr in the Kick simulations, and pericentre passage (1.6 Gyr) in the binary merger. Each panel is 2.5 Mpc on a 
side. A movie of the simulations can be found at https:// www.youtube.com/ shorts/ n9GBAzCs5T8 . 
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nd the third emerges at ∼0.7 Gyr to the left of the core. The low
nitial gas velocity (in line with the small perturbation assumed by 
he toy model) has pro v en insufficient for these cold fronts to develop
nto true contact discontinuities, i.e. they are ‘failed’ fronts, and thus
hey cease to be detected by the detection algorithm at ∼1.85 and

4.8 Gyr, respectively, though the structure is visible beyond these 
imes. Despite these fronts not having sufficient temperature jumps to 
e detected by the algorithm, we include them in subsequent analysis 
omparing toy model speed predictions to our simulations in order 
o maintain consistency between simulations. At t max , Kick1 features 
 SCFs (11 if one includes the 3 ‘failed’ outer SCFs). 
Kick2, which has an initial gas velocity twice that of Kick1,

roceeds in much the same way as Kick1 with the first front emerging
t ∼0.15 Gyr, and ceasing its evolution at ∼0.4 Gyr. The second front
merges to the right of the core at ∼0.45 Gyr, with subsequent fronts
merging on alternative sides of the core until t max . A clear, staggered
attern of SCFs about the core is visible by t max , with little to no
nstability seen affecting the edges of the fronts. There are 9 SCFs
MNRAS 529, 563–574 (2024) 

https://www.youtube.com/shorts/n9GBAzCs5T8
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Figure 5. Positions of detected cold fronts throughout each of the simulations 
Kick1, Kick2, and Kick3. The coloured dots represent distinct cold fronts. 
Solid lines of the same colour show linear fits to the cold front radii as a 
function of time. 
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isible at t max (10 if one includes the initial failed front), with one
ess small radius front as compared with Kick1. 

In the case of Kick3, the first cold front emerges at ∼0.1 Gyr,
nd travels left (opposite direction to the kick) but, as in the other
imulations, it is no longer visible by ∼0.5 Gyr. The second front
hen emerges at ∼0.6 Gyr to the right of the core. From this point on,
ronts continue to emerge on alternating sides of the core which
ontinue to grow until t max , at which point the system features
ight SCFs (nine including the initial failed front). The large initial
erturbation velocity (approximately half of the ambient sound speed
f the cluster) causes sufficient disruption to the cluster that it can no
onger be considered a CC cluster. One would expect that this would
top SCFs emerging from the core of the cluster; ho we ver, fronts
o continue to emerge, though there are fewer at small radii than in
ick1 and Kick2. The large velocity also leads to clear instabilities

long the edges of the cold fronts, with prominent Kelvin–Helmholtz
nstabilities (KHIs) visible. It is interesting to note that these KHIs
o not disrupt the SCFs sufficiently to hinder the fronts’ growth and
isibility. 

.3 Tracking cold front position o v er time 

ecause the sloshing occurs along the x -axis (due to the perturbation
eing along the x -axis), we limit our analysis of SCF positions to
heir position along the x -axis. The toy model predicts that the first
ront should emerge in the opposite direction to the perturbation,
.e. the first CF should appear in the ne gativ e x -direction. Fig. 5
hows the positions of SCF detections throughout the duration of
ach simulation, with each SCF shown by a different colour. As
he first cold front in all three simulations fails at an early stage,
e do not attempt to track its evolution beyond ∼0.5 Gyr. As

he next two outermost ‘failed’ SCFs in Kick1 have ceased being
etected automatically beyond ∼1.85 and ∼4.8 Gyr, respectively,
ut are still visible by eye in temperature slices, we simply add their
nal positions manually by inspection of the slice images, such that
ig. 5 captures their full motion. 
SCFs mo v e outwards with almost constant speeds, as predicted

y the toy model. The front speeds also decrease with each subse-
uent front that emerges, also in agreement with the toy model.
e then perform a linear regression on each individual SCF in

ig. 5 within each simulation in order to extract speeds for each
CF. Fig. 6 summarizes SCF speeds versus front number for the
ifferent simulation runs and the toy model. 
According to the toy model, each SCF should emerge from the

ore of the cluster (i.e. a radius of zero), and therefore a linear
egression should be performed with the stipulation of a null y -
ntercept; ho we ver, leaving the y -intercepts as free parameters clearly
ives the better fits to the overall motion. The implied delayed
mergence of inner SCFs is discussed below. 

.4 Comparison of Kick simulations with toy model 

.4.1 Global features 

he toy model correctly predicts the outward motion of sloshing
ronts along the axis of initial perturbation, including the staggered
attern in the direction parallel and antiparallel to the initial per-
urbation. As predicted by the toy model, the sloshing fronts mo v e
utwards with approximately constant speed. 
A substantial difference to the toy model is that the fronts ‘emerge’

rom the cluster centre one by one, each with a clear delay to the
revious one of the order of 1 Gyr, with the delay increasing with
NRAS 529, 563–574 (2024) 
ach subsequent front. Fig. 7 summarizes these delay times for all
imulations. There is a clear trend in which the emergence time of
ach SCF is increasingly delayed as the kick strength is increased.
n contrast, the toy model predicts that the whole front system arises
t once, and mo v es outwards in a self-similar fashion. If this was the
ase, all graphs of front radii as a function of time should start from
 = 0 at t = 0, but this is not the case in the simulations. 

The toy model correctly predicts that lower perturbation speeds
ead to ‘failed’ outer cold fronts, i.e. features that are temperature
radients in the correct direction, but are not discontinuities. For
xample, in the case of Kick1 (the weakest perturbation case) the
hree outermost fronts are ‘failed’ fronts, whereas the fronts further
nwards are discontinuities. This behaviour is predicted by the toy



Sloshing toy model 571 

Figure 6. Lineplots of the linear best-fitting SCF speeds from each simula- 
tion, and the speeds predicted by the toy model as a function of SCF number. 
The solid black line shows the toy model predictions for each SCF’s speed, 
the solid coloured lines show the linear fit SCF speeds from each of the 
simulations, and the dash–dotted black line shows a power law of 1/ n 1.2 . 

Figure 7. The observed start times of each SCF in each simulation. The 
times are aligned by the perturbation time (i.e. 1.6 Gyr in the binary merger 
and 0 Gyr in the Kick simulations). 
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odel qualitati vely, and e ven quantitati vely: according to equation 
 13 ), for the characteristic speed u = 134 km s −1 , and kick speed
00 km s −1 , only fronts with n ≥ 2 × 134/100 = 2.68 should be
iscontinuities, which therefore predicts one more successful front 
han is observed. Performing this calculation for Kick2 results in a 
rediction of one failed front, which agrees with the simulation. In
he case of Kick3, the toy model predicts no failed fronts, but in the
imulation the first front fails. 

.4.2 Cold front speeds and positions 

ig. 1 shows the sloshing time-scale as calculated from the BV
requency as a function of radius for our model cluster. Clearly, the
loshing time-scale is monotonically increasing with radius in an 
pproximately linear fashion within r 200 . Departures from linearity 
n the function will cause deviations from the simple model outlined 
ere. We do not see any SCFs trav el be yond r 200 , and so we limit
ur analysis to within this radius, where the linear approximation is
ppropriate. 
From equation ( 4 ), we obtain the characteristic sloshing front
peed in this cluster of u ≈ 134 km s −1 . We can then scale
his speed via equation ( 12 ) to predict a unique speed for
ach of the SCFs that emerge during the course of the sim-
lations. As e xplained abo v e, the counter, n , counts the slosh-
ng fronts from the outermost one inwards. Odd fronts arise 
n the direction opposite to the kick directions, i.e. along the

x -direction, and even-numbered fronts arise in + x -direction. 
he solid black line in Fig. 6 shows the CF speed as a

unction of front number as predicted by the toy model. 
he coloured lines show the CF speeds derived for the Kick
imulations from Fig. 5 and for the binary merger from 

ig. 8 . 
Fig. 6 reveals that, overall, the CF speeds in the Kick simulations

re about a factor of 2–3 below the predicted value, and that the front
peed depends on front number in a similar power-law fashion as
redicted (power −1.2 instead of −1). 
Differences between the Kick simulations occur for the out- 

rmost front, and for fronts beyond number 7. The outermost 
ront in Kick1 was a ‘failed’ front, and mo v es slower than
he one in the other Kick simulations. The speed of the out-
rmost CF between Kick2 and Kick3 agrees well. The devi- 
tion from the predicted pattern at higher CF numbers could 
rise because the sloshing process changes the inner entropy 
rofile of the cluster, and thus the conditions of the initial
tate, assumed by the toy model throughout, are not true any-
ore. This behaviour is increased by the fact that inner cold

ronts indeed arise with a delay. More deviations from the ini-
ial entropy profile are expected to arise with increasing time, 
nd with increasing perturbation strength – both are seen in 
ig. 6 . 
Fig. 7 summarizes the emergence delay times of SCFs in the

ifferent simulations. This behaviour is not predicted by the toy 
odel. These delay times were derived by taking the earliest time

t which each SCF could be seen, and aligning these times relative
o the perturbation time (0 Gyr in the Kick simulations, and 1.6 Gyr
n the binary merger). Given these unpredicted delay times, the toy
odel alone will not be able to correctly predict the positions of

loshing fronts. While the front speeds could be calibrated, the toy
odel does not predict the delay in the inner cold fronts emerging.
MNRAS 529, 563–574 (2024) 
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i ven their slo w speed, this delay has a big impact on the actual CF
osition at a given time. 

.5 Comparison to idealized binary cluster merger 

n order to test our model in a more realistic ICM sloshing scenario,
e compare our toy model’s predictions to a binary cluster merger
ith mass ratio, R = 1:10, in which the primary cluster is the

ame cluster as in the other simulations presented in this paper,
ith the exception of it having a ‘warm-hot intergalactic medium

WHIM)’-like atmosphere beyond 2.17 Mpc. This ‘WHIM’ is a
niform gas background with density, temperature, and pressure
alues of 1 . 03 × 10 −29 g cm 

−3 , 1.70 keV, and 2.85 × 10 −14 erg cm 

−3 ,
espectively. The ‘WHIM’ has the effect and purpose of pre-
runcating the atmosphere of the infaller to a v oid it carrying too
uch gas into the primary. The infalling subcluster has a mass of
 × 10 13 M �, with an r 200 of 777 kpc, and a particle resolution of
 × 10 5 particles. The subcluster is initialized at 2.45 Mpc north
f the primary (the sum of the respective r 200 radii), with a radial
elocity of −950 km s −1 , and a tangential velocity of 450 km s −1 

uch that the subcluster will pass to the right of the primary with a
arge pericentre distance, and thus deliver a ‘kick’ along the same
xis as in the simulations presented in the previous section. 

.5.1 Considerations r egar ding the natur e of the perturbation 

t is important to note that the key difference between the Kick
imulations presented in the previous section, and the binary merger,
ith regard to the toy model, is the initial perturbation that the cluster

eceives. The perturbation is continuous, and non-constant in space
nd time in the binary merger, i.e. the infaller is already perturbing
he primary cluster when the simulation begins, and continues to do
o as it mo v es through the primary. Furthermore, the binary merger
ntroduces angular momentum into the host cluster. The perturbation
ay be a mix of extended kicks and offsets in the primary’s ICM.

t is also not obvious which direction of perturbation matters most –
n first approach, the perturber attracts the primary’s ICM towards
t, but then pushes and pulls the primary’s ICM somewhat along its
rbit after it passed a given location. This has important implications
or the application of the toy model, as the toy model assumes a
ingle ‘kick’ or offset to a row of oscillating gas parcels which then
scillate independently. In the binary merger case, the perturber first
o v es approximately parallel to the y -axis, but its second passage

hrough the cluster occurs more in a diagonal direction from the −x ,
y quadrant to the + x , + y quadrant. 
We pointed out that the perturbation in a minor merger is

ontinuous. Ho we ver, for the sake of comparison, we simplify this
cenario to the often-invoked model of sloshing in which the first
ericentric passage is the key moment of perturbation. As the infaller
asses to the right of the primary in our binary merger simulation
therefore pulling the primary to the right at pericentre time), the
kick’ is to the right, and therefore sloshing will occur along the
 -axis. We note that it is significantly more difficult to trace each
CF for its full evolution than in the case of the highly idealizing
loshing simulations. Due to the highly ‘messy’ nature of the SCFs’
volution in the binary merger, automatic tracking is more difficult,
nd is therefore augmented by manual tracking of the SCFs. Due to
he angular momentum imparted by the infaller, the primary’s ICM
s swirling at the same time that it is sloshing, and as such fronts that
merge along the x -axis to a given side rotate around to the other
ide of the cluster in some cases. Once the coherent SCF points have
een identified, the same procedure of linear regression is applied as
escribed in Section 3.3 . 
NRAS 529, 563–574 (2024) 
.5.2 Comparison of binary merger with Kick simulations and toy 
odel 

ig. 8 shows the CF positions as a function of time along the x -
irection. Again, to each CF we fit a linear position-time function
o determine the speed of each CF. Fig. 6 compares the CF speeds
rom the binary merger to the toy model prediction and the Kick
imulations. Fig. 7 compares the delay times of the emergence of the
CFs in the binary merger to the delay times for the Kick simulations.
Despite the significantly more complex perturbation in the binary
erger, sloshing fronts also arise in a staggered pattern, and mo v e

utwards with about constant speed. Similar to the Kick simulations,
he inner sloshing fronts emerge with a delay, which is not predicted
y the toy model. The dependence of delay time on SCF number is
pproximately linear, and of a similar order to that seen in Kick3 for
arly SCFs, and Kick1 for later SCFs. 

The SCF speeds (Fig. 6 ) are again within a factor of 2 of the
oy model prediction. For SCF numbers of 5 and below, the SCF
peeds show a similar dependence on SCF number as the ones in the
ick simulations. For outer SCFs, there is an approximate agreement
ith the 1/ n dependence, although there is significantly more scatter

round that trend. From CF 6 onwards, the SCF speeds increase
gain, even becoming faster than predicted by the toy model. 

It is worthwhile noting that, despite the slightly lower o v erall
volution time in the binary merger (the ‘kick’ at pericentre occurs
t 1.6 Gyr as opposed to 0 Gyr), there is an equal number of SCFs
n the binary at t max to in Kick1. The ICM bulk motions in the
rimary cluster triggered by the merger are about 600 km s −1 , which
s comparable with the kick speed of simulation Kick3. Thus,
he perturbation in this binary merger is not a particularly weak
erturbation compared to the Kick simulations, especially given that
t is a continuous perturbation. 

 DI SCUSSI ON  

e presented a simple toy model for the sloshing process in galaxy
lusters. The toy model assumes that sloshing arises as the ICM
arcels in an initially hydrostatic cluster start oscillating around
heir equilibrium radius with their local BV period after an initial
erturbation. We showed in equation ( 4 ) that the BV period in galaxy
lusters can be approximated as a linear function of radius. The
ariation of the BV period with radius leads to a characteristic pattern
f density enhancements in the ICM that can be linked to SCFs.
hese enhancements travel outwards with about constant speed for
 range of initial perturbations (instantaneous kick, instantaneous
ffset, instantaneous local perturbation that travels through the cluster
upersonically). We compared the toy model’s prediction in detail to
ydrodynamic + N -body simulations of both sloshing initiated by
n initial kick to the ICM, and sloshing caused by a binary minor
luster merger. 

.1 Successes of the toy model 

he toy model correctly predicts several key qualitative characteris-
ics of the sloshing front system in a galaxy cluster: 

(i) Sloshing fronts arise from the centre of the cluster, and mo v e
utwards, i.e. at any time there is an outermost SCF. The physical
ay of numbering SCFs should start with this outermost front. 
(ii) Sloshing fronts form a staggered pattern, i.e. appear in an

lternating fashion on opposite sides of the cluster core. 
(iii) Sloshing fronts mo v e outwards with about constant speeds. 
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(iv) For the outer few SCFs, the front speed decreases with front
umber, n , approximately in proportion to 1/ n . 
(v) Weak perturbations can lead the outermost fronts to be ‘failed’ 

loshing fronts, i.e. they are not discontinuities b ut ha ve SCF
haracteristics in every other aspect. 

The toy model quantitatively predicts SCF speeds within a factor of
–3. The characteristic front speed is 14 per cent of the cluster’s sound
peed (equation 4 ). Thus, the toy model predicts subsonic motion of
loshing fronts. These features have been seen in hydrodynamic 
imulations (e.g. Ascasibar & Markevitch 2006 ; ZuHone 2011 ), 
ncluding the feature of ‘failed’ SCFs (Roediger et al. 2011 ), and
re reproduced in our idealized Kick simulations presented here as 
ell as our binary merger simulation. 
Given that sloshing fronts are a wave phenomenon, we cannot 

xpect sloshing to transport matter over large distances. For example, 
e do not expect sloshing to transport low entropy gas from cluster

entres to the outskirts. 

.2 Limits of the toy model 

he first major deviation between the toy model and the hydro- 
ynamic simulations is the delay time of inner , i.e. later , cold
ronts. In simulations with either an initial instantaneous, kick- 
ike perturbation as well as perturbation by a classic binary minor 
erger, our analysis showed that the sloshing fronts emerge from 

he cluster centre with a substantial delay time that grows with 
old front number. This means that the position of a given cold
ront depends not only on its speed, but also on its emergence
ime. The toy model does not predict this emergence delay, but 
redicts that the whole sloshing front system emerges together, and 
rows in a self-similar pattern. Further investigations are required 
o unco v er the origin of the emergence delay of later CFs, and why
he toy model still predicts reasonable cold front speeds despite this

ismatch. 
Secondly, the toy model o v erpredicts the speed of the sloshing

ronts by a factor of 2–3. This is related to the fact that the toy model
onsiders only radial oscillation modes. In the full treatment (Nulsen 
t al., in preparation), the oscillation frequency depends on the angle 
between the wave vector and the radial direction as ω BV sin θ , thus

educing the characteristic sloshing speed. 
There are some further, expected differences between the toy 
odel and the hydrodynamic simulations. Over time, the sloshing 

rocess alters the entropy profile of the ICM in the cluster core, thus
he motion of the sloshing fronts must change. This aspect is not
ncluded in the toy model. The effect is expected to be stronger for
tronger perturbations, and later (i.e. more inner) SCFs, due to a 
tronger resulting modification of the central entropy profile. This is 
ndeed the case. 

The version of the toy model presented here considers only 
nstantaneous perturbations, either simultaneously throughout the 
hole cluster, or a locally instantaneous perturbation moving through 

he cluster at a speed considerably larger than the characteristic 
loshing speed. We have also separated kick and offset perturbations 
n this version of the toy model. A binary merger causes a more
omple x perturbation, e xtended in time and space, so a perfect match
annot be expected. 

The current toy model only predicts speeds and locations of cold 
ronts, but not their strength in terms of density or temperature 
ontrast across them, apart from predicting potentially ‘failed’ outer 
old fronts. 
.3 Implications for determining merger ages 

here are two difficulties in deriving the age of a merger from an
bservation of a set of SCFs in a given cluster. Most clusters are
bserved first, and best, in their central regions, i.e. we observe
ost easily the inner cold fronts of a sloshing front system. If we
isidentify them for outer cold fronts, we will generally o v erestimate

heir speed, and thus underestimate the age of the merger. If only part
f the sloshing front system is known, there is no easy way to know
hich cold fronts are observed. Thus, merger ages from studies 

nterpreting only sloshing in the cluster centre can only give a lower
imit on the cluster’s merger age (e.g. Roediger et al. 2011 , 2012 ). 

Even using a reasonable estimate of the particular sloshing front’s 
peed, simply tracing back the current SCF radius to the cluster centre
an strongly underestimate the age of the merger because the SCF
mergence delay time of approximately n × 2 / 3 Gyr is not included.
e note that if the age of a particular front is of interest instead of

he age of the merger, the simple trace-back method gives good
stimates each sloshing front mo v es with approximately constant 
peed. We note that the speed of a given cold front is approximately
ndependent of the perturbation only for mild perturbations. For, 
.g. stronger mergers, the cold front speed increases (Roediger et al.
011 ; Bellomi et al. 2023 ). 
To estimate the age of the merger that caused the sloshing, we

eed a view of the cluster as a whole, and must identify the outermost
loshing front. This front is affected least by the delay in emergence,
nd is a direct tracer of the merger age. Ho we ver, the search for
he largest SCF must include looking for ‘failed’ SCFs, and not
imply use the outermost front with a discontinuity. We show in a
orthcoming paper that the outermost CF is indeed a good tracer of
he merger’s age. 

The toy model implies a relationship between the orientation of the
old front system and the merger direction. Ho we ver, e ven a single
on-head-on merger introduces a rotational component into the ICM 

hat rotates the sloshing direction, introducing a bias in direction. 
his effect could depend on the impact parameter of the merger. 

.4 Sloshing fronts as a wave phenomenon and their resilience 
gainst destruction by Kelvin–Helmholtz instability 

rue SCFs are contact discontinuities with gas of different entropy 
n either side. Ho we ver, the identity of the gas on either side of a
iven front changes with time. ICM that still is on the outside of
 given front will be on its inside a while later when the front has
o v ed further outwards. SCFs are like wav es mo ving through the

CM, they do not transport ICM from inner to outer radii o v er large
istances. 
Thus, SCFs differ in their nature from, e.g. the CF at the upstream

dge of a subcluster falling into a host cluster. In this scenario, the
as on the hotter side of the front is al w ays host cluster ICM and the
as on the colder side al w ays subcluster gas. Gas parcels at this kind
f cold front can be replaced by flows inside the subcluster or the
ow of host cluster ICM around the subcluster atmosphere, but gas
rom each reservoir does not change to the other side of the front. In
ontrast, at SCFs, material changes from the hotter side to the colder
ide as the sloshing front mo v es o v er it. 

Thus, while we expect shear flows along sloshing fronts to cause
HIs, we should not expect these KHIs to be able to fully erase a
iven SCF. For example, KHIs of perturbation length 10 kpc, arising
n an interface of density contrast 2 and shear velocity 300 km s −1 ,
ave a growth time of 30 Myr, but take about five growth times to
orm the classic KHI rolls (e.g. Roediger et al. 2013a ), and would
MNRAS 529, 563–574 (2024) 



574 E. Roediger, I. Vaezzadeh and P. Nulsen 

M

t  

c  

a  

H  

6  

p  

T  

t  

c  

s  

e  

2  

a  

2  

M  

2  

s

5

W  

c  

f  

p  

p  

s  

o  

t  

c  

c  

S  

c  

h  

c  

t
 

t  

H  

i  

e

A

W  

t  

C  

H  

N

D

T  

a

R

A
B  

B
C

C  

C
C  

F
F
G
K
M
M  

 

R
R  

R  

R  

R  

S
S
T
T
T  

V
V
V
Z
Z
Z  

Z  

Z

T

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/529/1/563/7616099 by U
niversity of H

ull user on 22 April 2024
ake even longer to erase the interface. A naive interpretation could
onclude that a ∼Gyr old discontinuity should be erased by KHIs
s their growth time is much shorter than the age of the front.
o we ver, assuming a sloshing front speed of 0.05 kpc Myr −1 (Fig.
 ), in 150 Myr, the sloshing front would travel 7.5 kpc, i.e. almost a
erturbation length, which is typically larger than the KHI roll height.
hus, KHI growth and sloshing front propagation, and re-formation,

ake place on similar time-scales, which explains why KHIs generally
annot erase sloshing fronts. Sloshing CFs are indeed known to
urvive KHIs from hydrodynamic simulations. Rather than being
rased or washed out, they are only distorted (e.g. Roediger et al.
013b ; ZuHone et al. 2013 ). Further ICM properties stabilizing fronts
gainst KHI, e.g. viscosity (e.g. ZuHone, Markevitch & Johnson
010 ; Roediger et al. 2013b ) or magnetic fields (e.g. Vikhlinin &
arkevitch 2002 ; Brzycki & ZuHone 2019 ; Chadayammuri et al.

022 ), are not necessary to ensure front survi v al, but would help to
lo w do wn or e ven pre vent the onset of KHIs. 

 C O N C L U S I O N  A N D  SUMMARY  

e presented a simple toy model for sloshing of the ICM in galaxy
lusters that describes sloshing fronts as a coherent pattern arising
rom ICM parcels oscillating locally with their BV period. This
eriod can be approximated by a linear function of radius. The
roportionality constant, 1/ u , is the inverse of the characteristic
peed of the resulting sloshing fronts, and is about 14 per cent
f the ICM sound speed. The simple model successfully predicts
he staggered pattern of sloshing fronts on opposite sides of the
luster, the outward motion of sloshing fronts with approximately
onstant speed, and the finite size of the sloshing front pattern.
loshing fronts should be numbered from the outside inwards. A
areful analysis of hydrodynamic simulations reveals that in the
ydrodynamic treatment, sloshing fronts emerge near the cluster
entre one after the other, with a delay of roughly 0.5 Gyr between
hem. This effect is not captured by the toy model. 

We explained that the best option to derive the age of the merger
hat triggered sloshing is to trace back the outermost sloshing front.
o we ver, such an analysis needs to take into account ‘failed’ SCFs,

.e. those outer SCFs that did not form a true discontinuity. The
xistence of such ‘failed’ SCFs is predicted by the toy model. 
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